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Universal current correlations induced by the Majorana and fermionic Andreev bound states
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Majorana bound states have been proposed to induce current-current correlations (CCCs) that are completely
different from those induced by low-energy fermionic Andreev bound states. Such characteristics can be used as
a signature to detect Majorana bound states and their nonlocality. Herein, we studied the Majorana and fermionic
Andreev bound states in a two-dimensional topological insulator system. We found that the coupling of each pair
of fermionic Andreev bound states coexists with that of the pair of Majorana bound states, and that the coupling
strengths of all pairs of bound states depend on system parameters in the same pattern. Majorana and fermionic
Andreev bound states show the same differential CCCs characteristics, thereby indicating a universal behavior
for both types of bound states in a two-dimensional topological insulator system. The maximal cross-differential
CCCs are robust to the structural asymmetry of the system.
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I. INTRODUCTION

In condensed matter systems, Majorana bound states
(MBSs) are exotic excitations of zero energy [1,2], which
provide an attractive platform for topological quantum com-
putation [3–6]. Among various condensed matter systems,
topological superconductors represent a natural means of
searching MBSs and therefore have recently attracted con-
siderable attention [7–9]. A variety of candidate topological
superconductor systems have been proposed [10–16], and
multiple studies have been conducted to verify the existence
of MBSs in them [17–25]. Through experiments, some ev-
idence has been found for the existence of MBSs owing to
phenomena such as resonant Andreev reflection, fractional
Josephson effect, selective equal-spin Andreev reflection, and
half-integer conductance plateau [26–32]. However, because
these phenomena have possible physical explanations, except
for MBSs, more compelling experimental evidence regarding
these signatures is required to settle the debate on MBSs
[33–38].

A characteristic of MBSs is their nonlocality. It can be
probed by the nonlocal transport if there is coupling between
MBSs. The coupling comprises Coulomb coupling and tunnel
coupling [39–43]. Herein, we study crossed Andreev reflec-
tion for the case of tunnel coupling [19,44,45]. When MBSs
are tunnel coupled, local Andreev reflection is predicted to be
completely suppressed at sufficiently low excitation energy
while favoring crossed Andreev reflection. A characteristic
of this enhanced crossed Andreev reflection is maximal cross
current-current correlation (CCC) [40].

*Corresponding author: qiao@ustc.edu.cn

Moreover, previous studies have shown that the CCCs
induced by MBSs differ from those induced by ordinary
low-energy fermionic Andreev bound states (ABSs) in super-
conducting semiconductor nanowires and Fe chains [46,47].
Therefore, a question arises as to whether the maximal cross
CCC is unique to MBSs, which is crucial to distinguish
MBSs from fermionic ABSs. This fundamental question mo-
tivates us to move beyond the superconducting semiconductor
nanowires and Fe chains, and to explore further the CCCs
induced by MBSs and fermionic ABSs in a two-dimensional
topological insulator (2D TI) system. We found that the
coupling of each pair of fermionic ABSs coexists with that
of the pair of MBSs, and that the coupling strengths of all
pairs of bound states display the same tendency with the
changes of the system parameters. These bound states result
in the same maximal cross-differential CCCs. Such correla-
tions are robust and universal in our setup. These intriguing
properties of both types of bound states in 2D TI systems
make a significant step toward understanding the properties of
MBSs and fermionic ABSs. In order to definitely differentiate
MBSs from fermionic ABSs in 2D TI systems, it is therefore
necessary to have signatures beyond the CCCs.

The rest of this paper is as follows. Section II describes the
model under study and gives the formalism. Sections III and
IV present the results on the MBSs and fermionic ABSs, on
the current-current correlations, and the related discussions.
Section V concludes this paper. Some auxiliary materials are
given in the Appendices.

II. MODEL AND FORMALISM

We consider MBSs and ordinary fermionic ABSs
in one-dimensional ferromagnetic-insulator–edge-state–
superconductor (FI–ES–SC) junction systems mediated on
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FIG. 1. Schematics of one-dimensional ferromagnetic-insulator–
edge-state–superconductor (FI–ES–SC) junctions mediated by the
ESs of a two-dimensional topological insulator (2D TI): (a) FI–ES–
SC junction; (b) FI–ES–SC–ES–FI junction; (c) ES–FI–ES–SC–ES–
FI–ES junction.

the edge of a 2D TI, as shown in Fig. 1. The ferromagnetism
and superconductivity of the ESs are induced by the proximity
effects of the FI and the s-wave SC, respectively, which
interact with the electrons in the ESs of a 2D TI [11].

