中低温 SOFC 钙钛矿型阴极材料的研究进展

吴 艳¹,王要武²,彭冉冉²,张 萍¹,杨立寨²,毛宗强²

(1. 中国地质大学材料科学与化学工程学院,湖北 武汉 430074; 2. 清华大学核能与新能源技术研究院,北京 100084)

摘要:阐述了钙钛矿材料的结构和渗氧特征,总结了目前中低温(400~750)固体氧化物燃料电池(SOFC)阴极材料钙钛 矿系列 ABO₃ 型、 K_2 NiF₄ 型、YBa₂Cu₃O₇-(YBCO)型和 BiVO_x 型氧化物的研究现状。

关键词:固体氧化物燃料电池; 阴极材料; 钙钛矿

中图分类号:TM911.4 文献标识码:A 文章编号:1001 - 1579(2005)05 - 0393 - 02

Research progress in perovskite type cathode material for intermediate-to-low temperature SOFC

WU Yan¹, WANG Yao-wu², PENG Ran-ran², ZHANG Ping¹, YANG Li-zhai², MAO Zong-qiang²

Faculty of Material Science and Chemical Engineering, China University of Geosciences, Wuhan, Hubei 430074, China;
 Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China)

Abstract : The structure and oxygen permeability character of perovskite material were reviewed, the family of the current perovskite type compounds with the structures of ABO₃, K_2NiF_4 , $YBa_2Cu_3O_7$. (YBCO) and BiVO_x as cathode materials of intermediate-to-low temperature solid oxide fuel cell (SOFC) were investigated.

Key words :solid oxide fuel cell; cathode material; perovskite

固体氧化物燃料电池(SOFC)的发展趋势之一是适当降低 电池工作温度^[1]。随着温度的降低,阴极活性下降,La_{1-x} Sr_xMnO₃(LSM)已不适合作为中低温 SOFC 的电极材料,开发 高性能的阴极材料已成为关注的热点。

对中低温 SOFC 阴极材料,除萤石结构型的 YDB (Y_2O_3 掺 杂 Bi₂O₃)陶瓷材料外^[1],研究得较多的是具有离子-电子混合导 电性能的钙钛矿系列材料,包括:掺杂的具有钙钛矿结构的 ABO₃型、K₂NiF₄型、YBa₂Cu₃O₇.(YBCO)型和 BiVO_x 型氧化物。

1 钙钛矿型阴极材料

钙钛矿 (ABO₃ 型) 结构中,界面产物的形成程度主要由 A 位置元素的活性决定,阴极活性取决于 B 位置元素的性质。用 低价元素对 A 位进行掺杂(如用 Ba²⁺掺杂 La³⁺),会引起材料 结构内部电荷的不平衡。为使电荷不平衡得以补偿,在材料内 部出现氧离子缺陷(氧空位),或 B 位离子发生升价。对于钙钛 矿混合导体材料而言,提高氧离子电导率是降低阴极极化的关 键^[2]。氧离子电导率 ;的计算公式见文献[3]。

2 **研究现状**

A 位离子掺杂浓度一定时,通过 B 位离子升价进行电荷补 偿,会导致材料氧空隙浓度的下降。离子价态变化,伴随着离子 半径的变化,又会引起材料晶胞体积变化,使材料内部导入大 的应力,对材料的完整性不利。A、B 位双掺杂钙钛矿结构材 料,可作为中低温 SOFC 的阴极材料。

2.1 ABO3 型氧化物

对 A_{1-x}A_xB_{1-y}B_yO₃ (A = La、Ce、Pr、Gd; A = Ba、Sr、Ca; B、B = Fe、Co、Ni、Cu、Cr、Al、Ga) 材料的组成、结构、电性能以及 与电解质的热匹配进行了研究。La(Sr,Ca,Ba) Co(Fe) O₃. 系列 材料具有高透氧能力,Y. Teraoka 等^[4]发现,La_{1-x}Sr_xCo_{1-y}

作者简介:

吴 艳(1980 -),女,湖北人,中国地质大学材料科学与化学工程学院硕士生,研究方向:燃料电池;
王要武(1967 -),男,湖南人,清华大学核能与新能源技术研究院助理研究员,博士,研究方向:燃料电池;
彭冉冉(1975 -),女,山东人,清华大学核能与新能源技术研究院博士后,博士,研究方向:燃料电池;
张 萍(1956 -),女,湖北人,中国地质大学材料科学与化学工程学院副教授,研究方向:电分析;
杨立寨(1974 -),男,浙江人,清华大学核能与新能源技术研究院助理研究员,研究方向:燃料电池;
毛宗强(1947 -),男,江苏人,清华大学核能与新能源技术研究院研究员,教授,研究方向:氢能。
基金项目:国家重点基础研究发展规划项目(TG2000026400)

