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The mesoscopic transport physics of spin Hall effect and quantized spin Hall effect
is briefly reviewed. This paper concentrates on the universal spin Hall conductance
fluctuations discovered in both effects. We present various model Hamiltonians corres-
ponding to different physical problems arising recently in condensed matter physics,
ranging from two-dimensional electron gas to topological insulators. Green’s function
formalism within a tight-binding model and the random matrix theory are introduced
to study the same electron transport mechanism. The calculated spin Hall conductance
results are discussed and some excellent agreement has been found from different
approaches. A short summary and our perspectives are provided at the end of paper.
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1. Introduction

Understanding and manipulating electronic currents of charge and spin are the

major goals of the emerging research field of spintronics.1 Considerable attention

has focused on the spin Hall effect2–6 and quantum spin-Hall effect,7–9 which provide

mechanisms for generating spin current or spin accumulation thanks to the coupling

between spin and orbital degrees of freedom. In analogy to the famous classic Hall

effect, an applied electric current on the spin-orbit coupled systems can induce

sidewise movement of pure spin currents IU,D
s = (~/2)(I↑ − I↓) = GsH(VL − VR)

schematically shown in Fig. 1. As a result, the spin-up and spin-down carriers are

deflected to the opposite edges of the sample. Moreover, spin Hall effect also offers a

semiconductor analog of the Stern–Gerlach device to spatially separate up and down
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Fig. 1. Four-terminal setup of the Hall-bar device with four semi-infinite electrodes serving as
electron reservoirs with different chemical potentials. Spin-orbit coupling only exists in the central
scattering region, left and right leads. The longitudinal bias V induces a charge current from left
to right electrodes, while between the up and down electrodes there exists simultaneously non-zero
spin current and zero charge current.

spin electrons. It is worth mentioning that such an effect is electrically controllable

by gate voltages, without applying magnetic fields or using ferromagnet materials.

The quantized version of the spin-Hall effect, also named as quantum spin-Hall

insulator, is a recently discovered topological state in the massive Dirac fermion

systems. This insulator resembles ordinary insulator in the bulk, while it shows

topologically protected helical edge states at the boundary when the Fermi energy

lies within the energy gap between the valence and conduction bands. For a given

energy in the gap, the available electronic states at the same boundary possess

opposite spins, so scattering is strongly suppressed and conduction on the surface

is dissipationless.7,8,10,11

Universal conductance fluctuation is a reproducible and time-independent

fingerprint of a given mesoscopic sample.12,13 The fluctuation pattern has a

magnitude of the electric conductance quantum e2/h regardless of the averaged

quantity. It was found and extensively investigated since the 1980s, and has

been a hallmark of wave nature of electron. About twenty years after the first

discovery of the universal conductance fluctuation, this fundamental concept has

been successfully extended to the spin transport regime. In this brief review, we will

discuss the universal spin Hall conductance fluctuation (USCF)14,15 and universal

quantized spin Hall conductance fluctuation.16

In order to investigate the intriguing conductance characteristics of a mesoscopic

system in the presence of disorders, it is imperative to carry out statistical studies

over sufficient ensembles of samples. It is well-known that the symmetries play

determining roles in the underlying physics. These universality classes include17,18:

circular orthogonal ensemble (COE) characterized by symmetry index β = 1

when the time-reversal and spin-rotation symmetries are present; circular unitary

ensemble (CUE) β = 2 if time-reversal symmetry is broken; and circular symplectic

ensemble (CSE) β = 4 if the spin-rotation symmetry is broken while time-reversal
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symmetry is preserved. Here the symmetry index β = 1, 2 and 4 counts the number

of degrees of freedom in the Hamiltonian matrix elements. Another notable factor

is the dimensionality of the mesoscopic systems under study. Zero, one and two

dimensional diffusive regimes give root mean square of conductance cde
2/h

√
β

with cd = 0.70, 0.73, 0.86 respectively. The universal conductance fluctuation,

based on the perturbation theory method,12 was first found to be only weakly

dependent on the dimensionality, which were later confirmed by the random

matrix theory.17 This discovery brought a revolution in our belief of the electrons

wave property in quantum physics. The electric conductance or transmission

probability depends sensitively on the interference of electrons propagating through

the diffusive samples. The motion of a single scattering center in the impurity

configuration can induce change of the conductance of order e2/h by accumulating

sufficient phase shift.19 Therefore, the universal conductance fluctuation is one of

the most significant signatures in condensed matter physics. With another exciting

technology spintronics developed since the 1980s, important universalities of such

have just recently been revealed in the spin Hall effect arising from spin-orbit

interaction as well.

