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LECTURE 2: SINGLE PARTICLE MOTION

2.1 INTRODUCTION

Depending on the density of charged particles, plasmas behave either as a fluid with collec-
tive effects being dominant or as a collection of individual particles. In dense plasmas, the
electrical forces between particles couples them to each other and to the electromagnetic
fields which affects their motions. In rarefied plasmas, the charged particles do not interact
with one another and their motions do not constitute a large enough current to significantly
affect the electromagnetic fields. Under these conditions, the motion of each particle can
be treated independently from any other, by solving the Lorentz force equation for pre-
scribed electric and magnetic fields, a procedure known as the single particle approach. In
magnetized plasmas, under the influence of an external static or slowly varying magnetic
field, the single particle approach is only applicable if the external magnetic field is quite
strong, compared to the magnetic field produced by the electric current due to the particle
motions. Although the single particle approach may only be valid in special circumstances,
understanding the individual particle motions is also an important first step in understanding
the collective behavior of plasmas. Accordingly, we shall study single particle motions in
this and the following two lectures.

In all of the following, the fundamental equation of motion for the particles is under the

influence of the Lorentz force is given by

m%=q(E+va) [2.1]

where m is the particle mass and v is its velocity. While we only consider nonrelativistic!
motion ([v| < c¢), the above equation is valid for the relativistic case, if we simply replace
: ~1/2 . |

the mass m with m = myg (1 — fuzf/cz) / , where my is the rest mass and v = |v|. More
commonly, the relativistic version of equation [2.1] is written simply in terms of the particle

momentum p = myv, rather than velocity v.

! By the same token, we neglect any radiation produced by the acceleration of charged particles. At non-
relativistic velocities, such radiation is quite negligible; the radiated electric field at a distance R from the
particle is proportional to g%a®/(c* R?), where q is charge of the particle, c is the speed of light in free space,
and « is the acceleration. For a discussion at an appropriate level, see Chapter 7 of J. B. Marion, Classical
FElectromagneric Radiarion, Academic Press, New York, 1965.



2.2 MOTION IN A UNIFORM B FIELD: GYRATION

We start by considering the simplest cases of motion in uniform fields. When a particle
is under the influence of a static electric field that is uniform in space, the particle simply
moves with a constant acceleration along the direction of the field, so that this case does
not warrant further study. On the other hand, the motion of a charged particle under the
influence of static and uniform magnetic field is of fundamental interest, and is studied in
this section.

With only a static and uniform magnetic field present, equation [2.1] becomes

m%:qva [2.2]

Taking the dot product of [2.2] with v we have

d
V-mé:%q(va)

d(v-v)
7 =q[v- (v x B)]

d [ muv?
p (T) =0

where v = |v| is the particle speed and where we have noted that (v x B) is perpendicular
to v so that the right hand side is zero. It is clear that a static magnetic field cannot change
the kinetic energy of the particle, since the force is always perpendicular to the direction
of motion. Note that this is true even for a spatially nonuniform field, since our derivation
above did not use the fact that the field is uniform in space.

ml
2

We first consider the case of a magnetic field configuration consisting of field lines that
are straight and parallel, with the magnetic field intensity constant in time and space. Later
on, we will allow the magnetic field intensity to vary in the plane perpendicular to the field,
while continuing to assume that the field lines are straight and parallel. We can decompose
the particle velocity into its components parallel and perpendicular to the magnetic field,

ie.,

V= Vi +V)
in which case we can rewrite [2.2] as
dvi dv; ¢
dt dt m (Vi xB)

since vy x B = 0. This equation can be split into two equations in terms of v, and v,



respectively:

|

TE = - V)= const.
dV_L

dt  m (VL X B)

It is clear from the above that the magnetic field has no effect on the motion of the
particle in the direction along it, and that it only affects the particle velocity in the direction
perpendicular to it. To examine the character of the perpendicular motion, consider a static
magnetic field oriented along the z axis, namely B = 2B. We can write [2.2] in component
form as

md—: = qBu, [2.3a]
dvy

m— qbBv [2.30]
dv.,

m 7 =0 [2.3¢]

The component of the velocity parallel to the magnetic field is often denoted as v | = vz and
is constant since the Lorentz force g(v x B) is perpendicular to 2.

To determine the time variations of v, and vy, we can take the second derivatives of [2.3a]
and [2.3b] and substitute to find

d?v
w7+ Weve =0 [2.4a]
— twivy =0 [2.40]

where w. = —¢B /m is the gyrofrequency or cyclotron frequency. Note that w, is an angular
frequency in units of rad-m~! and can be positive or negative, depending on the sign of g. A
positive value of w in a right-handed coordinate system indicates that the sense of rotation
is along the direction of positive ¢, where ¢ is the cylindrical coordinate azimuthal angle,
measured from the x axis as shown in Figure 2.1.

