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1.  Introduction

Due to its linear Dirac dispersion, graphene exhibits excel-
lent physical properties, including the electronic and optical 
aspects [1–3]. All these made graphene a promising candi-
date for designing future electronics. However, the intrinsic 
zero-gap of graphene hindered the possibility of replacing 
silicon to realize the basic on/off function of semiconductors. 
Subsequent efforts have been made to explore various two-
dimensional (2D) materials that naturally harbour bulk band 
gaps, e.g. silicene [4] and transition metal dichalcogenide 
MX2 [5]. Although a variety of new 2D materials become 
constantly proposed in theory and discovered in the experi-
ment, high mobility of graphene at room temperature [6] 
has attracted overwhelming attention. Both theoretical and 
experimental researchers continue exploiting graphene-based 
electronics via external manipulation after a dozen years ever 
since its first experimental discovery.

Two-component wavefunction in graphene, so-called 
pseudospin, results in extraordinary tunneling phenomena, 
namely Klein tunneling [7]. This phenomenon is in close con-
junction with suppression of backscattering in graphene and 
responsible for the high mobility in the single-layer graphene 
lattice. In the presence of uniform potential well i.e. confined 
regime, however, the equation  of motion can be reduced to 
an Eigen-value equation that resembles the Helmholtz equa-
tion in optics [8]. In particular, optic-like phenomena such as 
Goos–Hanchen and Veselago lens effects, have been studied 
in graphene [9–11]. Extensive theoretical calculations have 
been carried out to investigate electronic modes in graphene 
waveguide by solving Dirac–Weyl equation  [12–18]. As a 
result, the separation of several waveguide modes from the 
other conic subbands (corresponding to barriers modes) and 
sporadic conversion of valance subbands to the conduction 
subbands, are observed. It has commonly been assumed that 
the transport through graphene waveguide can be classified 
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Abstract
We theoretically investigate the electronic transport properties of curved graphene waveguides 
by employing non-equilibrium Green’s function techniques. We systematically study the 
dependence of the confined waveguide modes on the potential difference, the width of 
waveguide and side barrier. Through two-terminal electronic transport calculations, we show 
that the conductance of confined waveguide modes is rather robust against the bending degree 
of waveguide, in consistence with the band insensitivity to the side barrier. This finding of 
the perfectly conducting channels strongly suggests the possibility of applying the graphene 
waveguide in the design of low-power nanoelectronics.
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into two regimes: (1) The optical waveguide regime, often 
called total reflection regime, which can occur when the bar-
riers and waveguide have the same polarity; (2) p-n guiding 
regime, where the polarity of carriers between barriers and 
waveguide are different [19, 20]. Confinement of carriers in a 
n-p-n junction is demonstrated in latest experimental studies 
[21, 22]. Furthermore, kinked graphene waveguide based on 
graphene antidot has been proposed [23]. Exotic phenomena, 
such as snake states, have been realized in graphene p-n junc-
tion [24–26]. Most interestingly, recent experimental and 
theoretical studies have shown the valley-degenerate trans-
port in graphene waveguide with arbitrary chiral orientation, 
except armchair edge [27, 29].

Theoretically, graphene waveguide [19, 29] can be 
achieved by externally applying a hard-wall square-shape 
potential well in the transverse direction (see figure 1(a)). This 
should be experimentally feasible with recent advances in the 
fabrication techniques and applying thin film insulators (e.g. 
hexagonal boron nitride). So far, both theoretical and exper
imental studies have been mainly concentrated on the straight 
graphene waveguides. Moreover, the ballistic transport of the 
confined states in the quantum well has been experimentally 
demonstrated [19, 20]. It is well-known that one of the most 
striking features of optical fibers is that the electromagnetic 
waves can efficiently transmit in any kinds of bending. This 
is directly applied in the field of information communication. 
Analogous to a bending optical fiber [30], it is interesting to 
explore whether or not the curved graphene waveguide can 
have application prospects in nano-sized integrated systems 
and electronic interferometry.