The paper is organized as follows. In Sec. 1.1, we briefly introduce the

Hamiltonian models of the conventional and quantized spin-Hall effects, followed

by the theoretical methods. In Sec. 2, the USCF of the conventional spin-Hall effect

is discussed, and a Random Matrix Theory confirmation of it is also included. In

Sec. 3, the universal quantized spin-Hall conductance fluctuation (USCF2) of the

quantized spin-Hall effect is discussed. Finally, short summary and prospectives are

given in Sec. 4.

1.1. Theoretical models and methods

1.1.1. Two-dimensional spin-orbit coupling lattice model

We consider a two-dimensional electron gas with spin-orbit coupling of Rashba

or/and Dresselhaus types. The generalized single-particle Hamiltonian can be

written as20,21:

H =
[p+ e

c
A]2

2m∗
+ V + µB · σ +

αSO

~

[

σ ×
(

p+
e

c
A

)]

z

=
1

2m∗

[

−~
2∇2 + i~

e

c
∇ ·A+ i~

e

c
A · ∇+

e2

c2
A2

]

+ V

+µB · σ +
αSO

~

[

−i~∇yσx + i~∇xσy + σx

e

c
Ay − σy

e

c
Ax

]

(1)

where p is the momentum, m∗ is the effective electron mass, σ are Pauli matrices,

V is the confining potential, µ is the magnetic moment, αSO is the strength of

spin-orbit coupling, and the vector potential can be expressed as A = (−By, 0, 0)

under the Landau gauge. The two-terminal charge conductance is calculated
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using the Landauer–Büttiker formula G = (2e2/h)T (E), where the transmission

coefficient T is given by T (E) = Tr[ΓLG
r
CΓRG

a
C ], and 2 arises from the spin

degeneracy. Here, quantities ΓL,R = i(Σr
L,R(E) − Σa

L,R(E)) are the line-width

functions describing the coupling between the left/right lead and scattering region,

and can be obtained by calculating the self-energies Σr
L,R due to semi-infinite leads

using a recursive method.22 Gr
C and Ga

C are the retarded and advanced Green’s

functions of the central disordered region. The conductance fluctuation is defined

as rms(G) =
√

〈G2〉 − 〈G〉2, where 〈· · ·〉 denotes averaging over an ensemble of

samples with different disorder configurations of the same disorder strength. In the

presence of Rashba spin-orbit coupling, the tight-binding Hamiltonian is written

as14,23,24:

H = − t
∑

ijσ

c†i,σcj,σ +
∑

i,σ

εic
†
iσciσ + tSO

∑

i

[(c†i,↑ci+x,↓ − c†i,↓ci+x,↑)

− i(c†i,↑ci+y,↓ + c†i,↓ci+y,↑) + h.c.] (2)

where c†i,σ is the creation operator for an electron with spin σ on site i, and x

and y are unit vectors along x and y directions. Here t = ~
2/2ma2 is the nearest

neighbor hopping energy and tSO = αSO/2a is the Rashba spin-orbit coupling

with the square lattice constant a being unity. The on-site energy is given by

εi = 4t. We apply static Anderson-type disorder to the on-site energy with a uniform

distribution in the interval [−W/2,W/2], where W measures the nonmagnetic

disorder strength.

The spin Hall conductance GsH (see upper inset of Fig. 2 for the setup) is

calculated using the Landauer–Büttiker formula25:

GsH =
e

8π
[(T↑2,1 − T↓2,1)− (T↑2,3 − T↓2,3)] (3)

where the spin-resolved transmission coefficient is given by T2σ,1 = Tr(Γ2σG
rΓ1G

a).

The corresponding spin Hall conductance fluctuation is defined as rmsGsH =
√

〈G2
sH〉 − 〈GsH〉2, where 〈· · ·〉 denotes averaging over an ensemble of samples with

different disorder configurations of same strength W . Numerical calculations were

performed on L × L square samples of size L = 40 up to 100. We measure the

electron energy E, disorder strength W , and Rashba spin-orbit coupling tSO etc.

in unit of the hopping energy t (same for the following section). In the presence

of spin-orbit coupling, spin is no longer a good quantum number,23,26 so in order

to make the definition of the spin current meaningful, we will set the spin-orbit

coupling to be zero in the detecting probes, i.e. probes 2 and 4.