The solution of [2.4] is in the form of a harmonic motion given by

Uy = U1 cos(wet + 1) [2.5a]
vy = —v sin(wet + 1) [2.50]
Uz = ) [2.5¢]

where 9 is some arbitrary phase angle which defines the orientation of the particle velocity

ek
att=0andv, = =/ v2 402 7 is the constant speed in the plane perpendicular to B.
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Fig. 2.1. Motion of a particle in a magnetic field. A particle with positive charge ¢ and
with a velocity v experiences a force of gv x B in the presence of a magnetic field B.
[gyration]

To appreciate the above result physically, consider the coordinate system and the forces
on the particle (assumed to be a positive charge ¢) as shown in Figure 2.1 at different points
along its orbit. It is clear that the particle experiences a v x B force directed inward at all
times, which balances the centrifugal force, resulting in a circular motion. For a z-directed
magnetic field, electrons rotate in the right hand sense, i.e., have a positive value of w,; in
other words, if the thumb points in the direction of the magnetic field, the fingers rotate in
the direction of the electron motion. The radius of the circular trajectory can be determined
by considering the fact that the v x B force is balanced by the centrifugal force so that we
have

2

muv

mu v
Ti=|q1v><B=quB — Te L L

“Ja[B T w.

where . is known as the gyroradius or Larmor radius. Note that the magnitude of the particle
velocity remains constant, since the magnetic field force is at all times perpendicular to the
motion. The magnetic field cannot change the kinetic energy of the particle; however, it
does change the direction of its momentum. It is important to note that the gyrofrequency
w, of the charged particle does not depend on its velocity (or kinetic energy) and is only
a function of the intensity of the magnetic field. Particles with higher velocities (and thus
higher energies) orbit in circles with larger radii but complete one revolution in the same
time as particles with lower velocities which orbit over smaller circles. Particle with larger
masses also orbit in circles with larger radii, however, they complete one revolution in a
longer time compared with smaller masses. A convenient expression for the gyrofrequency

fee for electrons is

Foo= 22 ~ 28 % 10°B Hz
27
where B is in units of Gauss (note that 10* Gauss=1 Tesla or wb-m™2). As an exam-
ple, the Earth’s magnetic field at the surface is of oredr ~0.5 Gauss, corresponding to a

gyrofrequency of f.. ~ 1.4 MHz.



The particle position as a function of time can be found by integrating [2.5]

T = Tesin(wet + ) + (xg — re8in ) [2.6a]
Y =T Cos(Wet + ) + (Yo — 1 COS Y) [2.6b]
z =20+t [2.6¢]

where zg, yo, and zp are the coordinates of the location of the particle at ¢t = 0 and v is
simply the phase with respect to a particular time of origin. Equations [2.6] show that the
particle moves in a circular orbit perpendicular to B with an angular frequency w, and radius
7. about a guiding center vy = Kxo + §yo + Z(zo + v)t). The concept of a guiding center is
useful in considering particle motion in inhomogeneous fields, since the gyration is often
much more rapid than the motion of the guiding center. Note from [2.6] that in the present
case, the guiding center simply moves linearly along z at a uniform speed vy, although the
particle motion itself is helical, as shown in Figure 2.2. The pitch angle of the helix is

defined as
o = tan™! <2£) [2.7]
Y|

1 y

Fig. 2.2. Electron guiding center motion in a magnetic field B = 2B. Also see Chapter
4,Fig. 5 on p. 44 of Bittencourt. [helical]

It is interesting to note that for both positive and negative charges, the particle gyration
constitutes an electric current in the —¢ direction (i.e., opposite to the direction of the



fingers of the right hand when the thumb points in the direction of the +z axis). The
magnetic moment associated with such a current loop is given by 4 = current x area or

2
W muv

H= (qzw) =55

N e’

Area

Current

Note that the direction of the magnetic field generated by the gyration is opposite to that of the
external field. Thus, freely mobile particles in a plasma respond to an external magnetic field
with a tendency to reduce the total magnetic field. In other words, a plasma is a diamagnetic
medium and has a tendency to exclude magnetic fields, as we shall further study later in the
context of our discussions of magnetohydrodynamics and magnetic pressure.

2.3 E x B DRIFT

When both electric and magnetic fields are present, the particle motion is found to be a
superposition of gyrating motion in the plane perpendicular to the magnetic field and a drift
of the guiding center in the direction parallel to B. Assuming once again that the magnetic
field is in the z direction, i.e., B = 2B, we decompose the electric field E into its components
parallel and perpendicular to B: ‘

EZE_L+2EH =)A(El+2E|]

where we have taken the electric field to be in the 2 direction, with no loss of generality.
Noting that we can also decompose the particle velocity into its two components, i.e.,
v(t) = v (t) + 2v,(t), the equation of motion can be written as

vy .. . o
m_di_ =q(Xf ) +v) X 2B) [2.8a]
Y _ ; 2.8b
(rral (2801

Equation [2.8b] simply indicates constant acceleration along B. For the transverse compo-
nent, we seek a solution of the form

V() = v +va(t) [2.9]

where v is a constant velocity and v, is the alternating component. Using [2.9] in [2.8a]
we have
dVae
dt

We know from our discussions in the previous section that the left hand side term and the
last term on the right hand side term in [2.10] simply describe circular motion ( gyration) at

m = q(XE | +v, X ZB + vy X ZB) [2.10]



Fig. 2.3. Particle drifts in crossed E and B fields. The negatively charged particle is
assumed to have the same velocity (v ) as the positively charged one but a smaller mass
and therefore a smaller gyroradius. The E x B drift speed v, for both particles is the same.
[cycloid]

arate w. = —¢B/m. Thus, if we choose v such that the first two terms on the right hand
side of [2.10] cancel, i.e.,

R . E xB
XE| +v, xZB =0 — Ve = 5 [2.11]
B
then [2.10] reduces to the form
dv,e .
m d; = qVa X 2B [2.12]

which, as mentioned, simply describes rotation at a frequency w, = —qB/m. Note that we
can use E rather than E | in [2.11] since ZE” X B = 0. Thus, we see that the particle motion
in the presence of is given by

V(1) = Zuy(t) + vy + Ve (t) [2.13]
consisting of motion steady acceleration along B, uniform drift velocity v, perpendicular to

B andE, and the gyration. Taking the time average of v(t) over one gyroperiod (1, = 27 /w,),
we have

1 [T
<V >= —/ v(t)dt = iv;i + Vg
TC O !

showing that v, = (E x B)/B? is the average perpendicular velocity.