The one-dimensional junctions can be described by the
following Bogoliubov–de Gennes equation [11,40]:(

υFσx px + σ · m − μ �eiφ

�e−iφ −υFσx px + σ · m + μ

)
ψ = Eψ,

(1)

where σ = (σx, σy, σz ), υF, ψ , and E are the Pauli matrices,
Fermi velocity, wave function, and excitation energy, respec-
tively. �eiφ denotes the superconducting pair potential, where
� and φ are the energy gap and the phase, respectively.
Because φ makes no difference to the calculations, we set it
to be zero. The chemical potential or Fermi energy μ(x) is
position dependent and could cross the different positions of
the energy band. μ(x) is measured with respect to the Dirac
point, which can be tuned via the gate voltage or doping
independently in each region. In the following, μES1 and
μES2 denote the chemical potentials at the left and right ESs
around the SC, respectively. The chemical potentials for the
SC and the left and right FIs are represented by μSC, μFI1, and
μFI2, respectively. In Fig. 1(a), the magnetization is m(x) =
(mlx, mly, mlz ) for x < −lES1 and m(x) = 0 otherwise. In
Fig. 1(b), the magnetization is set as m(x) = (mlx, mly, mlz )
for x < −lES1 and m(x) = (mrx, mry, mrz ) for x > lSC + lES2.
By solving Eq. (1), we obtain the wave functions for the
junctions shown in Figs. 1(a) and 1(b).

The wave function of the left FI in Fig. 1(a) is obtained as
follows:

ψFI1 = aeψ
e
FI1 exp

[
−i

(
kl + 2mlx

h̄υF

)
x

]

+ ahψ
h
FI1 exp

[
i

(
2mlx

h̄υF
− k′

l

)
x

]
, (2)

where ψe
FI1 = ( − h̄υFkl − mlx − imly, E + μFI1 −

mlz, 0, 0)T and ψh
FI1 = (0, 0, h̄υFk′

l − mlx − imly, E −
μFI1 − mlz )T . T indicates matrix transposition. kl =
(i
√

−(E + μFI1)2 + m2
lz + m2

ly − mlx )/h̄υF and k′
l =

(i
√

−(E − μFI1)2 + m2
lz + m2

ly + mlx )/h̄υF. ae and ah are

the coefficients of the electron and hole wave functions,
respectively.

The ES wave function is obtained as follows:

ψES1 = beψ
e
ES1 exp(ik1x) + b′

eψ
e′
ES1 exp(−ik1x)

+ chψ
h
ES1 exp(ik2x) + c′

hψ
h′
ES1 exp(−ik2x), (3)

where be, b′
e, ch, and c′

h are the coefficients of wave functions.
ψe

ES1 = (h̄υFk1, E + μES1, 0, 0)T , ψe′
ES1=(−h̄υFk1, E+μES1,

0, 0)T , ψh
ES1 = (0, 0,−h̄υFk2, E −μES1)T , and ψh′

ES1 = (0, 0,

h̄υFk2, E − μES1)T . Here, k1 = (μES1 + E )/h̄υF, and k2 =
(μES1 − E )/h̄υF.

The SC wave function is obtained as follows:

ψSC = dψ ′
SC exp[(−κ − ikSC)x] + f ψ ′′

SC exp[(−κ + ikSC)x],
(4)

where ψ ′
SC = (− exp[i(φ − α)], exp[i(φ − α)],−1, 1)T ,

ψ ′′
SC = (exp[i(φ+α)], exp[i(φ+α)], 1, 1)T , kSC =μSC/h̄υF,

α = arccos(E/�) for E < �, and κ = � sin α/h̄υF. d
and f are coefficients of wave functions that are coherent
superpositions of the electron and hole excitations. The wave
functions in different regions satisfy continuity conditions
at the interfaces ψFI1(x = −lES1) = ψES1(x = −lES1) and
ψES1(x = 0) = ψSC(x = 0), which determine the properties
of the bound states.

With the same method, we can obtain the wave functions
for junction in Fig. 1(b). The wave functions of the left FI, left
ES in Fig. 1(b) are ψFI1 and ψES1, respectively, which are the
same as those in Fig. 1(a). However, the SC wave function is
now obtained as follows:

ψ �
SC = dψ ′

SC exp[(−κ − ikSC)x] + f ψ ′′
SC exp[(−κ + ikSC)x]

+ d ′ψ ′′′
SC exp[(κ + ikSC)x] + f ′ψ ′′′′

SC exp[(κ − ikSC)x],

(5)

where ψ ′′′
SC = (exp[i(φ−α)], exp[i(φ−α)], 1, 1)T and ψ ′′′′

SC =
(− exp[i(φ + α)], exp[i(φ + α)],−1, 1)T . d, d ′, f , and f ′
are coefficients of wave functions that are coherent superposi-
tions of the electron and hole excitations.