1.1.2. Quantum spin-Hall effect models

Kane and Mele7,8 proposed that introducing the local time-reversal symmetry

breaking on the two sublattices of graphene via intrinsic spin-orbit coupling could

open an energy gap and give rise to the quantum spin-Hall effect. Distinct from
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the conventional spin-Hall effect, the quantized spin-Hall effect is a time-reversal

symmetry protected insulator exhibiting helical edge states with opposite spins

propagating in opposite directions along the same boundary, which is schematically

shown in Fig. 5(a) in a four-probe Hall bar setup. This model immediately attracted

numerous attention thereafter, and later first principles calculations showed that

the intrinsic spin-orbit coupling is extremely small — about 10−3 meV.27,28 Though

the intrinsic spin-orbit coupling induced quantum spin-Hall effect in graphene

model is unrealistic nowadays with experimental technique, it nonetheless initiated

the research field of three-dimensional topological insulator, which has become a

tremendous focus in the condensed matter community.10,11

Later on, another group of material, HgTe quantum wells,9 was also reported

to show quantum spin-Hall effect. Fortunately, the HgTe model has been

experimentally observed to exhibit quantized longitudinal resistance, which is

directly related to the quantized spin-Hall effect.29 In the quantum spin-Hall effect

and the three-dimensional topological insulators, time-reversal symmetry is required

to be preserved. In fact, this is not mandatory in our investigation of the universality

from the quantized spin-Hall conductance. Thus, a third model of graphene in the

presence of magnetic field30,31 will also be discussed. From the viewpoint of the

symmetry, model I (graphene with intrinsic spin-orbit coupling) belongs to CSE;

model II (graphene due to strong magnetic field and Zeeman effect) belongs to CUE;

while the third model (HgTe material) belongs to CSE. The detailed tight-binding

Hamiltonian of these models will be introduced in Sec. 3.

1.1.3. Random matrix theory

Random matrix theory is a powerful tool of mathematical physics developed

since the 1960s, which deals with statistical properties of matrices with randomly

distributed elements.32 The physical properties are computed from the correlation

functions of eigenvalues and eigenvectors. Energy levels of heavy nuclei measured

in nuclear reactions and small metal particles for microwave absorption were

understood in terms of statistics of random matrix. Then random matrix theory has

been applied to study the statistics of quantum transport properties of mesoscopic

systems, such as chaotic cavities and disordered wire.17 The scattering matrix

S of open system which determines the conductance through Landauer formula

G = (2e2/h)Tr[t t†] is chosen from a simple statistical ensemble with only symmetry

constraints applied. This is for scattering involving leads withN channels and width

L, S =
(

r t′

t r′

)

, where r, t are N × N reflection and transmission matrices. One

can replace the scattering matrix S by a random matrix taken from the proper

Dyson’s circular ensemble. Then the generalized transmission probability can be

written as a trace over S. The average, variance and covariance of the transmission

over the circular ensemble can then be derived from the method of Ref. 33. Random

matrix theory relates the universality of transport properties to the universality of
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correlation function of transmission eigenvalues. It is general and applies to a class

of transport problems, and provides a unified description from metallic to localized

regimes.

2. Universal Spin-Hall Conductance Fluctuation for Conventional

Spin-Hall Effect

In the presence of spin-orbit coupling, chemical potentials of the spin-up and

spin-down channels become different at two edges of a mesoscopic sample with

finite width. Based on the above mentioned calculation methods, a universal value

∼ 0.18e/4π for the spin Hall conductance fluctuation in disordered samples was

predicted in 2006.14 This value is independent of the system details, such as Fermi

energy, disorder strength, spin-orbit coupling strength, and system size.