In this article, we investigate the electronic transport prop-
erties of curved graphene waveguides by employing Green’s 
function techniques. Graphene waveguides can be readily pre-
pared by applying an external electric gate along a finite-sized 
graphene nanoribbon within the graphene flake. We system-
atically investigate the dependence of the confined waveguide 
modes on the potential difference ∆V , the width of wave-
guide WG and the width of the side barrier WB. It shows that 
the electronic structures are insensitive to the variation of the 
width of side barrier WB. Tunable graphene waveguides can 
be realized by adjusting the external gate voltage. Through 
a two-terminal electronic transport calculation, we find that 
the nearly quantized conductance (ballistic transport) is quite 
robust against the bending degree of waveguide, in consist-
ence with the band insensitivity to the width of side barrier. In 
present work, we have observed the signature of valley trans-
port for ultra-thin graphene waveguide with armchair edge. 
Our findings strongly demonstrate the possibility of designing 
the graphene-waveguide based low-power nanoelectronics.

2. Tight-binding model

In our studies, we consider the armchair graphene nanorib-
bons, where valleys K and K′ are mixed and indistinguishable. 
Figures 1(a) and (b) display respectively the schematic plots 
of straight and curved graphene waveguides, where the con-
fined potential ∆V  is applied at the blue colored atomic sites. 

The π-orbital tight-binding model Hamiltonian of graphene in 
the presence of gate voltage can be written as:

H = −t
∑
〈ij〉

a†i aj +
∑

i

via
†
i ai,� (1)

where a†
i  and ai are the creation and annihilation operators at 

ith atomic site, respectively. vi is the on-site potential energy, 
which is set to be zero for reference at the side barrier region 
and ∆V  in the waveguide region. The nearest-neighbor hop-
ping energy is set to be t  =  2.78 eV. Due to the relatively large 
width of the system considered, extra Hamiltonian modifica-
tion for the edge states or other imperfections is not included 
[32, 33].

3.  Band structure of graphene waveguide

Band structure can usually provide fundamental information 
to understand the electronic transport properties. By exactly 
diagonalizing the tight-binding Hamiltonian of the graphene 
nanoribbon, the band structure can be obtained. Figure 2(a) 
displays the band structure of armchair ribbon with a well-
known conic-shape subbands encapsulated in the celebrated 
Dirac conicband of bulk graphene E(kx) = ±�νF|kx|.

In the standard convention, AGNRs can defined by 
N-AGNR where N is the number of dimer lines. Based on 
crystal structure of graphene, N is related to the width of 

AGNR, W, via W = N
√

3
2 a, where a  =  0.142 nm is the 

carbon–carbon bond length. Throughout of this work we 
employ this relation to establish a connection between dif-
ferent widths and dimer lines which are essential inputs for 
the numerical code. Here, each supercell includes 818 atoms, 
corresponding to a width about W  =  50.4 nm. By applying a 

Figure 1.  Schematic plots of (a) straight and (b) curved waveguides 
in armchair graphene nanoribbons, being connected with left and 
right leads extended from the waveguides. Blue atoms label the 
graphene waveguide. W, WL,R, WG and WB indicate the widths of 
graphene nanoribbon, left or right terminals, waveguide and side 
barriers, respectively. L represents the device length. ∆V  is the 
potential difference between waveguide and barriers, and V0 is the 
on-site potential in both side barriers. DC, the relative shift between 
left and right terminals, characterizes the degree of bending in 
curved waveguides.
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gate voltage of ∆V = −0.25 eV at the region of WG = 10.1 
nm inside the armchair ribbon, a graphene waveguide is pro-
duced and the resulting bands are displayed in figure  2(b). 
One can observe that the confined modes in blue arise and 
their mixture with the valence bands results in the asymmetry 
between the conduction and valence bands in the low-energy 
region. In below, we show that they are localized inside the 
graphene waveguide.