The right ES wave function is obtained as follows:

ψES2 = geψ
e
ES2 exp(ik3x) + g′

eψ
e′
ES2 exp(−ik3x)

+ phψ
h
ES2 exp(ik4x) + p′

hψ
h′
ES2 exp(−ik4x), (6)

where ge, g′
e, ph, and p′

h are the coefficients of
wave functions. ψe

ES2 = (h̄υFk3, E + μES2, 0, 0)T , ψe′
ES2 =

( − h̄υFk3, E + μES2, 0, 0)T , ψh
ES2 = (0, 0, −h̄υFk4, E −

μES2)T , and ψh′
ES2 = (0, 0, h̄υFk4, E − μES2)T . Here,

k3 = (μES2 + E )/h̄υF and k4 = (μES2 − E )/h̄υF.
The wave function of the right FI is obtained as follows:

ψFI2 = qeψ
e
FI2 exp[ikrx] + qhψ

h
FI2 exp[ik′

rx], (7)

where ψe
FI2 = (h̄υFkr + mrx − imry, E + μFI2 − mrz, 0, 0)T

and ψh
FI2 = (0, 0,−h̄υFk′

r + mrx − imry, E − μFI2 − mrz )T .
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FIG. 2. (a) Energies E of the bound states as function of the ES
width lES1 of the FI–ES–SC junction. (b) Probability densities ρ of
MBS and ordinary ABSs as functions of x in the FI–ES–SC junction,
where x = 0 is the interface between the leftmost FI and ES, and
the ES width is lES1 = 3ξ . (c) Probability densities ρ of coupled
MBS and coupled fermionic ABSs as functions of x in the the
FI–ES–SC–ES–FI junction, where x = 0 is the interface between the
leftmost FI and left ES, where lSC = 2.5ξ, , lES1 = lES2 = 3ξ . Here,
the chemical potential μSC = 50�, and ξ = h̄υF/� is the coherence
length.

kr = (i
√

−(E + μFI2)2 + m2
rz + m2

ry − mrx )/h̄υF and

k′
r = (i

√
−(E − μFI2)2 + m2

rz + m2
ry + mrx )/h̄υF. qe and qh

are the coefficients of the electron and hole wave functions,
respectively.

The wave functions in different regions satisfy continuity
conditions at the interfaces ψFI1(x = −lES1) = ψES1(x =
−lES1), ψES1(x = 0) = ψ �

SC(x = 0), ψ �
SC(x = lSC) =

ψES2(x = lSC), and ψES2(x = lSC + lES2) = ψFI2(x =
lSC + lES2), which determine the properties of the bound
states in Fig. 1(b).

III. MBSs AND FERMIONIC ABSs

First, we study the MBSs and non-zero-energy fermionic
ABSs in the junction shown in Fig. 1(a). Because the electron
spin is locked with the momentum of ESs in the 2D TI, both
the magnetization and s-wave superconducting pair potential
can open gaps in the gapless ESs. As shown in Fig. 1(a), if
the FI and SC are infinitely long, bound states can exist in this
junction. Based on the wave functions and boundary condi-
tions, the energies E and probability densities ρ of all bound
states can be calculated. As shown in Fig. 2(a), the number of
bound states increases discontinuously with an increase in the
width lES1 of the junction. The zero-energy bound state (i.e.,
MBS) always exists and is independent of lES1, whereas the
energies of the non-zero-energy bound states (i.e., ordinary
fermionic ABSs) decrease with an increase in lES1.

Figure 2(b) shows the probability densities ρ of the three
bound states as functions of the junction position x. The

FIG. 3. (a), (b) Energies E of the bound states as functions of the
chemical potential μSC of the SC and the width lES1 of the leftmost
ES in the FI–ES–SC–ES–FI junction. Here, the width lSC of the
SC is 2.5ξ . (a) lSC = 2.5ξ and lES1 = lES2 = 3ξ . (b) μSC = 50� and
lES1 = lES2.

position x = 0 represents the interface between the leftmost
FI and the ESs, while the position x = 3ξ represents the
interface between the ESs and the rightmost SC. The black,
red, and blue lines denote the probability densities ρ for these
three states with the energies E/� = 0, 0.390, and 0.760,
respectively. Because the maximal probability densities are in
the range 0 < x < 3ξ , the bound states are localized mainly in
the ES region. By comparing the probability densities ρ of the
aforementioned three states, we find that the MBS is slightly
more localized than the fermionic ABSs.