Figure 2 plots the spin-Hall conductance fluctuation as a function of the Fermi

energy at fixed tSO = 0.3 (Rashba spin-orbit interaction only) and the sample size

L = 40 for several disorder strengths W = 1, 2, 3, and the corresponding averaged

0 1 2 3 4
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 Energy

G
sH

N
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Fig. 2. Spin-Hall conductance fluctuation versus Fermi energy for disordered samples. Triangles,
squares, and circles are for W = 1, 2, 3, respectively. Upper inset: schematic plot of the
four-terminal mesoscopic sample where Rashba spin-orbit coupling exists in the center scattering
region and the leads 1 and 3. The width of the square sample is L = 40. A small voltage bias
is across leads 1 and 3. Spin-Hall conductance is measured through leads 2 and 4. Lower panel:
the ensemble averaged spin-Hall conductance GsH versus Fermi energy for spin-orbit coupling
strength tSO = 0.3. The solid line is for pure sample with W = 0 and other symbols are the same

as the upper panel. In all the figures the spin conductance and its fluctuation are measured in
units of e/4π.
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Fig. 3. (a) Ensemble averaged spin-Hall conductance GsH versus disorder strength W for tSO =
0.2 (cross), 0.3 (solid triangle), 0.4 (open circle), 0.5 (star), 0.6 (rumbus), and 0.7 (solid square).
The average is taken over 20,000 samples with L = 40. Inset: size dependence of the spin-Hall
conductance fluctuation with tSO = 0.3. Different symbols are for W = 1 (stars), 2 (rectangles), 3
(circles), and 4 (triangles). The ensemble average is over 20,000 samples for different size L. (b) The
corresponding ensemble averaged spin-Hall conductance fluctuation versus W , and the symbols
are for the same tSO values as in panel (a).

spin-Hall conductance in the lower panel from 10,000 disordered samples. For pure

samples without disorder, as the Fermi energy increases, the number of subbands

increases (see the inset of the lower panel). As a result, the spin-Hall conductance

GsH shows small oscillations. When disorder is increased from zero, GsH decreases

as expected, and eventually the small oscillation due to the subbands vanishes.

Most importantly, Fig. 2 shows substantial sample-to-sample fluctuations of GsH ,

measured by rmsGsH , of the order δe/4π, where δ is a number between 0.1 and

0.2. Remarkably, such an amplitude of fluctuation is comparable to the spin-Hall

conductance itself.

Figure 3 plots the averaged spin-Hall conductance GsH and corresponding

fluctuations rms(GsH) as a function of disorder strength W at fixed Fermi energy

E = 1 for a number of different spin-orbit couplings from tSO = 0.2 up to 0.7. The

spin-Hall conductance decreases smoothly as the disorder strength is increased:

the transport characteristics change from quasiballistic at small W to the diffusive

regime at larger W = [1, 5]. Finally it goes into the insulating regime for even

larger W where GsH vanishes. The fluctuations develop a plateau structure so

that rms(GsH) becomes independent of the disorder parameter W for each given

tSO. In this sense, the fluctuation rms(GsH) becomes “universal” and the spin-Hall
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Fig. 4. (a) USCF values versus Rashba spin-orbit coupling tSO at E = 1. Inset: rms(GsH ) versus
Fermi energy for W = 3 in the presence of both Rashba and Dresselhuss SO couplings, tSO = 0.5
and tSO2 = 0.2. (b) and (c) rms(GsH ) versus Desselhaus SO coupling tSO2 at E = 2, W = 3,
and tSO = 0.5 / tSO = 0.1. In the cases of inset of (a), (b) and (c), 40,000 samples are collected.

transport enters the regime with USCF. It is notable that the larger the tSO, the

wider the fluctuation plateau which characterizes the diffusive regime.

An examination at the dependence of spin-Hall conductance fluctuation

rms(GsH) on system size L is shown in the inset of Fig. 3 for tSO = 0.3. With

weak disorder W = 1 (stars) the fluctuation increases with sample size indicating

that spin-Hall conductance is not yet in the USCF regime because transport is

quasiballistic. In the diffusive regime, W = 2, 3, 4, the fluctuations saturate at