Then, we investigate the evolution of confined waveguide 
modes as a function of the applied gate voltage ∆V . Figure 2(c) 
displays the first conduction subband variation along with the 
increase of ∆V . One can find that for a relatively small poten-
tial, e.g. ∆V = −0.10 eV, the first conduction subband moves 
downward; for large potentials exceeding the critical point, 
e.g. ∆V = −0.25 eV and  −0.35 eV, the first conduction band 
becomes overlapped with the valence bands, leading to a band 
inversion. Figure 2(d) displays the evolution of the first con-
duction band for different waveguide widths WG = 6.1, 10.1, 
and 24.6 nm at fixed ∆V = −0.25 eV. One can find that for 
narrower waveguide, the band inversion occurs at the posi-
tion close to the charge neutrality point; while for wider 
waveguide, the band inversion occurs at the energy farther 
away from the charge neutrality point, therefore giving rise 
to a wider energy interval for ballistic transport. Figure 2(e) 
displays the dependence of the first conduction band on the 
width of the side barrier WB. One can clearly observe that the 
confined waveguide modes are insensitive to the variation or 
asymmetry of the width of side barrier WB (see inset of the 
panel (e) for magnification of small variation). Therefore, our 
exploration in figure 2(e) indicates that the confined subbands 
are insensitive to the ribbon width, beyond the dispersive area 
with the conduction subbands exhibiting negative slopes. This 

suggests the possible existence of perfectly conducting (i.e. 
ballistic transport) energy channels in a graphene waveguide 
subjected to proper potential wells.

To show how the waveguide modes are distributed in the 
potential well, in figure 3 we plot the spatial wavefunction dis-
tribution across the armchair ribbon at different wavevectors 
for the four subbands labelled in figure 2(b). For clear com-
parison, two horizontal white color dashed lines are inserted 
to identify the boundaries of the quantum well or waveguide. 
Surprisingly, one can clearly see that most of the confined 
waveguide modes for wave vectors away from kx  =  0 are 
perfectly confined inside the waveguide; while the remaining 
parts are not localized inside the waveguide but distributed 
in the whole range of the ribbon. This is distinct from the 
topologically protected edge modes that are completely local-
ized at the system boundaries therefore robust against various 
external disorders.

In a practical device, the potential well across an armchair 
supercell, a cross-section on transverse direction of figure 1, 
is usually not a perfect hard-wall profile and often exhibits 
certain smooth variation between the barrier and the well [15]. 
Thus, it is essential to characterize conducting energy chan-
nels in the presence of edge smoothness. For comparison, two 
types of potential profiles have been considered: a wider hard-
wall waveguide of WG = 20.2 nm and a smooth edge wave-
guide with full width half maximum (FWHM) being equal 
to WG, as displayed in upper panels of figures 4(a) and (b). 
The corresponding band structures are plotted in lower panels 
of figures 4(c) and (d). Comparison between band structures 
reveals that waveguide modes do not change substantially 
when a hard-wall potential profile is replaced by a soft edge 
potential well. Moreover, we also plot the waveguide modes 

Figure 2.  (a) Band structure of armchair nanoribbon with a width 
of W  =  50.4 nm, with the supercell including 818 atoms. (b) 
Band structure of armchair nanoribbon harboring a waveguide as 
displayed in the central region of figure 1(a), where WG = 10.1 nm 
and ∆V = −0.25 eV. The blue bands indicate the modes arising 
from the waveguide. (c) Relative shift of the first subband due to 
the variation of ∆V  in the waveguide. (d) First subband mode 
dispersion for different waveguide thickness WG. (e) First subband 
dispersion for different widths of barriers WB. In (c) and (d), the 
parameters are the same as those in panel (b) except the varying 
parameter.

Figure 3.  Spatial distribution plot of the wavefunctions across 
the armchair ribbon as a function of kx for the first four bands 
as highlighted in figure 2(b). One can see that all the bands are 
confined inside the waveguide region except the kx points close to 
0. The parameters are respectively W  =  50.4 nm, WG = 10.1 nm, 
and ∆V = −0.25 eV. Dashed white lines are inserted to identify the 
boundaries of the quantum well or waveguide.
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for a supercell system with W  =  80.7 nm and WG = 40.3 nm  
in figure  5. Waveguide modes are plotted for two different 
depths of potential well, namely ∆V = −0.25 eV and  
∆V = −0.13 eV in figures  5(a) and (b), respectively. The  
edge of potential is smooth as plotted in figure 4(b). The wave-
guide bands are highlighted in blue, and degenerate bands are 
separated by solid and dashed lines. In the following section, 
we try to understand the transport properties in a wider gra-
phene nanoribbon by analyzing the conducting bands of a 
wider armchair supercell. Consequently, we observe that the 
wider waveguides provide more conducting channels, and the 
valley degeneracy is still preserved.