While coupling another SC–ES–FI junction to the right-
hand side of Fig. 1(a), we create an FI–ES–SC–ES–FI junc-
tion, as shown in Fig. 1(b). If the width lSC of the SC is
sufficiently large, each energy E corresponds to two degen-
erate bound states, which are localized mainly at the left and
right ES regions, respectively. If lSC is not sufficiently large,
the two degenerate bound states are well coupled and then
split into two nondegenerate states. As shown in Fig. 2(c),
the MBSs with E/� = 0 split into two states with E/� =
±0.019, the fermionic ABSs with E/� = 0.390 split into
two states with E/� = 0.370 and 0.412, and the fermionic
ABSs with E/� = 0.760 split into two states with E/� =
0.737 and 0.792. Compared with the uncoupled states in
Fig. 2(b), we find that the maximum probability density ρ is
halved when the bound states are coupled in Fig. 2(c). This
sharp decrease in ρ indicates that the degenerate bound states
are well coupled. Furthermore, the amplitude of coupling is
nearly same because the probability densities ρ differ only
slightly in Fig. 2(c). In brief, when the MBSs of the pair
are coupled, the fermionic ABSs of each pair are finely
coupled simultaneously, as illustrated in Figs. 2(b) and 2(c).
Herein, we consider μFI1 = μFI2 = 0, μES1 = μES2 = 10�,
and mlz = mrz = �.

Because the couplings of the MBSs and fermionic ABSs
are considerably important, we extend the scope of the study
to investigate the coupling properties of all pairs of degenerate
bound states in Fig. 3. To ensure the formation of twofold-
degenerate bound states, the widths of the ESs on either side
of the SC are configured to be the same in Fig. 1(b). First,
we plot the dependence of the energies of all bound states on
the chemical potential μSC in Fig. 3(a). As μSC is increased,
we find that the energies of the bound states of each pair
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periodically oscillate with a constant amplitude. Figure 3(b)
shows how the bound-state energies depend on the width lEG1.
We find that the energies of the bound states of each pair
oscillate with an increase in lES1. Because the energies of the
degenerate fermionic ABSs decrease with an increase in lES1,
as shown in Fig. 2(a), the energies of the corresponding bound
states of each pair decrease with an increase in lES1 as a whole.
Therefore, the coupling strength of the bound states of each
pair decreases slightly and periodically with an increase in lES1

overall in Fig. 3(b).
In Fig. 3, we see that the coupling strengths of all pairs

of bound states display the same tendency with the in-
crease of μSC or lES1. Concretely, the coupling strengths
maximize/minimize in phase with each other. This property
provides the physical picture to intuitively understand the
transport properties discussed below.

IV. CURRENT-CURRENT CORRELATIONS (CCCs)

We study the transport properties of the MBSs and ordinary
fermionic ABSs in the junction shown in Fig. 1(b). This can be
realized by connecting the junction to two separate ES leads,
whereupon the transport setup becomes the junction shown
in Fig. 1(c). The chemical potentials of the left and the right
leads are denoted by μESL and μESR, respectively. Based on
the scattering matrix S in Appendix A, we can calculate the
time-averaged current Īi and the current fluctuation δIi(t ) =
Ii(t ) − Īi in lead i. In our setup shown in Fig. 1(c), the left
and right leads are equally biased at voltage V , whereas the
middle SC is grounded. The Fano factor measures the charge
transfer in a current pulse, which is defined by the ratio of the
noise correlator Pi j to the mean current Īi. The noise correlator
Pi j is defined as Pi j = ∫ ∞

−∞ dt δIi(0)δI j (t ). According to the
scattering matrix elements in Eq. (A5), the mean current and
noise correlator can be calculated as follows [48]:

Īi = e

2π h̄

∑
k∈1,2;β,γ∈e,h

sgn(β )
∫ ∞

0
dE Aγ γ

kk (i, β, E ) fi,β (E ),

Aγ δ

kl (i, β, E ) = δikδilδβγ δβδ − (
sβγ

ik

)∗
sβδ

il ,

Pi j = e2

2π h̄

∑
k,l∈1,2;β,γ ,ζ ,η∈e,h

sgn(β )sgn(γ )
∫ ∞

0
dE Aζη

kl (i, β, E )

× Aηζ

lk ( j, γ , E ) fi,β (E )[1 − f j,γ (E )], (8)

where i, j, k, and l denote the channels. For example, k = 1
and 2 indicate the two channels in the left and right leads,
respectively. The electron (e) and hole (h) channels are de-
noted by β, γ , ζ , and η. Here, sgn(β ) = 1 for β = e and
sgn(β ) = −1 for β = h. The differential conductance in lead
i is Gi = dĪi/dV , and G1 is equal to G2 because the bias
voltage V in the two leads is the same. The differential noise
correlator is defined as Pi j (E ) = dPi j/d (eV ). It is caused by
electrons with energy E and measures the CCC between the
leads i and j. To make the cross CCC sufficiently large, the
left and right FIs are set to be adequately long to suppress
the local Andreev reflection and enhance the crossed Andreev
reflection in Fig. 1(c).