It is interesting to note that the drift velocity Vg is independent of ¢, m, and v} = |v, |.
The reason can be seen from physical picture of the drift as shown in Figure 2.3. As the
positively charged particle moves downward (against the electric field) during the first half
of its cycle, it loses energy and its . decreases. In the second half of its cycle, it regains
this energy back as it now moves in the direction of the electric field. This difference in the
radius of curvature of its orbit near the top versus bottom of its orbit is the reason for the
drift v;. A negatively charged particle gyrates in the opposite direction but also gains/loses
energy in the opposite directions compared to the positively charged particle. Since we
have assumed the negatively charged particle to be lighter it has a smaller gyroradius 7.
However, at the same time its gyrofrequency is larger and the two effects cancel each other
out, resulting in the same drift velocity. Two particles of the same mass but different energy
(i.e., different %mvi or v ) have the same gyrofrequency w,, and although the one with
the higher velocity has a higher 7. and hence gains more energy from E in a half cycle, the
fractional change in ., for a given change in energy is smaller, so that the two effects cancel
out and v, is independent of v .

The basic source of the E x B drift derived above was the component of electric field
perpendicular to B. It is clear from the above procedure that any other constant transverse
force F acting on a particle gyrating in a constant magnetic field would produce a drift
perpendicular to both F and B, with the drift velocity given by

_F. /9 xB

=2 [2.14]

Ve

We shall use [2.14] later in studying the motion of charged particles in nonuniform magnetic
fields.



e,

EE356 Elementary Plasma Physics H. O. #6
Inan 10 April 2006

Spring 2006

LECTURE 3: PARTICLE MOTION IN NONUNIFORM B FIELDS

3.1 INTRODUCTION

Both naturally occurring plasmas and those that one encounters in many applications often
exist in the presence of magnetic fields that do not vary appreciably in time but which vary
with one or more coordinates of space, i.e., which are nonuniform. An important example
of a nonuniform magnetic field is the so-called magnetic mirror configuration which is
commonly used to confine plasmas, and which is also the mechanism by which energetic
particles are trapped in the earth’s radiation belts.

Assuming the absence of an electric field, and no temporal variations of the magnetic
field!, the kinetic energy of the particle must remain zero, since the magnetic force is at
all times perpendicular to the motion of the particles as discussed in Lecture 2. In general,
exact anaytical solutions for charged particle motions in a nonuniform magnetic field cannot
be found. However, one very important configuration that can be studied analytically is the
case in which the gyroradius 7. is much smaller than the spatial scales over which the
magnetic field varies. In such cases, the motion of the particle can be decomposed into the
fast gyromotion plus some type of relatively slow drift motion. The slow drift is associated
with the motion of the guiding center, and the separation of its motion from the rapid gyration
is similar to the simplest case analyzed in Lecture 2, where we saw that the guiding center
simply moved linearly along the magnetic field as the particle executed its complicated

gyromotion.

We now examine particle motion in different types of nonuniform magnetic fields, as-
suming the presence of only one type of inhomogeneity in each case.

! Note that any time variations of the magnetic field would lead to an electric field via Faraday’s law, i.e.,
YV x E = —0B/J¢, which can in turn accelerate the particles.
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Fig. 3.1. Particle drifts due to a magnetic field gradient. [gradient]

3.2 GRADIENT DRIFT

We first consider a magnetic field the intensity of which varies in a direction perpendicular
to the magnetic field vector. Without loss of generality, let B(y) = 2B,(y), as depicted
in Figure 3.1. Since the field strength has a nonzero gradient VB, in the y direction, we
note that the local gyroradius . (i.e., the radius of curvature of the particle orbit) is large
in regions where B is small and vice versa. Thus, on physical grounds alone, we expect a
positive charge to drift to the left and a negative charge to drift to the right.

To find an expression for the particle drift velocity, we take advantage of expression [2.14]
which gives drift velocity for any force perpendicular to the B field. For the field geometry
depicted in Figure 3.1, this means a force in either  or y directions. Since we started
with the premise that the gyration was much more rapid than the relatively slow drift, it is
appropriate to determine the net resultant force averaged over one gyroperiod. The force
perpendicular to B is the Lorentz force given by

F =¢(v xB) =Xqu, B, — $qu. B

~ Rquy (Bo+yaa%> — Jque (Bo+yaalzz>

where we have expanded B, (y) into a Taylor series? around the guiding center of the particle
(taken with no loss of generality to be at 2, = 0 and y, = 0), with By being the magnetic
field intensity at the guiding center and y is the distance from the guiding center. In other
words, we have written

z

OB
Y

+

and neglected higher order terms.

2 In the more general case this expansion can be written as
B=By+(r-V)Bg+---

where By is the field at the guiding center and r is the position vector with the origin chosen as the guiding
center.