4.  Electronic transport in curved waveguides

To explore the robustness of the confined waveguide modes 
against the bending degree of the graphene waveguide, we use 
a two-terminal mesoscopic setup to study the conductance as 
a function of the Fermi level EF for different bending degrees 
DC. The two terminal conductance G(E) is expressed as

G =
2e2

h
Tr[ΓLGrΓRGa],� (2)

where ΓL,R are the line-width functions coupling the left 
and right terminals with the central scattering region 
[31]. Here, the coefficient ‘2’ represents the spin degree 
of freedom. The retarded Green function Gr is defined as 
Gr = [(E + iη)− H − ΣL − ΣR]

−1 with Ga = (Gr)†. The 
open boundary condition of the left and right terminals is imple-
mented via ΓL,R = i(Σr

L,R − Σa
L,R), where Σa

L,R = (Σr
L,R)

†. 
Terms ΣL,R are respectively self-energies of the semi-infinite 
left and right terminals [34, 35]. To effectively examine the 

robustness of the confined waveguide modes of the curved 
graphene waveguide, one has to ensure that the terminals can 
better match the central scattering region to avoid the strong 
back-scattering.

4.1. Tuning external terminals

We first consider both left and right terminals to be exactly 
extended from the waveguide region to separate the barriers 
from the terminals physically as displayed in figure  1. The 
length and width of the graphene ribbon system are respec-
tively set to be L  =  80.7 nm and W  =  50.4 nm. The wave-
guide width is chosen to be WG = 10.1 nm and the applied 
potential is ∆V = −0.25 eV. There are two reasons for 
considering the 10.1 nm width waveguide. (a) We are inter-
ested in studying the transport on a waveguide with few 
conducting channels. This might be beneficial in exper
imental realization since it reduces the scattering among 
conducting channels and it will enhance the coherent trans-
port. (b) Computational capacity is the other reason. For 
instance, in our consideration of a 50.4 nm×80.7 nm central 
region, a general Green’s function matrix would roughly have 
[(50.4/0.5

√
3a0)× (80.7/3a0)]

2 ≈ (409 × 172)2 elements, 
where a0  =  0.142 nm is the distance between two atoms. This 
means that it is unrealistic to consider further larger system 
setups.

In our study, we have done a series of numerical calcul
ation to explore the possibility of realizing quantized conduct-
ance, i.e. vanishing backscattering. In figure 6(a), we set the 
site potentials in the left and right terminals to be identical, 
i.e. VL/R = −0.10 eV or  −0.20 eV. For VL/R = −0.10 eV, one 
can find that the first plateau appears around G  =  1(2e2/h), 
while for VL/R = −0.20 eV, the first plateau becomes roughly 
to be G  =  2(2e2/h). However, the presence of same site poten-
tial on both left and right terminals always gives rise to an 
oscillating conductance due to the possible mismatch between 
the terminals and central scattering region. Surprisingly, we 
find that if the non-zero site potential is only included in one 
terminal (e.g. left), plateaus, i.e. G  =  1/3/5(2e2/h) arise at dif-
ferent energy intervals (see figure 6(b)). One may ask what 
would happen to the conductance if VL and VR are vanishing? 
As a sharp comparison, in figure 6(c), we plot the conductance 

Figure 4.  (a) and (b) Two type of potential profiles across an 
armchair ribbon supercell. (c) and (d) Corresponding bandstructures 
are plotted right under each potential profiles. The parameters are 
respectively W  =  60.5 nm, WG = 20.2 nm, and ∆V = −0.25 eV. 
Dashed red lines are the Dirac conicbands of infinite graphene 
E(kx) = ±�νF|kx|.