Figure 4(a) shows the current-current fluctuation correla-
tors, which are calculated at zero temperature and represented

FIG. 4. (a) Fano factors of the junction as functions of bias
voltage V . (b)–(d) Fano factors as functions of energy E of incident
electrons. Here, μESL = μESR = 10�, μSC = 50�, lSC = 2.5ξ , and
lFI1 = lFI2 = 4ξ . lES1 = lES2 = 3ξ in (a) and (b), lES1 = 3ξ and lES2 =
3.1ξ in (c), and lES1 = lES2 = 20ξ in (d).

by the Fano factors F11 and F12. F11 denotes the autocorrelator
P11, which is normalized by eĪ1, and F12 denotes the cross cor-
relator P12, which is normalized by eĪ1 = eĪ2 = e(Ī1 + Ī2)/2.
Figure 4(a) plots the dependence of F11 and F12 on the bias
voltage V , and we observe that F11 and F12 are both equal
to unity at V/� = 0. F11 = 1 indicates that the current pulse
in lead 1 transfers one electron into the SC, while F12 = 1
signifies both suppression of the local Andreev reflection and
enhancement of the crossed Andreev reflection. As pointed
out in previous research [40], for any stochastic process the
cross correlator is bound by the autocorrelator with |P12| �
(P11 + P22)/2. At V/� = 0, we have P12 = (P11 + P22)/2 =
P11 because P11 = P22, making the cross correlator positive
and maximally large for each current pulse. When V is away
from zero, the Fano factors F11 and F12 are mainly equal
to 1 and 0, respectively. Such signals imply that the current
fluctuations in the two leads are independent. Note that for a
given bias voltage (V ), the current correlators and the mean
currents are calculated by summing over all contributions
from E/� = 0 to eV . In Fig. 4(a), F11 and F12 show four
small peaks at either side of eV/� = 0.39 and 0.76. These
peaks signify some unusual transport properties of ordinary
fermionic ABSs.

In Fig. 4(b), we show the dependencies of the differential
Fano factors F11 and F12 on the energy E of the incident
electrons, where F11(E ) = P11/G1 and F12(E ) = P12/[(G1 +
G2)/2] = P12/G1 because G1 = G2. We can observe that
F11 = F12 at three energy points, namely, E/� = 0, 0.39, and
0.76. As pointed out in the aforementioned section, E/� = 0
corresponds to the MBS energy, whereas E/� = 0.39 and
0.76 correspond to the energies of the two different fermionic
ABSs. Therefore, the fluctuations of the currents flowing from
the two leads into the SC are maximally correlated at the
energies of the MBSs and fermionic ABSs. This considerably
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differs from previous work [46,47] in which MBS signatures
in CCCs were distinct from those of fermionic ABSs. This
difference is clarified right now. According to the Altland-
Zirnbauer topological classification [49], the symmetry class
of the Hamiltonian of our superconducting system is D class.
When the MBSs are tunnel coupled, the fermionic ABSs
of each pair are tunnel coupled likewise, as illustrated by
Figs. 2(b) and 2(c). Since the coupling strengths of all pairs
of bound state maximize/minimize in phase with each other
as shown in Fig. 3, maximal cross CCCs induced by MBSs
and ABSs appear simultaneously. Therefore, cross CCCs can
be induced by both kinds of states, then are universal for
both kinds of states in our setup. In Refs. [46] and [47],
the superconducting nanowire and superconducting chain of
magnetic atoms belong to D class in general. In these two su-
perconducting systems, two MBSs are tunnel coupled, while
the fermionic ABSs are not tunnel coupled. Hence, MBSs
can induce cross CCC, while the fermionic ABSs cannot in
Refs. [46,47].

When the energy E is away from those of the three bound
states in Fig. 4(b), F11 reaches 2 and F12 reaches 0, thereby
demonstrating that only local Andreev reflection occurs in
those regions. On comparing Figs. 4(a) and 4(b), we find that
the Fano factors show the same characteristics near V/� = 0
and E/� = 0. This type of characteristics is attributed to
the weak integral effect over the energy from E/� = 0 to
E/� = eV when the bias voltage is small. Therefore, the
manner in which F11 and F12 depend on energy E can well
reveal the properties of the CCCs induced by the MBSs and
fermionic ABSs.

Next, we study the influence of the structural asymmetry on
the CCCs. The structural asymmetry can be different lES1 and
lES2, different μES1 and μES2, different lFI1 and lFI2, different
μFI1 and μFI2, or different μESL and μESR. It is found that
CCCs induced by the MBSs and fermionic ABSs are unaf-
fected by these asymmetries. An example is given in Fig. 4(c),
which shows the dependencies of the Fano factors on energy
E , where lES1 = 3ξ and lES2 = 3.1ξ . Since ξ is quite long as
given below, lES1 = 3ξ and lES2 = 3.1ξ mean the structure of
system is quite asymmetric. Such correlations always appear,
provided that the asymmetry between lES1 and lES2 does not
strongly break the coupling of the two corresponding bound
states. The coupling of the two corresponding bound states is
clearly shown in Fig. 5 in Appendix B. Therefore, the CCCs
are robust to the asymmetry of the system’s structure in our
setup. Furthermore, we consider the transport properties of the
fermionic ABSs of a pair when their energies are considerably
close to the energies of the MBSs of the pair. According to
Fig. 2(a), we know that fermionic ABSs with considerably
low energies will appear when lES1 and lES2 are sufficiently
large. Figure 4(d) plots the dependencies of the Fano factors
on energy E , where the energies of the fermionic ABSs are
close to the MBS energy and the cross CCCs induced by the
MBSs and fermionic ABSs are both maximal.