 Fe_yO_{3-} (LSFC)在一定的温度下具有优良的氧渗透性和离子、 电子导电的混合导电性能,在 He 气氛下,氧离子导电活化能为 64.9~86.7 kJ/mol,离子、电子电导率分别为 1~10⁻² S/cm 和 10² S/cm。

Ga 掺杂的化合物的化学和结构稳定性较好。S.Lee 等^[5] 用 Ga 掺杂,相对含 Co 的化合物,La_{0.7} Sr_{0.3} Ga_{0.6} Fe_{0.4}O₃. 中的 氧渗透量受到了限制。把 La_{0.6} Sr_{0.4} CoO₃. 修饰到 La_{0.7} Sr_{0.3} Ga_{0.6} Fe_{0.4}O₃. 阴极材料上,电极表面的氧渗透量得以提高。

为增强阴极的离子和电子导电能力,可在阴极材料中加入 电解质或贵金属,形成复合电极。V. Dusastre 等^[6]以 La_{0.6} Sr_{0.4} Co_{0.2} Fe_{0.8}O₃ (LSCF) 作为阴极材料,考察了化学组成对电化学 性能的影响,当组成为 LSCF/Ce_{0.9} Gd_{0.1}O₂ (GDC)时,加入 36%的 GDC到 LSCF后,其面积比电阻下降 3/4。复合电极的 高性能与物质渗透理论一致,但实验数据与理论数据有偏差。 这是因为多孔电极的总体性能不但与电极的固相传导有关,还 与三相界面的内在催化性能、气体在三相界面的吸附与解吸有 关。M. Sahibzada 等^[7]以少量 Pd 掺杂到 LSCF 阴极材料中,在 400~750 时,适量 Pd 可使阴极电化学阻抗降低 2/3~3/4。

Z. P. Shao 等^[8]用 Ba 完全取代稀土元素,合成了立方钙钛 矿 Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O₃.(BSCF),具有较低的氧扩散活化能 [(46 ±2) kJ/mol],氧空位扩散速率(775 时为 7.3 ×10⁻⁵ cm²/s;900 时为 1.31 ×10⁻⁴ cm²/s)比其他电极材料高。

2.2 K₂NiF₄ 型氧化物

 K_2NiF_4 是钙钛矿型结构的一种衍生结构, MO_6 八面体共用 4 个顶点,连接成层,从中可取出一个钙钛矿的结构单元来。 这个结构可看成二维的钙钛矿结构层和 NaCl 结构交替而成。 Pr_2NiO_{4+} 有较高的氧交换数值和较快的反应动力学速率^[9]。

V. V. Kharton 等^[10]以 K₂NiF₄ 结构的 La₂Ni_{0.8}Cu_{0.2}O₄₊为 SOFC 的阴极材料,以(La_{0.9}Sr_{0.1})_{0.98}Ga_{0.8}Mg_{0.2}O₃₋(LSGM)为 电解质,在 200~1000 时,阴极材料电导率为 50~85 S/cm, 氧表面交换系数较高。在 800 时,阴极过电位低于 50 mV,电 流密度达 200 mA/cm²。C. Shaw 等^[11]建立的 K₂NiF₄型结构化 合物,在中温时的氧扩散系数比 La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O₃(LSCF) 高,在 566 时,La₂Ni_{0.8}Cu_{0.2}O₄₊的氧示踪扩散系数 D *为 8 ×10⁻⁹ cm²/s,比 LSCF(D *为 2 ×10⁻¹⁰ cm²/s,597)的要高。 2.3 YBa₂Cu₃O₇₋(YBCO)型氧化物

YBCO 结构中有铜氧面和铜氧链,铜氧面是超导的关键因素。YBa₂Cu₃O₇.在中温时具有较大的氧还原动力学数值。 C.L. Chang 等^[12]在 500 ~ 800 时,考察了 YBCO 作为 SOFC 阴极材料的电化学性能,在 $10 ~ 2.1 \times 10^4$ Pa 氧气气压范围内, 氧的吸附是整个反应的控制步骤。B. Frank 等^[13]以 YBCO 作 为中温 SOFC 的阴极材料,并与 La_{0.6} Sr_{0.4} Co_{0.8} Fe_{0.2}O₃.(LSC-FO)材料对比,发现 YBCO 的面积比电阻较大,性能退化较严 重。