Figure 5.  Bandstructures for wider waveguide. The system 
parameters are set to be W  =  80.7 nm and WG = 40.3 nm. (a) 
∆V = −0.25 eV; (b) ∆V = −0.13 eV. Dashed red lines are the 
Dirac conicbands of bulk graphene.
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as a function of Fermi-energy at vanishing site-potentials in 
both terminals. One can clearly see that the quantized plateaus 
become oscillating again. This finding emphasizes the impor-
tance of the adjustment of site-potentials in both terminals.

4.2. Transport in narrow curved waveguides

Figure 7(a) displays the two-terminal conductance G as a 
function of Fermi level for a curved waveguide with different 
bending degrees DC  =  0.0, 10.2, 20.4 and 30.6 nm. One can 
see that for the straight graphene waveguide at DC = 0.0 nm 
and E  >  0, the conductance can be approximately quantized 
to G  =  1,3,5(2e2/h). However, for E  <  0, the conductance 
becomes oscillating and always be smaller than G  =  1(2e2/h) 
due to the strong interference between incoming and back-
scattering modes. It is noteworthy to mention that different 
site potentials of VL = −0.22 eV and VR = 0.00 eV are 
applied to the left and right terminals to match the waveguide 
modes. Here, the odd quantized conductance plateau is deter-
mined by the incoming modes from the terminals (see dashed 
lines in figure  7(c)). When the graphene waveguide gradu-
ally becomes smoothly curved (see the lower three panels of 
figure 7(a)), one may expect backscattering is introduced to 
break the quantization of conductance. To our surprise, the 
plateau of G  =  1(2e2/h) is not destroyed even at a higher 
degree of bending (i.e. DC = 30.6 nm), and it becomes even 
more flat. This striking transport phenomenon reflects pre-
cisely the zero bend resistance, which may be attributed to the 
immunity of the confined waveguides to the variation of the 
width of side barriers and can pose immediate implications 
in graphene-based low-power electronics. The conductance is 
varying in discrete quanta of 2(2e2/h) in figure 7(a) for second 
and third plateaus. This indicates the possible valley polariza-
tion of conductance due to the imbalanced contribution from 
different valleys K and K′.

In figure 7(b), as an example, we plot the local density of 
states of the perfectly conducting confined waveguide mode 
of G ∼ 1 (2e2/h) at fixed EF = 0.03 eV and DC = 20.4 nm.  
One can see that the confined waveguide mode only propagates 

locally inside the waveguide. The oscillation peaks on the 
waveguide are attributed to the traveling wavepackets across 
the waveguide from the left to right leads. In addition, the 
number of wavepackets increases at higher Fermi energies, 
satisfying the plane wave explanation of electron wave func-
tion in the transport direction.

Figure 7(c) shows the band matching between the ter-
minals and central scattering region for figure  7(a). As 

Figure 6.  Two-terminal conductance as a function of Fermi energy in a graphene waveguide. (a) The site potentials in both left and right 
terminals are set to be identical, i.e. VL = VR = −0.10 eV (orange line) or  −0.20 eV (purple line); (b) the site potentials in left and lead 
terminals are different, i.e. VL = 0.14 eV (black line), −0.18 eV (red line), and  −0.26 eV (blue line), with VL = 0.00 eV in right terminal as 
a reference; (c) the site potentials in both left and right terminals are set to be identical, i.e. VL = VR = 0.00 eV. Note that: the waveguide is 
straight. Other parameters are set to be L  =  80.7 nm, W  =  50.4 nm, WG  =  10.1 nm, ∆V = −0.25 eV, and V0 = 0.00 eV. Both terminals are 
exactly extended from the waveguide with a width of 10.1 nm.

