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Engineering corner states by coupling two-dimensional topological insulators
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We theoretically find that the second-order topological insulator, i.e., corner states, can be engineered by
coupling two copies of two-dimensional Z2 topological insulators with opposite spin helicities. As concrete
examples, we utilize Kane-Mele models (i.e., graphene with intrinsic spin-orbit coupling) to realize the corner
states by setting the respective graphenes as Z2 topological insulators with opposite intrinsic spin-orbit couplings.
To exhibit its universality, we generalize our findings to other representative Z2 topological insulators, e.g.,
the Bernevig-Hughes-Zhang model. An effective model is presented to reveal the physical origin of the corner
states. We further show that the corner states can also be designed in other topological systems, e.g., by coupling
quantum anomalous Hall systems with opposite Chern numbers. Our work suggests that interlayer coupling can
be treated as a simple and efficient strategy to drive two-dimensional lower-order topological insulators to the
higher-order ones.
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I. INTRODUCTION

Topological insulators (TIs) represent a fascinating class
of materials that exhibit insulating properties in their bulk
while hosting topologically protected conducting states
along their boundaries in two-dimensional (2D) systems
or on their surfaces in three-dimensional (3D) systems
[1–15]. Rich topological phases have been identified in the
past decades. Particularly, in the presence of time-reversal
symmetry, a Z2 TI [16–25] has been proposed and realized,
which is characterized by spin-helical edge states as
represented by the pioneering Kane-Mele model [2,3] and
Bernevig-Hughes-Zhang (BHZ) model [4] in 2D, which were
later generalized to 3D [26,27]. In the absence of time-reversal
symmetry, the quantum anomalous Hall effect (QAHE) with
chiral-propagating edge modes has been widely studied in
various model systems and materials candidates [11,28–51].

Recent advancements have generalized the topological
phases to higher order [52–70]. In contrast to Z2 TI or
QAHE, the topologically protected states in the higher-order
TIs are localized at the corners (0D states) in 2D systems or
along hinges (1D states) in 3D systems [52,53]. The emer-
gence of higher-order TIs introduces a new dimension to
the topological classification of materials, offering the poten-
tial for novel electronic, photonic, and phononic applications
[71–74]. By a case study in electronic systems, it was reported
that 2D second-order TIs (SOTIs) can be realized in black
phosphorene [75], twisted bilayer graphene at certain angles
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[76], and graphyne [77–79] where the corner states are spin
degenerate due to the time-reversal symmetry. Experimental
observations of SOTI have so far been limited to hinge states
in 3D bismuth [62]. However, the corner states in 2D higher-
order materials lack experimental confirmation. Exploring a
simple and effective scheme to design a 2D SOTI is necessary.
Furthermore, a systematical strategy to generate SOTIs is to
break the time-reversal symmetry of the Z2 TIs by using an
in-plane Zeeman field [80] where the states on one corner
are not degenerate, which has later been applied to various
material systems [81–87].

In this paper, we demonstrate that, without breaking the
time-reversal symmetry, the SOTI in 2D spinful systems can
be engineered by simply coupling two first-order topological
insulators, e.g., by coupling two copies of Z2 TIs as illustrated
in Fig. 1(a). By using a model study, we first demonstrate the
SOTI by coupling two Z2 TIs using the Kane-Mele model
by identifying the in-gap corner states. Then, we generalize
our results to the SOTI induced by coupling two QAHEs
with opposite Chern numbers. Below, we focus on the model
systems on a honeycomb lattice, where Z2 TI and QAHE can
be realized by considering different ingredients [2,11]. The
generalization to other seminal model systems (BHZ model)
is provided in Ref. [88].

II. SYSTEM HAMILTONIAN

The system Hamiltonian of the coupled two topological
layers on the honeycomb lattice is shown below,

H =
(

HT η

η∗ HB

)
, (1)
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FIG. 1. Schematic plot of coupled topological insulators.
(a) Left: Two decoupled Z2 TI layers with opposite spin-helical
edge states, i.e., spin-up edge modes in red respectively propagate
clockwise and counterclockwise in the top and bottom layers, while
spin-down edge modes in blue respectively propagate counterclock-
wise and clockwise in the top and bottom layers. Right: Coupling
destroys all kinds of edge modes and gives rise to two Kramer
pairs of corner states denoted by red and blue dots. (b) Left: Two
decoupled QAHE layers with opposite Chern numbers, i.e., the edge
modes propagate clockwise/counterclockwise in the top/bottom
layer. Right: Coupling destroys all kinds of edge modes, and gives
rise to four corner states denoted by blue dots.