We thus have the two transverse components of the Lorentz force as

0B,

F,=qu, | By + 3.1a

Qy(o yay> [3.1a]
0B,

F,=—qu, | By + [3.10]
v <° y3y>

We wish to determine < F, > and < F,, >, where the brackets denote averaging over one
gyroperiod. To do this, we can assume that the particles by and large follow the orbits for
a uniform field, as determined in Lecture 2 (see [2.5 and [2.6]), namely:

ZTe = Te Sin(wet + 1) [3.2a]
Ye = T¢ COS(Wet + 1) [3.2b]
Uz = v COS(wct + 1)) [3.2¢]
Uy = —v sin(wct + 1)) [3.2d]

where w, has the same sign as ¢ (i.e., is negative for electrons). Substituting in [3.1a] and
[3.1b] we have

Fy = —qu, sin(w.t + ) {Bo + 7 cos(wet + 1)) 8;;'2} [3.3a]

Fy = —qu | cos(wet + 1)) [BO + 7 COs(wet + 1)) 8632}

[3.35]

The average over one gyroperiod (27 /w,) of F} is zero, since it contains the product of
sine and cosine terms. The averaging of F,, has the product of a cosine with a cosine which

o ot 1

results in a factor of 5. We thus have,

quire 0B,
) =- 34
(Fy) ===, [3.4]
The drift velocity is then given from [2.14] as
Vo = (FL/IQ)XBz (Fy)§ x 2B. _ uredB; [3.5]

B2 ¢BZ T 2B, oy

where the subscript ‘V’ indicates that the drift velocity is due to the gradient drift. Since
the magnetic field direction was chosen arbitrarily, we can write [3.5] more generally as

_vreBxVB mv? BxVB

v — s 3.6
v 2 B; 2‘? R3 { ]




for any magnetic field B = BB, and noting that ., = mvi /(gB). The corresponding more
general expression for the perpendicular gradient force Fy is

1m 2 W
2Mmv L

— v .
FV B B= B VB {3.7]

where W is the perpendicular kinetic energy of the particle.

Equation [3.6] exhibits the dependencies that we expect on physical bases. Electrons and
jons drift in opposite directions and the drift velocity is proportional to the perpendicular
energy of the particle, namely W, = %m’ui. Faster particles drift faster, since they have a
larger gyroradiius and their orbits span a larger range of the inhomogeneity of the field.

3.3 CURVATURE DRIFT

When particles rapidly gyrate while moving along a magnetic field line which is curved, as
depicted in Figure 3.2a, they experience a centrifugal force perpendicular to the magnetic
field, which produces a drift as defined by [2.14]. Assuming once again that the spatial scale
of the curvature is much larger than the gyroradius, we can focus our attention to the motion
of the guiding center. The outward centrifugal force in the frame of reference moving with
the guiding center at a velocity v is given by

R

ﬁ—g [3.8]

Fe = mvﬁ

where R, is the vector pointing radially outward from the center of the circle described by
the local curvature of the field and R, has a magnitude equal to the radius of curvature.

Fig. 3.2. Curvature drift. Particle drift in a curved magnetic field. ( [curvature]



Using the force given in [3.8] in [2.14] we find the curvature drift velocity as

_ Fer/q) xB _ mvﬁ R. x B

BT, g [3.9]

VR

In vacuum, curvature drift cannot by itself be the only drift since the curl of the magnetic
field must be zero, namely Vx B = 0. Considering cylindrical coordinates with B = By(r)e,
we must then have

RR S

10
(V X B)z = ;“—E?(TBQS) =0 — B¢ =

where A is a constant. The gradient of B is then OBy/0r = —By/r = —A/r. More
generally, we can write the resulting gradient as V = —(B/R>)R.. Thus, the total drift due
to both gradient and curvature effects can be written as

1 B x VB

= = (2L >
Viotal = VR + Vy = (’U” +5v1) w2

5 [3.10]

An example of gradient plus curvature drift is the longitudinal drift of radiation belt
electrons around the Earth (see Figure 3.3). Note that the direction of the earth’s magnetic
field is from south-to-north.

Fig. 3.3. Longitudinal drift of radiation belt electrons. Note that the direction of the
earth’s magnetic field By is from south to north. [longitudinal]

It is interesting to note that both the gradient and curvature drift velocities are inversely
proportional to the charge ¢ so that electrons and ions drift in opposite directions. The



oppositely directed drifts of electrons and ions leads to a transverse current. The gradient
drift current is given by

Jv = N|ge|[(vy)i — (Vy)e]
N
= ‘E‘g[(W,L)i +(W1)elB x VB)

where N = N; = N, is the plasma density and W = %mvi is the perpendicular particle
energy. Note that the gradient drift current Jy flows in a direction perpendicular to both the
magnetic field and its gradient.

Similarly, the different directional curvature drifts of the electrons and ions leads to a
curvature drift current given by

JR = N|ge|[(VR)i — (VR)e]
2N

g (Vi + (W)IR. x B)

where W) = %mvﬁ is the parallel particle energy. The curvature drift current Jg flows in a
direction perpendicular to both the magnetic field and its curvature.

In the earth’s magnetosphere, the gradient and curvature drift currents described above
create a large scale current called the ring current, the magnitude of which can exceed several
million amperes during moderate size magnetic storms, when the number of particles in
the ring current region increases. The ring current produces a magnetic field that decreases
the earth’s field within the drift orbits of the particles. This effect is observed as a major
decrease in the geomagnetic field during magnetic storms.

3.4 ADIABATIC INVARIANCE OF THE MAGNETIC MOMENT

In Lecture 2, we recognized that a gyrating particle constitutes an electric current loop with
a magnetic dipole moment given by . = muv /(2B). In this section, we demonstrate that
this quantity has a remarkable tendency to be conserved (i.e., to be invariant), in spite of
spatial or temporal changes in the magnetic field intensity, as long as the changes in B
are small over a gyroradius or gyroperiod. This kind of constancy of a variable is termed
adiabatic invariance, to distinguish them from quantities that may be absolute invariants,
such as total charge, energy or momentum in a physical system.