Figure 7.  (a) Two-terminal conductance as a function of Fermi 
level for different curved waveguides, i.e. DC = 0.0, 10.2, 20.4, 
and 30.6 nm. The system parameters are chosen to be L  =  80.7 nm, 
W  =  50.4 nm, WG = 10.1 nm, and ∆V = −0.25 eV. (b) Spatial 
distribution of local density of states of the single-mode waveguide. 
(c) Band matching between the leads (dashed lines) and waveguide 
area (solid lines) for systems shown in panel (a). Additional on-site 
potentials of  −0.22 eV are added to the leads to align the similar 
conduction subbands.
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mentioned, additional site potentials of  −0.22 eV and 0.00 eV 
are respectively added to the terminal’s Hamiltonian to align 
to similar conduction subbands. For a specific system param
eters, careful adjustment of VL and VR should be adopted to 
achieve smooth conductance plateaus, i.e. leads should inject 
and collect electron effectively. Furthermore, nearly iden-
tical conductances at different curvature degrees demonstrate 
the zero bending resistance of the graphene waveguide as a 
striking physical property of scattering area. With the increase 
of EF, the number of bands also increases. The resulting local 
density of states is no longer perfectly propagating as that in 
figure  7(b), but accompanying with dispersive distribution 
over the whole scattering area. However, the restriction of 
the width of both terminals ensures the full backscattering of 
the modes spreading in the whole region and only allows the 
matched propagating modes, giving rise to different ballistic 
transport plateaus.

We also examined a Gaussian-shape waveguide at a more 
extended device L  =  131.1 nm with smooth edges potential 
well, see figure 8. Relatively similar conductance is achieved. 
This is in contrary to a recent report claiming an armchair 
waveguide is incapable of coherent transport [27].

4.3. Transport in wide waveguides

To highlight the effect of the width of the waveguide, we 
have considered two example of thicker graphene wave-
guides, WG = 20.2 nm and WG = 40.3 nm. In bandstruc-
ture section, we have shown that wider waveguides, with 
the same amount of potential at the bottom of well, results 
in more conducting channels with less energy separation. 
Consequently, It is expecting to have more plateaus with 
less energy separation. This is confirmed in figure  9 which 
in there, we have calculated the conductance of medium size 
graphene waveguide with WG = 20.2 nm. Other parameters 
are as follows: L  =  121.0 nm, W  =  80.7 nm, ∆V = −0.25 eV,  
V0 = 0.00 eV, VL = −0.24 eV and VR = 0.00 eV. Once 

again, the conductance of the straight and curved waveguides 
are almost identical. Therefore, the property of zero bending 
resistivity is independent of the width of graphene waveguide. 
The conductances are noticeably smooth at WG = 20.2 nm as 
compare to WG = 10.1 nm. The conductances are not varying 
in discrete quanta of 2(2e2/h). Further exploration shows 
our nanoribbon contacts in figure  9 are semiconductor type 
nanoribbons while we have used metallic type nanoribbon by 
far in all of past examples. It is worth mentioning that with ‘m’ 
being an integer number, a nanoribbon with an index number 
of 3m or 3m  +  1 is a semiconductor but 3m  +  2 is a metallic 
nanoribbon.

It is well known that the current state-of-the-art experi-
ment on graphene waveguide [29] utilized a split gate design. 
The distance between two top gates was about 121.0 nm and 
the effective channel width was estimated to be 65.5 nm. 
Although it is impossible to produce 10.1 nm or 20.2 nm wide 
lithographic top gates in a realistic device fabrication, one 
can turn to apply special high-resolution etching techniques 
[28]. Thus, we performed the transport study on a straight 
graphene waveguide with WG = 40 nm. Results have been 
plotted in figure  10 and rest of parameters are as follows: 
L  =  121.0 nm, W  =  100.8 nm, ∆V = −0.25 eV, V0 = 0.00 eV,  
VL = −0.24 eV and VR = 0.00 eV. In figure  10, the solid 
gray line is the conductance for the contact being exactly 
extended from the central waveguide; while the dark dashed 
line represent the conductance for the width of contact being 
decreased by 6% (20 atoms) symmetrically. In both cases, the 
nanoribbon contacts are semiconductors. Fading Plateaus are 
observable, but the energy range for constant conductances 
(flat areas) is reduced. This can be attributed to a small energy 
difference between energy channels, see figure 5(a). In addi-
tion, small flat areas of conductance are connected via incom-
plete vertical lines, see figure 10. Such a smooth rising can 
be attributed to the higher curvature of conducting subbands 
of a wide waveguide, compared with the conducting bands of 

Figure 8.  The conductance of a narrow Gaussian-shape graphene 
waveguide, Inset: smooth edges potential well. Device parameters 
are L  =  131.1 nm, W  =  50.4 nm, WG = 10.1 nm, ∆V = −0.25 eV, 
V0 = 0.00 eV, VL = −0.22 eV and VR = 0.00 eV.