where η measures the coupling strength between two separate
layers, HT and HB are the modified Kane-Mele model Hamil-
tonians for the top and bottom graphene layers, respectively,
which can be expressed as

Hγ = − t
∑
〈i j〉

c†
i c j + itR

∑
〈i j〉αβ

êz · (σαβ × d i j )c
†
iαc jβ

+ itγ

I

∑
〈〈i j〉〉

νi jc
†
i szc j + λγ

∑
iα

c†
iασzciα, (2)

where γ is T or B representing the top or bottom layer, and
c†

i = (c†
i↑, c†

i↓) is the creation operator for an electron with
spin up/down (↑/↓) at the ith site. The first term is the
nearest-neighbor hopping with an amplitude of t . The second
term is the Rashba spin-orbit coupling with coupling strength
tR. The third term is the intrinsic spin-orbit coupling involving
next-nearest-neighbor hopping with νi j = d i × d j/|d i × d j |
where d̂ i j is a unit vector pointing from site j to i, with
coupling strength tI. The last term corresponds to a uniform
exchange field with a strength of λ. Without loss of gen-
erality, we only consider the AA-stacking case. Throughout
this paper, we measure the Fermi level, intrinsic and Rashba
spin-orbit couplings, and exchange energy in the unit of t .

III. CORNER STATES IN COUPLED Z2 TIs

Let us begin with the seminal Kane-Mele model, as de-
picted in the left panel of Fig. 1(a), by setting tR = λT,B = 0.
In our consideration, we choose the zigzag graphene ribbon
width to be Ny = 60a, with a being the lattice constant. We
set the intrinsic spin-orbit couplings at the top and bottom
graphene layers to be opposite, i.e., tT

I = −tB
I = 0.1. When

the two layers are isolated (i.e., η = 0.0), both exhibit the

FIG. 2. (a), (b) Band structures of zigzag ribbons of decoupled
and coupled Z2 TIs with coupling strengths being (a) η = 0.0 and
(b) η = 0.2, respectively. Blue lines correspond to the spin-helical
edge states. (c) Energy levels of diamond-shaped coupled graphene
nanoflakes with the same parameters as those of (b). Blue dots
correspond to in-gap corner states. (d) Probability distribution of the
corner states. Other parameters are chosen to be t T

I = −tB
I = 0.1,

tR = 0.0, λ = 0.0, Ny = 60a for the ribbon width, and the nanoflake
size 60a × 60a.

well-known spin-helical edge modes, i.e., edge modes with
opposite spins counterpropagate along the same boundary [see
Fig. 2(a)]. The only difference is that, at the top and bottom
layers, the same spin-polarized edge mode propagates clock-
wise and counterclockwise, respectively [see the left panel of
Fig. 1(a)].

The stacking of two Z2 TIs is topologically trivial as the
gapless edge states from the same spin sector can couple
and form an energy gap. As shown in Fig. 2(b), the edge
states highlighted in blue become gapped when the interlayer
coupling is turned on (η = 0.2). A natural and general con-
sequence is that the “+” TI phase plus the “−” TI phase
gives nothing, i.e., a trivial insulator. Surprisingly, we show
that although the first-order topological phase vanishes, the
second-order topological phase arises.

To explore the second-order topology, an efficient approach
is to explore the energy spectra of a fixed nanoflake, e.g.,
diamond-shaped nanoflake (60a × 60a) for graphene sys-
tems. As displayed in Fig. 2(c), there arise four zero-energy
in-gap states (highlighted in blue dots) at the Fermi level. By
analyzing the local density of states of the zero-energy states,
one can see that these states are equally localized at the left
and right corners, with each corner hosting a 1/2 electron
charge. This directly indicates the formation of the SOTIs
in 2D systems, which is robust to weak Rashba spin-orbit
coupling [88]. Some other various representative nanoflakes
are considered in Ref. [88]. We also successfully generalize
these findings to other seminal Z2 TIs, e.g., the BHZ model,
as discussed in Ref. [88].
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IV. PHYSICAL ORIGIN OF CORNER STATES

To understand the physical origin, let us first recall the ef-
fective Hamiltonian of the Kane-Mele model with an in-plane
magnetic field [80] on the basis of {ψ↑, ψ↓}, which is written
as [89]

h0 =
[

d(k) · σ Bx

Bx −d(−k) · σ

]
, (3)

where d(k) · σ and −d(−k) · σ represent the spin-up and
spin-down sectors, respectively. In addition, T d(k) · σT −1 =
−d(−k) · σ , where the time-reversal operator T = isyK. Bx

is the in-plane Zeeman field, which couples the spin-up and
spin-down edge modes propagating along opposite directions,
therefore inducing the edge gap to harbor the corner states.