Consider a particle gyrating in magnetic field oriented primarily in the z direction but
varying in intensity as a function of z, as depicted in Figure. Assume the field to be
azimuthally symmteric, so that there is no ¢-component, i.e., By = 0, and no variations
of any of the quantities in ¢, i.e., 9(-)/9¢ = 0. As the particle gyrates around B with a
perpendicular velocity v; while moving along it at vy, we are primarily concerned with the
motion of its guiding center, which moves along the z axis. The force acting on the particle



Fig. 3.4. Drift of a particle in a magnetic mirror configuration. [mirrorlecturethree]

during this motion can be found from [3.7], by noting that the magnetic field has a nonzero
gradient in the z direction. We have

vl 9B, W, 9B 9B

_ 3 _ _WioB_ OB
Fx = B, 0z B. 92 "5 [3.11]

Alternatively, the force F, can be found directly from the Lorentz force equation. The 2
component of the Lorentz force results from gv; x B or

Fz=qvl><B=qv_LBr [3.12]
where B, can be found using the fact that we must have V- B = 0, so that

0B, | roB,
Br = r = =
rBr)+ 0z 0 = B 2 9z

10
r or

[3.13]

assuming that 9B, /9= does not vary significantly with r. In other words, the total magnetic
field in the case of a converging field line geometry of Figuremust be given by

B=D5,t+B.,2

Evaluating B, as given in [3.13] at r = Tc, and substituting in [3.12] we find the same
expression for F, as in [3.11].

With F, determined, we can examine the variations of the parallel and perpendicular
energies of the particle as its guiding center moves along z. Consider the total energy of the
particle

W=W,+W,



which must remain constant in the absence of electric fields, so that we have

aw,
v

dt dt (3-14]

Noting that W = uB, the time rate of change of the transverse energy can be written as

dw, duB) dB du dB du
7 = I —/,LE‘!'B—d?——/,LUH“‘z"f'B*’-‘ [315]

where we have noted that the dB/dt term is simply the variation of the magnetic field as
seen by the particle as its guiding center moves to new locations, so that this term can be
written as dB/dt = (dz/dt)(0B/0z) = UH@B /0z). The rate of change of the parallel
energy W) is determined by the force F), via the equation of motion, namely

d’UH - F
T T
d?)” _ dB
a - P
dvy dB
T T TR
d (3muy) dB
=T
dt dz
dw, dB
2o, 82
7 e P [3.16]
Substituting [3.16] and [3.15] in [3.14] we find
dB du dB du

oo

,uUH—+B— U“Mdz =0 — 7

dt

which indicates that the magnetic moment y is an invariant of the particle motion.

Note from [3.15] and [3.16] that the perpendicular energy of the particle increases while
the parallel energy decreases as it moves toward regions of higher B-field, so thatd B /dz > 0.
As the particle moves into regions of higher and higher B, its parallel velocity v, | eventually
reduces to zero, and it ‘reflects’ back, moving in the other direction. In a symmetric magnetic
field geometry, such as that in a dipole magnetic field similar to that of the earth and other
magnetized planets, the particle would encounter a similar convergence of magnetic field
lines as it travels to the other end of the system, from which it also reflects, thereby being
forever trapped in a ‘magnetic bottle’.

Until now we have assumed that the magnetic field exhibited no temporal changes, so
that 9B /0t = 0 and there are no induced electric fields. However, the magnetic moment



L is still conserved even when there are time variations, as long as those variations occur
slowly in comparison with the gyroperiod of the particles. Noting that temporal variations
of the magnetic field would create a spatially varying electric field via Faraday’s law, i.e.,
—0B/0t = V x E, let us consider the change in perpendicular energy W, due to an electric
field.

Consider the equation of motion under the influence of the Lorentz force, namely

d(V_]_ + V”)
m__—.....__....._..__

ai =q{E+(V_]_+VH)XB]

and take the dot product of this equation with v; to find

AW,
T =qE-v))

where we have used the fact that W = %—mvi. The increase in particle energy over one
gyration can be found by averaging over a gyroperiod

T
AW, =q (E-v)dt
0

where T, = 2w /w.. Assuming that the field changes slowly, the particle orbit is not per-
turbed significantly, and we can replace the integration in time with a line integral over the
unperturbed circular orbit. In other words,

AWL='q74E~dl=q/(V><E).ds=—/
C ) S

where dlis a line element along the closed gyroorbit C' while ds is a surface element over the
surface S enclosed by the gyroorbit. For changes much slower than the gyroperiod, we can
replace OB /0t with w.AB/(2m), with AB being the average change during one gyroperiod.
We thus have

OB
—6—{'dS

AW, = —;-qwcrgAB = uAB [3.17]

using previously derived expressions for we, ¢ and p. However, we know from [3.15] that
AW = uAB + BAp [3.18]

Comparing [3.17] and [3.18] we find that Ap, = 0, indicating that the magnetic moment

is invariant even when particles are accelerated in electric field induced by slow temporal
variations in the magnetic field.
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3.5 OTHER GRADIENTS OF B

We have studied particle motion in nonuniform magnetic fields with particular types of
inhomogeneities. The various spatial gradients of teh magnetic field can be summarized in
tensor or dyadic notation as VB:

rOB, 0Bxr 0B
6(93: 88y 882
B B B
VB = y y y
B oz oy 0z
0B, 0B, 0B,

| Oz oy dz |

Note that only eight of the nine components of VB are independent, since the condition
V - B = 0 allows us to determine one of the diagonal terms in terms of the other two.
In regions where there are no currents (J = 0), we must also have V x B = 0, imposing
additional restrictions on the various components of VB.