Finally, we discuss the experimental realization of our
setup in Fig. 1. The 2D topological insulators (2D TIs)
have been realized in HgTe/CdTe quantum wells, InAs/GaSb
quantum wells, and monolayer WTe2. The bulk gaps for
these three kinds of materials are about 10 meV [50], 4 meV
[51], and 100 meV [52], respectively. The superconducting

energy gap of the ESs could be induced by depositing the
superconductor on the edge of a 2D TI. The induced super-
conducting energy gaps are about 0.023 meV for HgTe/CdTe
quantum well [53] and 0.12 meV for InAs/GaSb quantum well
[54]. Thus, the superconducting coherence length ξ are about
400 to 2400 nm for υF � 105 m/s [50,51,55]. Proximity-
effect-induced ferromagnetism on the surface states of three-
dimensional TIs have been realized in experiments [56]. In-
duced ferromagnetisms by EuS, YIG, and monolayer CrI3

have been observed [56,57]; these findings lay the ground-
work for realizing the proximity-induced ferromagnetism in
2D TIs. Thus at present, the parameters and results in our
work can be accessible in real life systems. We suggest
that HgTe/CdTe quantum well and monolayer WTe2 are
good candidate TIs for the exploration of the physics in our
setup.

V. CONCLUSIONS

We studied the MBSs and ordinary fermionic ABSs in a
2D TI system. Our findings reveal that the coupling strengths
of both MBSs and ordinary fermionic ABSs depend on the
system parameters in the same pattern. These two types of
bound states can lead to the same differential CCCs, and
such CCCs are robust to the asymmetry of the system’s struc-
ture. These characteristics demonstrate a universal property
in 2D TI systems. In order to certainly distinguish MBSs
from fermionic ABSs in 2D TI systems, it is crucial to have
characteristics beyond the CCCs.
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APPENDIX A: SCATTERING MATRIX

By solving Eq. (1), we can obtain the wave functions
for the junction in Fig. 1(c). For an incident electron wave
function in the left ES lead, the wave function in the left ES
lead is

ψESL = 1√
(E + μESL)h̄υFkESL

ψe
ESL exp(ikESLx)

+ see
11

1√
(E + μESL)h̄υFkESL

ψe′
ESL exp(−ikESLx)

+ she
11

1√|(E − μESL)h̄υFk′
ESL|ψ

h
ESL exp(ik′

ESLx),

(A1)
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where see
11, she

11 are the coefficients of wave functions
for reflected electron and local Andreev reflected hole,
respectively. ψe

ESL = (h̄υFkESL, E + μESL, 0, 0)T , ψe′
ESL =

( − h̄υFkESL, E + μESL, 0, 0)T , and ψh
ESL = (0, 0,−

h̄υFkESL, E − μESL)T . Here, kESL = (μESL + E )/h̄υF and
kESL = (μESL − E )/h̄υF.

The wave function in the left FI is

ψ �
FI1 = aeψ

e
FI1 exp

[
−i

(
kl + 2mlx

h̄υF

)
x

]
+ a′

eψ
e′
FI1 exp[iklx]

+ ahψ
h
FI1 exp

[
i

(
2mlx

h̄υF
− k′

l

)
x

]
+ a′

hψ
h′
FI1 exp[ik′

l x],

(A2)

where ψe
FI1 = (−h̄υFkl − mlx − imly, E + μFI1 − mlz, 0, 0)T ,

ψe′
FI1 = (h̄υFkl + mlx − imly, E + μFI1 − mlz, 0, 0)T ,

ψh
FI1 = (0, 0, h̄υFk′

l − mlx − imly, E − μFI1 − mlz )T , and
ψh′

FI1 = (0, 0,−h̄υFk′
l + mlx − imly, E − μFI1 − mlz )T .

kl = (i
√

− (E + μFI1)2 + m2
lz + m2

ly − mlx )/h̄υF and

k′
l = (i

√
−(E − μFI1)2 + m2

lz + m2
ly + mlx )/h̄υF. ae a′

e, ah,

and a′
h are the coefficients of wave functions.