In the present work, the same spin-polarized edge states
propagate in opposite directions at different layers, with the
effective Hamiltonian on the basis of {ψT ↑, ψT ↓, ψB↑, ψB↓}
being written as

h1 =

⎡
⎢⎢⎣

dT (k) · σ 0 η 0
0 −dT (−k) · σ 0 η

η 0 dB(−k) · σ 0
0 η 0 −dB(k) · σ

⎤
⎥⎥⎦,

where T and B represent the top and bottom Kane-Mele sys-
tem, respectively. Since the spin is a good quantum number
in the Kane-Mele model without Rashba spin-orbit couplings,
one can consider the single spin sectors separately, and the
Hamiltonian on the basis of {ψT ↑, ψB↑} can be written as

H =
[

dT (k) · σ η

η dB(−k) · σ

]
. (4)

Since tT
I = −tB

I , Eqs. (3) and (4) share the same form, except
that the in-plane Zeeman field in Eq. (3) is replaced by the in-
terlayer coupling in Eq. (4). In Eq. (4), the interlayer coupling
couples the same spin-polarized but counterpropagating edge
modes at different layers to open the edge gaps to form the
corner states. It is highly noteworthy that in the coupled TI
system the time-reversal symmetry is always preserved, i.e.,
the in-plane magnetization is not required.

To further analyze the physical origin of the corner states,
we transform the Hamiltonian (1) to momentum space. The
momentum-space Hamiltonian can be expressed as follows,

H (k) = [ fx(k)σx + fy(k)σy]s0τ0 + fIσzszτz + ησ0s0τx,

where

fx(k) = t[cos aky + 2 cos(aky/2) cos(
√

3akx/2)],

fy(k) = t[sin aky − 2 sin(aky/2) cos(
√

3akx/2)],

fI(k) = −2tT
I [sin

√
3akx − 2 cos(3aky/2) sin(

√
3akx/2)],

with k = (kx, ky) being the quasimomentum, kx (ky) is par-
allel to the zigzag (armchair) boundary direction, and a is
the lattice constant. The tR and λγ are set to 0 and are ig-
nored. σi, si, and τi [i ∈ (0, x, y, z)] are the Pauli matrices
acting on the spin (↑,↓), sublattice (A, B), and interlayer de-
grees of freedom, respectively. Since spin is a good quantum
number, we analyze the corner state origin from the spin-up
sector:

H↑(k) = [ fx(k)σx + fy(k)σy]τ0 + fIσzτz + ησ0τx.

When ky = 0, the H↑(k) is invariant under the mirror-
reflection symmetry of My = iσxτx. Obviously, the My has two
eigenvalues of ±i. The eigenvectors of the +i subspace are√

2
2 [1, 0, 0, 1]T and

√
2

2 [0, 1, 1, 0]T , whereas that for the −i

subspace are
√

2
2 [0, 1,−1, 0]T and

√
2

2 [1, 0, 0,−1]T . In these
two subspaces, H↑(kx, 0) can be separated into two decoupled
parts,

H±(kx ) = (±1 + η ± 2 cos
√

3akx/2)μx

+ 2tT
I (sin

√
3akx − 2 sin

√
3akx/2)μz, (5)

where ± indicates the subspace with ±1 eigenvalue under
My. We find that H±(kx ) exhibit chiral symmetry, and μx and
μz are Pauli matrices. The winding number v on the mirror
symmetry axis My can be calculated by the following:

v = 1

2π

∫ π

−π

(
d(k) × d

dk
d(k)

)
dkx. (6)

We obtain the winding number v± = ±1, which indicates
the presence of second-order topological corner states in the
system. The spin-down sector is the same as the spin-up, and
the nonzero winding number ensures that corner states exist.
Thus, there are four zero-energy corner states in the gap. The
bulk band topology discussed above also shows the coex-
istence of topological crystal insulator phases, as discussed
in Ref. [88], i.e., the presence of gapless edge states at the
armchair boundaries.