The diagonal terms terms are sometimes referred to as the divergence terms and represent
gradients along the B direction, i.e., V| B, one of which (9B, /9z) was responsible for the
mirror effect discussed in Section 3.4.

The terms 0B, /0x and 0B,/ Jy are known as the gradient terms and represent transverse
gradients (V| B) responsible for the gradient drift studied in Section 3.2.

The terms 0B, /0z and 0B,/ 0z are known as the curvature terms and represent change
of direction of B, i.e., curvature, and were studied in Section 3.3.

The remaining terms (i.e., 0B;/0y and 0B,/0x) are known as the shear terms and
represent twisting of the magnetic field lines and are not important in particle motion.
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LECTURE 3: PARTICLE MOTION IN NONUNIFORM B FIELDS

3.1 INTRODUCTION

Both naturally occurring plasmas and those that one encounters in many applications often
exist in the presence of magnetic fields that do not vary appreciably in time but which vary
with one or more coordinates of space, i.e., which are nonuniform. An important example
of a nonuniform magnetic field is the so-called magnetic mirror configuration which is
commonly used to confine plasmas, and which is also the mechanism by which energetic
particles are trapped in the earth’s radiation belts.

Assuming the absence of an electric field, and no temporal variations of the magnetic
field!, the kinetic energy of the particle must remain zero, since the magnetic force is at
all times perpendicular to the motion of the particles as discussed in Lecture 2. In general,
exact anaytical solutions for charged particle motions in a nonuniform magnetic field cannot
be found. However, one very important configuration that can be studied analytically is the
case in which the gyroradius 7. is much smaller than the spatial scales over which the
magnetic field varies. In such cases, the motion of the particle can be decomposed into the
fast gyromotion plus some type of relatively slow drift motion. The slow drift is associated
with the motion of the guiding center, and the separation of its motion from the rapid gyration
is similar to the simplest case analyzed in Lecture 2, where we saw that the guiding center
simply moved linearly along the magnetic field as the particle executed its complicated

gyromotion.

We now examine particle motion in different types of nonuniform magnetic fields, as-
suming the presence of only one type of inhomogeneity in each case.

! Note that any time variations of the magnetic field would lead to an electric field via Faraday’s law, i.e.,
YV x E = —0B/J¢, which can in turn accelerate the particles.
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Fig. 3.1. Particle drifts due to a magnetic field gradient. [gradient]

3.2 GRADIENT DRIFT

We first consider a magnetic field the intensity of which varies in a direction perpendicular
to the magnetic field vector. Without loss of generality, let B(y) = 2B,(y), as depicted
in Figure 3.1. Since the field strength has a nonzero gradient VB, in the y direction, we
note that the local gyroradius . (i.e., the radius of curvature of the particle orbit) is large
in regions where B is small and vice versa. Thus, on physical grounds alone, we expect a
positive charge to drift to the left and a negative charge to drift to the right.

To find an expression for the particle drift velocity, we take advantage of expression [2.14]
which gives drift velocity for any force perpendicular to the B field. For the field geometry
depicted in Figure 3.1, this means a force in either  or y directions. Since we started
with the premise that the gyration was much more rapid than the relatively slow drift, it is
appropriate to determine the net resultant force averaged over one gyroperiod. The force
perpendicular to B is the Lorentz force given by

F =¢(v xB) =Xqu, B, — $qu. B

~ Rquy (Bo+yaa%> — Jque (Bo+yaalzz>

where we have expanded B, (y) into a Taylor series? around the guiding center of the particle
(taken with no loss of generality to be at 2, = 0 and y, = 0), with By being the magnetic
field intensity at the guiding center and y is the distance from the guiding center. In other
words, we have written

z

OB
Y

+

and neglected higher order terms.

2 In the more general case this expansion can be written as
B=By+(r-V)Bg+---

where By is the field at the guiding center and r is the position vector with the origin chosen as the guiding
center.



We thus have the two transverse components of the Lorentz force as

0B,

F,=qu, | By + 3.1a

Qy(o yay> [3.1a]
0B,

F,=—qu, | By + [3.10]
v <° y3y>

We wish to determine < F, > and < F,, >, where the brackets denote averaging over one
gyroperiod. To do this, we can assume that the particles by and large follow the orbits for
a uniform field, as determined in Lecture 2 (see [2.5 and [2.6]), namely:

ZTe = Te Sin(wet + 1) [3.2a]
Ye = T¢ COS(Wet + 1) [3.2b]
Uz = v COS(wct + 1)) [3.2¢]
Uy = —v sin(wct + 1)) [3.2d]

where w, has the same sign as ¢ (i.e., is negative for electrons). Substituting in [3.1a] and
[3.1b] we have

Fy = —qu, sin(w.t + ) {Bo + 7 cos(wet + 1)) 8;;'2} [3.3a]

Fy = —qu | cos(wet + 1)) [BO + 7 COs(wet + 1)) 8632}

[3.35]

The average over one gyroperiod (27 /w,) of F} is zero, since it contains the product of
sine and cosine terms. The averaging of F,, has the product of a cosine with a cosine which

o ot 1

results in a factor of 5. We thus have,

quire 0B,
) =- 34
(Fy) ===, [3.4]
The drift velocity is then given from [2.14] as
Vo = (FL/IQ)XBz (Fy)§ x 2B. _ uredB; [3.5]

B2 ¢BZ T 2B, oy

where the subscript ‘V’ indicates that the drift velocity is due to the gradient drift. Since
the magnetic field direction was chosen arbitrarily, we can write [3.5] more generally as

_vreBxVB mv? BxVB

v — s 3.6
v 2 B; 2‘? R3 { ]




for any magnetic field B = BB, and noting that ., = mvi /(gB). The corresponding more
general expression for the perpendicular gradient force Fy is

1m 2 W
2Mmv L

— v .
FV B B= B VB {3.7]

where W is the perpendicular kinetic energy of the particle.