δe/4π where δ ' 0.2. The independence of system size by the fluctuation rms(GsH)

provides strong evidence of USCF. Namely, as long as transport is in the diffusive

regime, the fluctuation of the spin-Hall conductance is dominated by quantum

interference giving rise to a universal amplitude. Since USCF should disappear

when the spin-orbit coupling tSO and thus GsH are zero, a collection of the USCF

for different tSO is shown in Fig. 4. Interestingly, the USCF can be well fitted (solid

line) by a function rms(GsH) = g tanh(tSO/0.17), where g = 0.18e/4π. A similar

case happens when we include Dresselhaus spin-orbit coupling by adding a term

βSO(σxkx − σyky) in the Hamiltonian. It can be proven that the spin-Hall current

along the z direction persists only when the Rashba and Dresselhaus strengths

do not equal,34 because these two terms have different symmetries: the Rashba

coupling arises from the structure inversion asymmetry with SU(2) symmetry, while

the Dresselhaus coupling arises from the bulk inversion asymmetry with SU(1,1)

symmetry.35 From Fig. 4, we see that vanishing spin current causes a dip in USCF
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curves whenever αSO = βSO. Finally, the inset of Fig. 4 shows that the USCF is

independent of Fermi energy even when both SO interactions are present.

It was then quantitatively confirmed and beautifully understood by RMT the

analysis results. From Eq. (11) of Ref. 15,

var[Ji] =
4NiNlNr(NT − 1)

NT (2NT − 1)(2NT − 3)(Nl +Nr)
(4)

whereNT =
∑

i=1,4 Ni is the total channels of all electrodes. For our fully symmetric

configuration, Ni = N , the spin current fluctuates universally for large N , with

rms(IsH) = (e2V/h)/
√
32. This can be translated into the universal fluctuations of

the transverse spin Hall conductance with

rms(GsH) = e/4π
√
32 = 0.18(e/4π) . (5)

Furthermore, the mesoscopic fluctuation problem of spin current has also been

investigated by using another different approach called quantum circuit theory.36

Very recently, some theoretical research showed that zigzag edge graphene

nanoribbons could have zero spin conductance but nonzero spin Hall con-

ductance.37,38 And graphene nanoribbons with rough edges were found to exhibit

mesoscopic spin conductance fluctuations with a universal value of rms(Gs) =

0.4e/4π in the diffusive regime.38 In a three-terminal set-up, random matrix theory

has also predicted that the spin conductance of chaotic ballistic cavity fluctuates

universally rms(Gs) = 0.27e/4π about zero mesoscopic average.39

3. Universal Spin-Hall Conductance Fluctuation for Quantized

Spin-Hall Effect

3.1. Graphene model

Graphene is a recently discovered two-dimensional one-atom-thick material

consisting of a honeycomb lattice of carbon atoms. It exhibits excellent mechanical

properties under stress and electrical conduction properties under electrostatic

bias.40 What makes graphene so unique is that it has a linear Dirac-type dispersion

at two inequivalent points K and K ′ at Brillouin zone corners. In Sec. 3.1.1, we

investigate universal spin-Hall conductance fluctuation of the quantized spin-Hall

conductance of graphene model with intrinsic spin-orbit interactions, where the

spin-rotation symmetry is broken and the system possesses CSE. In Sec. 3.1.2, we

study the other graphene model under strong magnetic field and Zeeman effects,

where the time-reversal symmetry is broken and the system belongs to CUE.

3.1.1. Quantized spin-Hall effect due to intrinsic spin-orbit coupling

In graphene, there are two kinds of spin-orbit coupling: intrinsic and Rashba

spin-orbit couplings.7 The intrinsic one originates from the in-plane structural

asymmetry, while the Rashba one arises from the mirror symmetry breaking
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(a) (b)

Fig. 5. (Color online) (a) Edge state propagation in the quantum spin-Hall setup. Solid/dashed
lines stand for spin-up/spin-down states. The voltages are set to be Vi = (V/2, 0,−V/2, 0), with
i = 1, 2, 3, 4. (b) Schematic plot of the four-terminal mesoscopic graphene sample where the
intrinsic spin-orbit coupling exists in the whole regimes, while the Rashba spin-orbit coupling
only appears in the central scattering regime and leads 1 and 3. Leads 2 and 4 are used to
measure the spin-current.

of the graphene plane (i.e. by the external electric field or by the interaction

with a substrate, as discussed above). The first-principles calculations show

that the Rashba spin-orbit coupling is larger than the intrinsic one.27,28 Recent

angle-resolved photoemission experiments suggest that graphene’s Rashba type

spin-orbit coupling strength can be enhanced to a sizeable 10 meV by surface doping

with impurity atoms.41–43 This has led to a resurgence of excitement and interest

in Rashba spin-orbit coupling effects in graphene.44 Although the realization of

intrinsic spin-orbit coupling induced quantized spin-Hall effect is impossible under

experimental conditions so far, it is still a good toy model to numerically study the

transport properties of the quantized spin-Hall effect. And more importantly, this

model is the only system (compared to other topological insulators) in which the

spin is a good quantum number.