The wave functions of the left ES, middle SC, and right ES
in Fig. 1(c) are ψES1, ψ �

SC,and ψES2, respectively, which are
the same as those in Fig. 1(b). The wave function in the right
FI is

ψ �
FI2 = q′

eψ
e′
FI2 exp

[
−i

(
kr + 2mrx

h̄υF

)
x

]
+ qeψ

e
FI2 exp[ikrx]

+ q′
hψ

h′
FI2 exp

[
i

(
2mrx

h̄υF
− k′

r

)
x

]
+ qhψ

h
FI2 exp[ik′

rx],

(A3)

where ψe′
FI2 = (−h̄υFkr − mrx − imry, E +μFI2 − mrz, 0, 0)T ,

ψe
FI2 = (h̄υFkr + mrx − imry, E + μFI2 − mrz, 0, 0)T , ψh′

FI2 =
(0, 0, h̄υFk′

r − mrx − imry, E − μFI2 − mrz )T , and
ψh

FI2 = (0, 0,−h̄υFk′
r + mrx − imry, E − μFI2 − mrz )T .

kr = (i
√

−(E + μFI2)2 + m2
rz + m2

ry − mrx )/h̄υF and

k′
r = (i

√
−(E − μFI2)2 + m2

rz + m2
ry + mrx )/h̄υF. qe q′

e, qh,

and q′
h are the coefficients of wave functions.

The wave function in the right ES lead is

ψESR = see
21

1√
(E + μESR)h̄υFkESR

ψe
ESR exp(ikESRx)

+ she
21

1√|(E − μESR)h̄υFk′
ESR|ψ

h
ESR exp(ik′

ESRx),

(A4)

where see
21, she

21 are the coefficients of wave functions for
tunneling electron and crossed Andreev reflected hole, re-
spectively. ψe

ESR = (h̄υFkESR, E + μESR, 0, 0)T and ψh
ESR =

(0, 0,−h̄υFkESR, E − μESR)T . Here, kESR = (μESR + E )/h̄υF

and k′
ESR = −(μESR − E )/h̄υF.

The wave functions in different regions satisfy continuity
conditions at the interfaces ψESL(x = −lFI1 − lES1) =
ψFI1(x = −lFI1 − lES1), ψFI1(x = −lES1) = ψES1 (x =
−lES1), ψES1(x = 0) = ψ �

SC(x = 0), ψ �
SC(x = lSC) =

ψES2(x = lSC), ψES2(x = lSC + lES2) = ψFI2(x = lSC + lES2),
and ψFI2(x = lSC + lES2 + lFI2) = ψESR(x = lSC + lES2 +
lFI2), which determine the coefficients see

11, she
11, see

21, and she
21.

With the same method, for an incident hole wave function
in the left ES lead, the wave functions in different regions sat-
isfy continuity conditions at the interfaces, which determine
the coefficients seh

11, shh
11, seh

21, and shh
21. For an incident elecron

wave function in the right ES lead, the wave functions in
different regions satisfy continuity conditions at the interfaces,
which determine the coefficients see

12, she
12, see

22, and she
22. For an

incident hole wave function in the right ES lead, the wave
functions in different regions satisfy continuity conditions at
the interfaces, which determine the coefficients seh

12, shh
12, seh

22,
and shh

22.
Thus, for the setup in Fig. 1(c), the scattering matrix S is

given with the following form:

S =

⎛
⎜⎜⎜⎜⎝

see
11 see

12 seh
11 seh

12

see
21 see

22 seh
21 seh

22

she
11 she

12 shh
11 shh

12

she
21 she

22 shh
21 shh

22

⎞
⎟⎟⎟⎟⎠. (A5)

APPENDIX B: MBSs AND FERMIONIC ABSs IN THE
ASYMMETRICAL FI–ES–SC–ES–FI JUNCTION

In the main text, we have shown the energies of Majo-
rana bound state (MBS) and fermionic Andreev bound states
(ABSs) as a function of the width lES1 in a FI–ES–SC junction
in Fig. 2(a). Also, we have shown the probability densities of
the MBS and ABSs in Fig. 2(b) for lES1 = 3.0ξ , the energies
E/� of MBS, first ABS, and second ABS are 0, 0.39, and
0.76, respectively. Note that we only discuss the bound states
with zero and positive energies for conciseness in the main
text and in this Appendix, the probability densities of the
negative-energy ABSs are the same as those of the corre-
sponding positive-energy ABSs. All the energies of bound
states are rounded off to three significant digits. In a symmet-
rical FI–ES–SC–ES–FI junction with lES1 = lES2 = 3ξ and
lSC = 2.5ξ , there are two degenerate bound states for every
above obtained energy, and the degenerate bound states of
every pair are well coupled and split into two nondegenerate
states. The energies and probability densities of the nonde-
generate states have been shown in Fig. 2(c). By comparing
the energies of the uncoupled and the coupled bound states
of every pair, we find the coupling strengths (or splitting
amplitudes) of the bound states of all pairs are different and
dependent on the energies of the degenerate bound states. Our
result is better than the less rigorous conclusion in Ref. [58],
which is as follows: “The splitting of cavity levels by hybridiza-
tion is always the same, independently of which parameters are
used.”