Equation [3.6] exhibits the dependencies that we expect on physical bases. Electrons and
jons drift in opposite directions and the drift velocity is proportional to the perpendicular
energy of the particle, namely W, = %m’ui. Faster particles drift faster, since they have a
larger gyroradiius and their orbits span a larger range of the inhomogeneity of the field.

3.3 CURVATURE DRIFT

When particles rapidly gyrate while moving along a magnetic field line which is curved, as
depicted in Figure 3.2a, they experience a centrifugal force perpendicular to the magnetic
field, which produces a drift as defined by [2.14]. Assuming once again that the spatial scale
of the curvature is much larger than the gyroradius, we can focus our attention to the motion
of the guiding center. The outward centrifugal force in the frame of reference moving with
the guiding center at a velocity v is given by

R

ﬁ—g [3.8]

Fe = mvﬁ

where R, is the vector pointing radially outward from the center of the circle described by
the local curvature of the field and R, has a magnitude equal to the radius of curvature.

Fig. 3.2. Curvature drift. Particle drift in a curved magnetic field. ( [curvature]



Using the force given in [3.8] in [2.14] we find the curvature drift velocity as

_ Fer/q) xB _ mvﬁ R. x B

BT, g [3.9]

VR

In vacuum, curvature drift cannot by itself be the only drift since the curl of the magnetic
field must be zero, namely Vx B = 0. Considering cylindrical coordinates with B = By(r)e,
we must then have

RR S

10
(V X B)z = ;“—E?(TBQS) =0 — B¢ =

where A is a constant. The gradient of B is then OBy/0r = —By/r = —A/r. More
generally, we can write the resulting gradient as V = —(B/R>)R.. Thus, the total drift due
to both gradient and curvature effects can be written as

1 B x VB

= = (2L >
Viotal = VR + Vy = (’U” +5v1) w2

5 [3.10]

An example of gradient plus curvature drift is the longitudinal drift of radiation belt
electrons around the Earth (see Figure 3.3). Note that the direction of the earth’s magnetic
field is from south-to-north.

Fig. 3.3. Longitudinal drift of radiation belt electrons. Note that the direction of the
earth’s magnetic field By is from south to north. [longitudinal]

It is interesting to note that both the gradient and curvature drift velocities are inversely
proportional to the charge ¢ so that electrons and ions drift in opposite directions. The



oppositely directed drifts of electrons and ions leads to a transverse current. The gradient
drift current is given by

Jv = N|ge|[(vy)i — (Vy)e]
N
= ‘E‘g[(W,L)i +(W1)elB x VB)

where N = N; = N, is the plasma density and W = %mvi is the perpendicular particle
energy. Note that the gradient drift current Jy flows in a direction perpendicular to both the
magnetic field and its gradient.

Similarly, the different directional curvature drifts of the electrons and ions leads to a
curvature drift current given by

JR = N|ge|[(VR)i — (VR)e]
2N

g (Vi + (W)IR. x B)

where W) = %mvﬁ is the parallel particle energy. The curvature drift current Jg flows in a
direction perpendicular to both the magnetic field and its curvature.

In the earth’s magnetosphere, the gradient and curvature drift currents described above
create a large scale current called the ring current, the magnitude of which can exceed several
million amperes during moderate size magnetic storms, when the number of particles in
the ring current region increases. The ring current produces a magnetic field that decreases
the earth’s field within the drift orbits of the particles. This effect is observed as a major
decrease in the geomagnetic field during magnetic storms.

3.4 ADIABATIC INVARIANCE OF THE MAGNETIC MOMENT

In Lecture 2, we recognized that a gyrating particle constitutes an electric current loop with
a magnetic dipole moment given by . = muv /(2B). In this section, we demonstrate that
this quantity has a remarkable tendency to be conserved (i.e., to be invariant), in spite of
spatial or temporal changes in the magnetic field intensity, as long as the changes in B
are small over a gyroradius or gyroperiod. This kind of constancy of a variable is termed
adiabatic invariance, to distinguish them from quantities that may be absolute invariants,
such as total charge, energy or momentum in a physical system.

Consider a particle gyrating in magnetic field oriented primarily in the z direction but
varying in intensity as a function of z, as depicted in Figure. Assume the field to be
azimuthally symmteric, so that there is no ¢-component, i.e., By = 0, and no variations
of any of the quantities in ¢, i.e., 9(-)/9¢ = 0. As the particle gyrates around B with a
perpendicular velocity v; while moving along it at vy, we are primarily concerned with the
motion of its guiding center, which moves along the z axis. The force acting on the particle



Fig. 3.4. Drift of a particle in a magnetic mirror configuration. [mirrorlecturethree]

during this motion can be found from [3.7], by noting that the magnetic field has a nonzero
gradient in the z direction. We have

vl 9B, W, 9B 9B

_ 3 _ _WioB_ OB
Fx = B, 0z B. 92 "5 [3.11]

Alternatively, the force F, can be found directly from the Lorentz force equation. The 2
component of the Lorentz force results from gv; x B or

Fz=qvl><B=qv_LBr [3.12]
where B, can be found using the fact that we must have V- B = 0, so that

0B, | roB,
Br = r = =
rBr)+ 0z 0 = B 2 9z

10
r or

[3.13]

assuming that 9B, /9= does not vary significantly with r. In other words, the total magnetic
field in the case of a converging field line geometry of Figuremust be given by

B=D5,t+B.,2

Evaluating B, as given in [3.13] at r = Tc, and substituting in [3.12] we find the same
expression for F, as in [3.11].

