

Table 9.2 Examples of acid-catalysed	Reaction	Reference
reactions.	Al mechanism Esterification	12
	ROH + R'COOH -R'COOR	
	2 Hydrolyses of tertiary alkyl esters (A _a ,1) RCOOt-Bu + H ⁺ , H ₂ O → RCOOH + t-BuOH 3 Hydrolyses of β-lactones	13, 14
	C 0+ H ⁺ , H ₂ 0 → C 0H C 0+ H ⁺ , H ₂ 0	
	4 Hydrolyses of anhydrides RCOOCOR + H ₂ O, H* → 2RCOOH	16
	5 Cleavage of tertiary ethers	17
	$R_{J}C - OR' \xrightarrow{H^{*}} R_{J}C - OH + R'OH$	
	6 Hydrolyses of acetals and ketals	18
	$R_2C(OR')_2 \xrightarrow{H^+} R_2C=O + 2R'OH$	
	7 Pinacol rearrangement	19
	R_3C — $CR_3 \xrightarrow{H^-} R_3C$ — COR \downarrow \downarrow \downarrow OH OH	
	8 Beckmann rearrangement	20
	$\begin{array}{c} Me - C - Ar \\ \Pi \\ N - OH \end{array} \xrightarrow{H^*} Ar CONHMe \\ \end{array}$	
	9 Epoxide ring-opening	21
	$RCH-CH_2 + H^+, H_2O \rightarrow RCH(OH)-CH_2OH$	
	A2 Mechanism	
019/11/11	10 Cleavage of primary ethers $Et-O-Et + H^+$, $H_2O \rightarrow 2EtOH$ 11 Ester hydrolysis ($A_{a,2}$)	22 23

MeCH(O	H) ₂ → MeCHO + H ₂ O	0.54		38
a-D-gluco		0.30		39
mutarotat	tion (a to p)-b-gaucose		0.40	
CII (OII)	**	0-10		40
CH ₂ (OH)	* HCHO + H ₂ O		0-40	
(EtO) ₄ C -	H- 4EtOH + CO2	0-69		18, 41
	#·	0.77		
(EtO) ₃ CF	JEIOH + HCOOH	1-00		
(EtO)2CP	$h_2 \xrightarrow{H^*} 2EtOH + Ph_2CO$	0.78		
$a \sim 1$ indic a < 1 indic transition of	cates specific H ₃ O* catalysis with ates general acid-catalysis and is a state.	pre-equilibrium p measure of the e	rotonation of pro	of the substrate; conation in the
x	H³O+	AcOH		H ₂ O
1	99-8	0-2		5 × 10-11
0-5 0-1	3-6 0-002	96-4 2		0-01 98
	s-0-glucor mutarotat CH ₂ (OH) (EtO) ₂ C- (EtO) ₂ CP [*] < 1 indic reastion t 1 0 5 0-1	*-D-glucose mutarotation $\frac{u}{u}$ (at at β)-D-glucose mutarotation $\frac{u}{u}$ (at at β)-D-glucose CH ₂ (OH ₂) ₂ $\frac{u}{u}$ HCHO + H ₂ O (EIO) ₂ C $\frac{u}{u}$ 4EIOH + CO ₂ $\frac{u}{u}$ (EIO) ₂ C H ₂ $\frac{u}{u}$ 2EIOH + HCOOH (EIO) ₂ CP ₂ $\frac{u}{u}$ 2EIOH + HCOOH $\frac{u}{u}$ 2EIOH + HCOOH $\frac{u}{u}$ 1 (adians special self) C ² catalysis with a < 1 indicates general ascicatalysis and is a transition state. $\frac{x}{1}$ H ₂ O ² $\frac{1}{2}$ 99.8 $\frac{0}{2}$ 3 6 O1 0002	$ \begin{array}{c} \begin{array}{c} s \div glucose & a^{-1} & (s \approx \beta) \div glucose & 0.30 \\ matarotation & a^{-1} & (s \approx \beta) \div glucose & 0.30 \\ \end{array} \\ \begin{array}{c} (H_1(OH)_2 & a^{-1} & HCHO + H_2O & 0.10 \\ \end{array} \\ \begin{array}{c} (EEO)_1CC & a^{-1} & 4EIOH + CO_2 & 0.69 \\ \hline a^{-1} & a^{-1} & 5EIOH + HCOOH & 0.77 \\ \hline a^{-1} & 5EIOH + HCOOH & 1.00 \\ \end{array} \\ \begin{array}{c} (EEO)_1CPh_2 & a^{-1} & 5EIOH + Ph_2CO & 0.78 \\ \hline a^{-1} & a^{-1} & 1indicates specific H_2O^{-1} catalysis and is a measure of the catalogue and state. \end{array} \\ \end{array}$	$\frac{a \cdot c_{glucose}}{mutarotation} \prod_{n}^{k-1} (a \neq \beta) \cdot c_{glucose} = 0.30$ $\frac{a \cdot c_{glucose}}{mutarotation} \prod_{n}^{k-1} HCHO + H_{x}O = 0.40$ $(EH_{x}OH)_{2} \prod_{n}^{k-1} HCHO + H_{x}O = 0.40$ $(EIO)_{x}C \prod_{n}^{k-1} 3EIOH + CO_{2} = 0.49$ $\frac{H_{x}}{mutarotation} = 0.77$ $(EIO)_{x}C \prod_{n}^{k-1} 3EIOH + HCOOH = 1.00$ $(EIO)_{x}CP_{1} \prod_{n}^{k-1} 2EIOH + Ph_{x}CO = 0.78$ $\frac{r_{x}}{r_{x}} = 1 \text{ indicates specific H_{x}O^{-1} catalysis with pre-equilibrium protosation at a clinic same specific basis.$ $\frac{x}{1} \prod_{n}^{k-1} \frac{h_{x}O^{+}}{h_{x}O} = \frac{AcOH}{1}$ $\frac{x}{0.5} = \frac{h_{x}O^{+}}{h_{x}O} = \frac{AcOH}{2}$

The elecrophilic catalyst may release a proton from water (11); it may coordinate with an elecrophilic reagent and increase its electrophilicity (12) or to a nuleophilic leaving group and increase its nucleofugacity (13, 14).