Again in the tight-binding representation, the Hamiltonian for the single layer

graphene in the presence of intrinsic and Rashba spin-orbit couplings can be written

as8,45:

H = −t
∑

〈ij〉

c†i cj +
2i√
3
VSO

∑

〈〈ij〉〉

c†iσ · (dkj × dik)cj

+ iVr

∑

〈ij〉

c†i êz · (σ × dij)cj +
∑

i

εic
†
i ci . (6)

The first term is the nearest hopping term, the second one is the intrinsic spin-orbit

interaction that involves the next nearest sites. As shown in Fig. 5, i and j

are two next nearest neighbors, k is the common nearest neighbor of i and j,

and dik describes a vector pointing from k to i. The third term is the Rashba

spin-orbit coupling, and the last term on-site energy εi is a random potential

uniformly distributed in [−W/2,W/2]. Because intrinsic spin-orbit coupling is a
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Fig. 6. (Color online) (a) Phase-diagram of the quantized spin-Hall conductance regime (IQSHC)
in the plane (E,VSO). (b) and (c) Spin-Hall conductance 〈GsH 〉 versus Fermi energy E at fixed
intrinsic spin-orbit coupling VSO = 0.1, 0.2 for different VR = 0, 0.1, 0.2, 0.3, respectively.

good quantum number, but the Rashba spin-orbit coupling is not, so the intrinsic

spin-orbit coupling exists in the whole regime while the Rashba spin-orbit coupling

only exists in the scattering regime and the leads 1 and 3. Leads 2 and 4 are used

to measure the spin-current in our measuring setup shown in Fig. 5.

Figure 6(a) shows the phase diagram of the quantized spin-Hall conductance

in (E, VSO) space in the absence of Rashba spin-orbit coupling. One observes that

when the intrinsic spin-orbit coupling VSO < 0.2, the phase boundary is nearly

linear; when VSO > 0.2, the phase boundary is a constant at E = ±1.0. In the

panels (b) and (c), the quantized spin-Hall conductance is gradually destroyed by

the increasing Rashba spin-orbit coupling. One further finds that the quantized

spin-Hall conductance more easily destroyed in the hole-carrier regime. In the

following, we shall focus on the numerical investigation on the “destroyed” quantum

spin-Hall effect by disorders in the diffusive regime.

When the disorder strength W increases, the graphene system is at first in

the ballistic regime for the weak disorders: 〈GsH〉 = e/4π and rms(GsH) = 0;

for the intermediate disorders, the quantization of 〈GsH〉 breaks down due to a

direct propagation from the leads 1 to 3, and rmsGsH begins to increase; for the

even larger disorder W , it goes into the insulating regime, where both 〈GsH〉 and

rms(GsH) vanish. For example, Fig. 7 plots the averaged spin-Hall conductance

and its fluctuation at fixed Fermi energy E = 0.5 for different intrinsic spin-orbit

couplings VSO = 0.1, 0.3, 0.7 and 0.9, respectively. One observes that the quantized

spin-Hall conductance is very robust against disorders and can survive up to W = 3

for VSO = 0.3, 0.7 and 0.9, with the corresponding spin-Hall conductance fluctuation

being exactly zero. When the disorder strength is further increased, the quantized

spin-Hall conductance is gradually decreased, while the fluctuations rms(GsH) are

gradually increased. In panel (b), one can find that all the four curves reach the

same maximal value at different disorder ranges (rms(GsH) = 0.285 in unit of
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Fig. 7. (Color online) (a) The averaged spin-Hall conductance 〈GsH 〉 and (b) its fluctuation
rms(GsH ) versus disorder strength W at the fixed Fermi energy E = 0.5 for different intrinsic
spin-orbit couplings VSO = 0.1, 0.3, 0.7, 0.9, respectively. 10,000 samples are collected for each
curve.
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Fig. 8. (Color online) (a) The averaged spin-Hall conductance 〈GsH 〉 and (b) its fluctuation
rms(GsH ) versus disorder strength W at the fixed intrinsic spin-orbit coupling VSO = 0.7 for
different Fermi energies E = 0.1, 0.3, 0.5, 0.7. 10,000 samples are collected for each curve.

e/4π). Although the plateau range of W depends on specific values of E or VSO,

our results show that it always resides in the diffusive regime.