In order to clearly study the coupling strengths of the
bound states in the asymmetrical FI–ES–SC–ES–FI junction,
first, we consider a FI–ES–SC–ES–FI junction with lES1 =3ξ,

lES2 = 3.1ξ , and lSC = 2.5ξ . The energies of MBS and ABSs
in the SC–ES–FI junction with the width lES2 = 3.1ξ can
be given according to the known result of the FI–ES–SC
junction in Fig. 2(a), and the energies E/� of MBS, first ABS,
and second ABS are 0, 0.381, and 0.743, respectively. The
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FIG. 5. (a) Probability densities ρ of MBS and fermionic ABSs
as functions of x in the SC–ES–FI junction, where x = 5.5ξ is the
interface between the left SC and middle ES, and the ES width
is lES2 = 3.1ξ . (b) Probability densities ρ of coupled MBSs and
coupled fermionic ABSs as functions of x in the asymmetrical
FI–ES–SC–ES–FI juncton, where x = 0 is the interface between
the leftmost FI and left ES, lSC = 2.5ξ, lES1 = 3ξ , and lES2 = 3.1ξ .
Here, the chemical potential μSC = 50�, and ξ = h̄υF/� is the
coherence length.

probability densities of these three bound states in this SC–
ES–FI junction are shown in Fig. 5(a); it is found that the max-
imal probability densities are in the range 5.5ξ < x < 8.6ξ ,
three bound states are localized mainly in the ES region, and
the MBS is slightly more localized than the ABSs. With the
knowledge of the energies and probability densities of MBS
and ABSs in the FI–ES–SC junction with lES1 = 3ξ and in the
SC–ES–FI junction with lES1 = 3.1ξ , we can easily give the
coupling strengths of these bound states in the asymmetrical
FI–ES–SC–ES–FI junction with lES1 = 3ξ, lES2 = 3.1ξ , and
lSC = 2.5ξ . The energies and the corresponding probability
densities of the bound states in this asymmetrical FI–ES–SC–
ES–FI junction are given in Fig. 5(b), we can see that the
coupling energy E/� of MBSs is 0.016, which is different

from that in the symmetrical junction with lES1 = lES2 = 3ξ ,
and lSC = 2.5ξ . Even though the ABS with E/� = 0.390 and
the ABS with E/� = 0.381 have different energies, these two
ABSs are coupled and becoming two new ABSs with E/� =
0.405 and E/� = 0.368, respectively. The same for the ABS
with E/� = 0.760 and the ABS with E/� = 0.743, they are
coupled and becoming two new ABSs with E/� = 0.781 and
E/� = 0.732, respectively.

Second, we further consider an asymmetrical FI–ES–SC–
ES–FI junction with lES1 = 3ξ, lES2 = 5ξ , and lSC = 2.5ξ .
The energies of MBS and ABSs in the SC–ES–FI junction
with lES2 = 5ξ also can be given according to the known
result of the FI–ES–SC junction in Fig. 2(a), the energies
E/� of MBS, first ABS, second ABS, third ABS, and
fourth ABS are 0, 0.2613 [rounded off to four significant
digits], 0.519, 0.767, and 0.981, respectively. The ener-
gies E/� of bound states in this asymmetrical FI–ES–SC–
ES–FI junction with lES1 = 3ξ, lES2 = 5ξ , and lSC = 2.5ξ

are 0.012, 0.2609 [rounded off to four significant digits],
0.391, 0.521, 0.750, 0.785, and 0.990, respectively. We can
know that the coupling energy E/� of MBSs is 0.012, and the
ABSs with E/� = 0.760 and E/� = 0.767 are well coupled
and becoming two new ABSs with E/� = 0.750 and E/� =
0.785, respectively. The ABS, whose energy E/� is 0.2613,
becomes a new state with energy E/� is 0.2609. Thus,
this state with energy E/� is 0.2613 and is approximately
independent of the other bound sates, so are the ABSs, whose
energies E/� are 0.390, 0.519, and 0.990, respectively. The
coupling strengths of all these states can also be understood
from the changes of their probability densities when lSC

changes from infinite to 2.5ξ . The probability densities of
all these states, like those have been given in Figs. 2(b) and
2(c), and Fig. 5, are also calculated, but not shown by detailed
figures here.

As a result, in an asymmetrical FI–ES–SC–ES–FI junction,
although the number of the bound states on the left FI–ES–SC
side is different from that on the right SC–ES–FI side, two
bound states on the left and right sides can also be well
coupled so long as their energies are slightly different. Our
result is better than the less rigorous conclusion in Ref. [58],
which is as follows: “For the asymmetric double cavity
(dNL �= dNR), the number of ABSs on each cavity can be
different. In that case, the levels do not hybridize.”
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