With F, determined, we can examine the variations of the parallel and perpendicular
energies of the particle as its guiding center moves along z. Consider the total energy of the
particle

W=W,+W,



which must remain constant in the absence of electric fields, so that we have

aw,
v

dt dt (3-14]

Noting that W = uB, the time rate of change of the transverse energy can be written as

dw, duB) dB du dB du
7 = I —/,LE‘!'B—d?——/,LUH“‘z"f'B*’-‘ [315]

where we have noted that the dB/dt term is simply the variation of the magnetic field as
seen by the particle as its guiding center moves to new locations, so that this term can be
written as dB/dt = (dz/dt)(0B/0z) = UH@B /0z). The rate of change of the parallel
energy W) is determined by the force F), via the equation of motion, namely

d’UH - F
T T
d?)” _ dB
a - P
dvy dB
T T TR
d (3muy) dB
=T
dt dz
dw, dB
2o, 82
7 e P [3.16]
Substituting [3.16] and [3.15] in [3.14] we find
dB du dB du

oo

,uUH—+B— U“Mdz =0 — 7

dt

which indicates that the magnetic moment y is an invariant of the particle motion.

Note from [3.15] and [3.16] that the perpendicular energy of the particle increases while
the parallel energy decreases as it moves toward regions of higher B-field, so thatd B /dz > 0.
As the particle moves into regions of higher and higher B, its parallel velocity v, | eventually
reduces to zero, and it ‘reflects’ back, moving in the other direction. In a symmetric magnetic
field geometry, such as that in a dipole magnetic field similar to that of the earth and other
magnetized planets, the particle would encounter a similar convergence of magnetic field
lines as it travels to the other end of the system, from which it also reflects, thereby being
forever trapped in a ‘magnetic bottle’.

Until now we have assumed that the magnetic field exhibited no temporal changes, so
that 9B /0t = 0 and there are no induced electric fields. However, the magnetic moment



L is still conserved even when there are time variations, as long as those variations occur
slowly in comparison with the gyroperiod of the particles. Noting that temporal variations
of the magnetic field would create a spatially varying electric field via Faraday’s law, i.e.,
—0B/0t = V x E, let us consider the change in perpendicular energy W, due to an electric
field.

Consider the equation of motion under the influence of the Lorentz force, namely

d(V_]_ + V”)
m__—.....__....._..__

ai =q{E+(V_]_+VH)XB]

and take the dot product of this equation with v; to find

AW,
T =qE-v))

where we have used the fact that W = %—mvi. The increase in particle energy over one
gyration can be found by averaging over a gyroperiod

T
AW, =q (E-v)dt
0

where T, = 2w /w.. Assuming that the field changes slowly, the particle orbit is not per-
turbed significantly, and we can replace the integration in time with a line integral over the
unperturbed circular orbit. In other words,

AWL='q74E~dl=q/(V><E).ds=—/
C ) S

where dlis a line element along the closed gyroorbit C' while ds is a surface element over the
surface S enclosed by the gyroorbit. For changes much slower than the gyroperiod, we can
replace OB /0t with w.AB/(2m), with AB being the average change during one gyroperiod.
We thus have

OB
—6—{'dS

AW, = —;-qwcrgAB = uAB [3.17]

using previously derived expressions for we, ¢ and p. However, we know from [3.15] that
AW = uAB + BAp [3.18]

Comparing [3.17] and [3.18] we find that Ap, = 0, indicating that the magnetic moment

is invariant even when particles are accelerated in electric field induced by slow temporal
variations in the magnetic field.
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3.5 OTHER GRADIENTS OF B

We have studied particle motion in nonuniform magnetic fields with particular types of
inhomogeneities. The various spatial gradients of teh magnetic field can be summarized in
tensor or dyadic notation as VB:

rOB, 0Bxr 0B
6(93: 88y 882
B B B
VB = y y y
B oz oy 0z
0B, 0B, 0B,

| Oz oy dz |

Note that only eight of the nine components of VB are independent, since the condition
V - B = 0 allows us to determine one of the diagonal terms in terms of the other two.
In regions where there are no currents (J = 0), we must also have V x B = 0, imposing
additional restrictions on the various components of VB.

The diagonal terms terms are sometimes referred to as the divergence terms and represent
gradients along the B direction, i.e., V| B, one of which (9B, /9z) was responsible for the
mirror effect discussed in Section 3.4.

The terms 0B, /0x and 0B,/ Jy are known as the gradient terms and represent transverse
gradients (V| B) responsible for the gradient drift studied in Section 3.2.

The terms 0B, /0z and 0B,/ 0z are known as the curvature terms and represent change
of direction of B, i.e., curvature, and were studied in Section 3.3.

The remaining terms (i.e., 0B;/0y and 0B,/0x) are known as the shear terms and
represent twisting of the magnetic field lines and are not important in particle motion.