In Fig. 8, we show the spin-Hall conductance and the its fluctuation as a function

of disorder strength at the fixed intrinsic spin-orbit coupling for different Fermi

energies E = 0.1, 0.3, 0.5, 0.7. In panel (a), one can find that the Fermi energy

near the gap center is more robust than other Fermi energies for the fixed intrinsic

spin-orbit coupling. Similar to Fig. 7(b), we observe that the four curves for different

M
od

. P
hy

s.
 L

et
t. 

B
 2

01
1.

25
:3

59
-3

76
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
SC

IE
N

C
E

 A
N

D
 T

E
C

H
N

O
L

O
G

Y
 O

F 
C

H
IN

A
 o

n 
03

/0
1/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.



February 8, 2011 8:31 WSPC/147-MPLB S0217984911025833

Universal Spin-Hall Conductance Fluctuations 371

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

rm
s
G

s
H

<G
sH

>

 E=0.5, VSO=0.1

 E=0.5, VSO=0.3

 E=0.5, VSO=0.7

 E=0.5, VSO=0.9

 E=0.1, VSO=0.7

 E=0.3, VSO=0.7

 E=0.7, VSO=0.7

Fig. 9. (Color online) The spin-Hall conductance fluctuation (rms(GsH )) versus the averaged
〈GsH 〉 for various Fermi energies E and intrinsic spin-orbit coupling VSO.

Fermi energies share the same plateau rms(GsH) = 0.285e/4π at the same disorder

range. From Figs. 7 and 8, we find that rms(GsH) = 0.285 is always true if there is

a plateau, i.e. if the diffusive transport regime is established. We therefore identify

rms(GsH) = 0.285 as a “universal” value, which is independent of the Fermi energy,

and the intrinsic spin-orbit coupling strength.

To confirm this universal characteristic of spin-Hall conductance fluctuation,

we can also directly plot the relation between the averaged spin-Hall conductance

〈GsH〉 and the fluctuation rms(GsH) as in the study of the universal conductance

fluctuation.18,46 Figure 9 illustrates that all the data in Figs. 7 and 8 collapse

into a single smooth curve, where rms(GsH) is correlated with 〈GsH〉 in the

ballistic, diffusive, and insulating spin-transport regimes. We now conclude that

the quantized spin-Hall effect in the graphene model due to the intrinsic spin-orbit

coupling has its own USCF and is quite different from that in the conventional

spin-Hall effect. In order to make a connection between the two universality classes,

it is necessary to investigate the behavior of the spin-Hall liquid as shown in

Fig. 6(a). In Fig. 10, we show the averaged conductance and fluctuation as functions

of disorder strength for some large Fermi energies (E = 1.1, 1.5, 2.0) at fixed intrinsic

spin-orbit coupling VSO = 0.7. From these parameters, the spin-Hall conductance

is no longer quantized in the absence of disorder. The spin-Hall conductance

fluctuations reach the plateau ∼ 0.18e/4π, which is exactly the same as USCF

found in the conventional spin-Hall effect of Sec. 2.

3.1.2. Quantized spin-Hall effect under magnetic field and Zeeman effect

In Sec. 3.1.1, we have seen that the quantized spin-Hall conductance fluctuation is

independent on the system details. In order to examine the model dependence of
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Fig. 10. (Color online) (a) The averaged spin-Hall conductance 〈GsH 〉 and (b) its fluctuation
rms(GsH ) versus disorder strength W at the fixed intrinsic spin-orbit coupling VSO = 0.7 for
some large Fermi energies E = 1.1, 1.5, 2.0, where the spin-Hall conductance is not quantized in
the absence of disorders. 10,000 samples are collected for each curve.