V. CORNER STATES IN COUPLED QAHEs

Next, we show that the above strategy can also apply to
QAHEs. In the following, we demonstrate the presence of
SOTI by coupling two QAHE layers with opposite Chern
numbers by setting tI = 0.0, tR = 0.2, and λT = −λB = 0.2.
When the two layers are isolated (i.e., η = 0.0), the top and
bottom graphene layers give rise to QAHEs with opposite
Chern numbers of C = ±2. As plotted in Fig. 3(a), the band
structure of the zigzag ribbons exhibits doubly degenerate and
chirally propagating gapless edge modes as shown in blue
[clockwise and counterclockwise respectively at the top and
bottom layers as depicted in Fig. 1(b)]. When the coupling
is turned on with η = 0.1, the gapless edge modes become
gapped as shown in Fig. 3(b). To confirm the presence of
SOTI, we plot the energy spectra of the diamond-shaped
nanoflakes as displayed in Fig. 3(c). Since we chose the
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FIG. 3. (a), (b) Band structures of zigzag ribbons of decoupled
and coupled QAHEs with coupling strengths being (a) η = 0.0 and
(b) η = 0.1, respectively. Blue lines denote the chiral edge states.
(c) Energy levels of diamond-shaped coupled graphene nanoflakes,
with the same parameters as those of (b). Blue dots correspond
to in-gap corner states. (d) Probability distribution of the corner
states. Other parameters are chosen to be tI = 0.0, tR = 0.2, λT =
−λB = 0.2, Ny = 60a for the ribbon width, and the nanoflake size
60a × 60a.

QAHE with C = ±2 as the coupling unit, there are four in-
gap corner states. Both the emergence of four zero-energy
states and their wave-function distribution at the corners [see
Fig. 3(d)] together strongly indicate the existence of SOTI.
Similarly, this finding can also be generalized to other repre-
sentative QAHE systems, e.g., the BHZ model with a Zeeman
field [28,88], and the Dirac model [88].

VI. TOPOLOGICAL PHASE DIAGRAMS

In the above discussions, we have chosen the specific case
where the determining parameters are exactly opposite, i.e.,
tT
I = −tB

I for coupled Z2 TI or λT = −λB for coupled QAHE
systems. Here, we systematically explore the influence of the
relative signs on the topological phases. Figure 4(a) shows
the topological phase diagram of coupled Z2 TIs in the pa-
rameter spaces of (tT

I , tB
I ). One can see that there are four

regions, which respectively belong to SOTI phases and weak
TI phases. One can see that as long as the signs of tT

I and tB
I are

different, any coupling can lead to the formation of SOTI (see
the second and fourth quadrants), and the in-gap corner state
remains at zero energy. But, when the signs of tT

I and tB
I are

identical, the coupling can result in either weak TI or SOTI.
A similar phase diagram as plotted in Fig. 4(b) is obtained for
the coupled QAHE systems. For example, when λT and λB

have different signs, the system is driven into SOTI, but when
they have identical signs, it can induce either SOTI or QAHE
with C = ±4.

FIG. 4. (a) Phase diagram as functions of the intrinsic spin-orbit
couplings t T

I and tB
I for the coupled Z2 TIs. Other parameters are set

to be tR = 0.0, λ = 0.0, and η = 0.2. (b) Phase diagram as functions
of the exchange fields λT and λB for the coupled QAHEs. Other
parameters are set to be tR = 0.2, tI = 0.0, and η = 0.1. Dotted lines
are the phase boundaries. Here, the bulk gap is used for the TI, weak
TI, and QAHE regions, while the edge gap is used for the SOTI
region.

To clearly understand and determine the phase boundaries,
we employ the low-energy continuum model expanded at
valley K/K ′,

Heff =
[

HT
eff ησ0s0

ησ0s0 HB
eff

]
, (7)

where

HT,B
eff = 3t/2(σxkx + σyky)1s + 3tR/2(σxsy − σysx )

+ 3
√

3tT,B
I σzsz + λT,Bsz1σ . (8)

For the weak TI and SOTI phase boundaries, we set tR = 0,
λT,B = 0, and impose the bulk gap closing condition of ε =
0. One can obtain the topological phase transition boundary
satisfying

tT
I tB

I = η2/27, (9)

which shows perfect consistency with the direct band-
structure calculation. Similarly, for the QAHE and SOTI
phase boundaries, by setting tI = 0, the topological phase
transition boundary satisfies

λT λB = η2, (10)

which also agrees well with the direct band-structure calcula-
tion from the tight-binding model.

VII. CONCLUSIONS

We have shown that the SOTIs in spinful systems can
be engineered without breaking the time-reversal symme-
try, by simply introducing an interlayer coupling in two Z2

TIs with opposite spin helicities within the framework of
the Kane-Mele model. A minimal model was presented to
help understand the formation of SOTIs, i.e., the interaction
between the counterpropagating edge modes with the same
spin at different layers opens the edge gap. The nonzero
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winding number in the high-symmetry line direction protects
the existence of corner states. Inspired by these findings, we
have also found that coupling two QAHEs with opposite
Chern numbers can also lead to the formation of SOTIs,
by using the graphene model with the Rashba effect. The
generalization of these findings to the BHZ model suggests
the universal characteristic of our proposed strategy of en-
gineering SOTIs by coupling any kind of 2D topological
systems.
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