2.4 BiVO_x 型氧化物

BiVO_x 型氧化物的多层结构含有钙钛矿层 $(VO_{3.5})^{2-}$ 。在 含 Cu 的取代物中,Bi₂V_{0.9}Cu_{0.1}O_{5.35}在中低温下具有很高的离 子电导率(350 时为 10^{-2} S/ cm;600 时为 10^{-1} S/ cm),比此 温度范围内其他固体电解质的高。它在氧气气氛($PO_2 > 10$ Pa) 下是一种优良的氧离子传导体^[14]。BiCuVO_x 材料的电荷转移 数相当低,要加入电子传导相,形成复合阴极,以得到双极子传 导的混合导体。AgBiCuVO_x^[15](电解质为掺杂氧化铈)的 ASR 分别为 0.53 cm²(500),0.21 cm²(550),在 500 525 和 550 下,最大功率密度分别为 231 mW/cm²、 332 mW/cm²和 443 mW/cm²。此类材料具有界面阻抗低、功率 密度高等优点,但其长期稳定性还有待考察。

3 结论

具有钙钛矿结构的 ABO₃ 型、K₂NiF₄ 型、YBCO 型和 BiVO_x 型氧化物作为中低温 SOFC 阴极材料,均有一定的催化活性。 具有高透氧能力的 ABO₃ 型、K₂NiF₄ 型和 BiVO_x 型氧化物,是 中低温 SOFC 很有前景的阴极材料。

参考文献:

- [1] XU Xing yan (许兴燕), XIA Chang rong (夏长荣), PENG Dingkun(彭定坤), et al. 中低温固体氧化物燃料电池研制[J]. Battery Bimonthly(电池), 2004, 34(3): 222 - 223.
- [2] Brian C, Steele H. Survey of materials selection for ceramic fuel cells
 (). Cathodes and anodes[J]. Solid State Ionics, 1996, 86 88: 1 223 - 1 234.
- [3] Adler S B, Lane J A, Steele B C H. Electrode kinetics of porous mixed conducting oxygen electrodes [J]. J Electrochem Soc, 1996, 143(3):3554-3564.
- [4] Teraoka Y, Zhang H M, Okamoto K, et al. Perovskite materials for solid oxide fuel cells[J]. Mat Res Bull, 1988, 23(3):51 - 58.
- [5] Lee S, Lee K S, Woo S K, et al. Oxyger-permeating property of LaSrBFeO₃(B = Co, Ga) perovskite membrane surface modified by LaSrCoO₃[J]. Solid State Ionics, 2003,158(3 - 4): 287 - 296.
- [6] Dusastre V, Kilner J A. Optimisation of composite cathode for intermediate temperature SOFC application[J]. Solid State Ionics, 1999, 126(1 - 2):163 - 174.
- [8] Shao Z P, Sossina M H. A high-performance cathode for the next generation of solid-oxide fuel cells[J]. Nature, 2004, 431: 170 - 173.
- [9] Mauvy F, Bassat J M, Boehm E, et al. Chemical oxygen diffusion coefficient measurement by conductivity relaxation correlation between tracer diffusion coefficient and chemical diffusion coefficient [J].J Euro Cer Soc, 2004, 24:1 265 - 1 269.
- [10] Kharton V V, Tsipis E V, Yaremchenko A A, et al. Surfacelimited oxygen transport and electrode properties of La₂Ni_{0.8}Cu_{0.2} O₄₊ [J]. Solid State Ionics, 2004, 166(1 - 2): 327 - 337.
- [11] Shaw C, Kilner J. Oxygen change in Pr₂NiO₄₊ at high temperature and direct formation of Pr₄Ni₃O_{10-x} [A]. Proceed 4th European Solid Oxide Fuel Cell Forum[C]. Luzerland: 2002. 586.
- [13] Frank B, Jurgen F, Joachim M. Microelectrode impedance study of SOFC cathode materials: La_{0.6}Sr_{0.4}Co_{0.8}Fe_{0.2}O₃. and YBa₂Cu₃O₇.
 [A]. Proceed 6th European Solid Oxide Fuel Cell Forum [C]. Switzerland: 2004. 1 241 - 1 252.
- [14] Steven P S, Donaji S S, John D M, et al. Synthesis densification, and conductivity characteristics of BiCuVO_x oxygen-ion-conducting ceramics[J]. J Am Ceram Soc, 1997, 80(10): 2563 - 2568.
- [15] Xia C, Lang Y, Meng G. Recent advances to the development of low-temperature solid oxide fuel cell[J]. Fuel Cell, 2004, 4(1 - 2): 41 - 47.

收稿日期:2005-01-30