the USCF for the quantized spin-Hall effect, the investigation on a second model is

desirable. In this section, we consider a graphene model in the presence of strong

magnetic field and Zeeman effect. Unlike the above time-reversal invariant quantum

spin-Hall state, this time-reversal asymmetric model (CUE) shows the quantized

spin-Hall conductance due to edge states in the quantum Hall regime. Because of

the Zeeman splitting and graphene’s linear energy spectrum, both electron-like and

hole-like edge states exist near the Fermi level forming the counter-circulating edge

states that have been confirmed experimentally.30,31

As shown in Fig. 11, when a voltage bias is applied across probes 1 and

3, a transverse flow of dissipationless spin-current can be generated, i.e. only

spin-down current propagates from lead 1 to lead 2, and spin-up current flows

from lead 3 to lead 2. Such a quantized spin-Hall conductance breaks down with the

sample-to-sample fluctuations, as the disorder strengthW increases. Figure 12 plots

the averaged spin-Hall conductance and corresponding fluctuations as functions of

disorder strength W for different parameters. From panels (c) and (d), one can

find that for a given E or φ, rms(GsH) develops a plateau region, e.g. in the range

W = (3, 7) in panel (c), exhibiting the same value 0.285e/4π. Therefore, results of

two different models strongly suggest that the quantized spin-Hall effect belongs to

a new universality class with USCF2 = 0.285e/4π in contrast to USCF = 0.18e/4π

for the conventional spin-Hall effect.

3.2. HgTe — A square lattice model

The above two models are both related to honeycomb lattice with the special Dirac

dispersion of graphene. In this section, we address a third model — square lattice
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Fig. 11. (Color online) (a) Transmission coefficients T2↑/↓,1 and (b) T2↑/↓,3 versus Fermi energy
at fixed magnetic flux φ = 0.08. Insets are the zooming in near the Fermi energy E = 0.
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Fig. 12. (Color online) (a) and (b) Averaged spin-Hall conductance and fluctuations at fixed
Fermi energy E = 0.001 for different magnetic flux φ = 0.04, 0.08, 0.16. (c) and (d) Averaged
spin-Hall conductance and fluctuations at fixed magnetic flux φ = 0.04 for different Fermi energies
E = 0.0005, 0.0010, 0.0015.

HgTe model (CSE), and the effective Hamiltonian can be written as9,29,47:

H =

(

H(k) 0

0 H∗(−k)

)
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Fig. 13. (Color online) (a) and (b) Averaged spin-Hall conductance and fluctuations of the
HgTe model as a function of disorder strength for different Fermi energies E = −2.6,
−2.8,−3.1,−3.5,−3.68,−3.8 at fixed V = 3, c = 1, and es = 0.5. The system size is L = 40.

where each of the diagonal block exhibits quantum anomalous Hall effect, and they

are chirally opposite. Thus the chirality of each block acts as the spin degree of

freedom. In the tight-binding approximation, the Hamiltonian can be written as:

H = − t
∑

〈ij〉

(c†icj + h.c.) +
iV

2

∑

i

(c†iσyci+x̂ − c†iσxci+ŷ + h.c.)

− cV

2

∑

〈ij〉

(c†iσzcj + h.c.) + (2− es)V c
∑

i

c†iσzci . (7)

As shown in Fig. 13, the spin-Hall conductance for the quantized spin-Hall

conductance in the diffusive regime reach the same plateau regime rms(GsH) =

0.285e/4π again. So briefly we have confirmed USCF2 for the quantized spin-Hall

effect using three different models: two graphene modes with CSE and CUE

symmetries, and a third square lattice model with CSE symmetry. All of them

share the same plateau peak value in the diffusive regimes independent on all

system/model details.

4. Conclusion and Perspectives

Since universal conductance fluctuation has long been recognized for its importance,

we believe that the universal spin Hall conductance fluctuation (USCF) will be a

hallmark in the modern spintronics field. In brief, this review illustrates a prominent

feature in the electron transport where spin is dominant. The USCF ∼ 0.18e/4π

has been obtained from numerical method and verified by the analytic theoretical

approach. The presented universal quantized spin Hall conductance 0.285e/4π is

also expected to be confirmed by other theoretical and experimental measurement

work in the future. Some closely relevant spin-resolved transport study based on

graphene nanoribbons has recently added more interest to the universality discussed

here.
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To summarize, we have reviewed the universal spin-Hall conductance

fluctuations for the conventional and quantized spin-Hall effect. We conclude

that they belong to two different universality classes. In the current study, we

have mainly focused on the two-dimensional systems. During the time of writing

of this review, the study of the three-dimensional topological insulators has

become a demanding task. Furthermore, previously we have only considered the

spin-independent disorder. On the other hand, the magnetic and spin-flip types of

disorders may bring new avenues to the investigation of the universality classes of

the spin-related conductance.
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