Figure 9.  Conductances of a medium size graphene waveguides 
with smooth edges potential well, see inset figures. Device 
parameters are as follow L  =  121.0 nm, W  =  80.7 nm, WG = 20.2 
nm, ∆V = −0.25 eV, V0 = 0.00 eV, VL = −0.24 eV and 
VR = 0.00 eV. The solid gray line for straight waveguide and 
dashed black line for curved waveguide DC = 30.3 nm.
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a narrow graphene waveguide. In other word, higher effec-
tive mass gives rise to resistivity and leads to a slope between 
each semi-flat plateaus. Our results agree well with the recent 
experimental reports [29]. We also observed that decreasing 
the width of the contacts has a destructive influence on the con-
ductance of a narrow waveguide. When the width of contacts 
in a waveguide with WG  =  10.1 nm is reduced by 25% (about 
20 atoms), then the resulting conductance of this waveguide 
becomes fluctuating, similar to that shown in figure 6(c). As a 
comparison, in figure 10, we show that a wider waveguide is 
more immune to the lead-waveguide mismatch.

To better understand the conductance of the wider gra-
phene waveguides, we also plot three other conductances 
with metallic terminals in figure  11. To make the terminals 
metallic, we only decrease two atoms in contacts or reduce the 
index number by one. For example, we choose a straight and a 
curved WG = 20.2 nm waveguides, and a WG = 40.3 nm wave-
guides with reduced size contact (i.e. WL,R ≈ (1%−6%)WG). 
The solid gray line and dashed dark line represent the con-
ductance of straight and curved WG = 20.2 nm waveguide, 
respectively. Other system parameters are identical to those 
for figure  9. Similarly, we chose the parameters of reduced 
size terminals in figure  10 to calculate the conductance of 
WG = 40.3 nm waveguide with metallic contacts as shown 
in a solid dark line. Again, one can see that the conductance 
becomes quantized to be G  =  1,3,5,...(2e2/h). Therefore, 
valley degenerate conductance can be preserved, provided 
that contacts are metal. Moreover, zero bending resistivity is 
maintained similar to the conductance in the WG = 20.2 nm 
waveguides with non-metallic contacts. Comparison between 
the conductances of two WG = 20.2 nm waveguides and one 
WG = 40.3 nm waveguide in figure  11 clarifies how denser 
waveguide’s modes in WG = 40.3 nm system leads to more 
plateaus in the same range of Fermi energy.

It is noteworthy that the interplay between the width of 
waveguide and the on-site potential plays crucial role in the 

formation of the valley transport. Moreover, The effect of 
nonzero temperature can be justified on conductance via so-
called broadening function [34]. At the higher temperature, 
the plateaus are expected to gradually disappear similar to 
what is observed on the ballistic transport of quantum point 
contacts, defined in the two-dimensional electron gas (2DEG) 
of a high-mobility GaAs/AlGaAs heterojunctions [36].

5.  Summary

To conclude, we theoretically investigate the electronic trans-
port properties of the confined waveguide modes in curved 
graphene waveguide. We first systematically study the depend
ence of the confined waveguide mode on different system geo-
metric parameters and applied gate potentials. We find that 
the width and symmetry of the side barriers do not affect the 
bands of the confined waveguide modes, which is a hallmark 
for the possible ballistic transport in a graphene waveguide 
with a random but smoothly varying bending. Furthermore, 
the electronic transport calculation gives direct evidence of 
nearly quantized conductance in curved graphene waveguide. 
Such a striking zero bend resistance property makes graphene 
waveguide an ideal platform to design dissipationless or low-
power electronic devices.
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