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We theoretically study the finite-size effects in the dynamical response of a quantum anomalous Hall insulator
in the disk geometry. Semianalytic and numerical results are obtained for the wave functions and energies of the
disk within a continuum Dirac Hamiltonian description subject to a topological infinite mass boundary condition.
Using the Kubo formula, we obtain the frequency-dependent longitudinal and Hall conductivities and find that
optical transitions between edge states contribute dominantly to the real part of the dynamic Hall conductivity
for frequency values both within and beyond the bulk band gap. We also find that the topological infinite mass
boundary condition changes the low-frequency Hall conductivity to e2/h in a finite-size system from the well-
known value e2/2h in an extended system. The magneto-optical Faraday rotation is then studied as a function
of frequency for the setup of a quantum anomalous Hall insulator mounted on a dielectric substrate, showing
both finite-size effects of the disk and Fabry-Pérot resonances due to the substrate. Our work demonstrates the
important role played by the boundary condition in the topological properties of finite-size systems through its
effects on the electronic wave functions.

DOI: 10.1103/PhysRevB.100.205408

I. INTRODUCTION

Topological properties are usually studied in extended sys-
tems without a confining boundary condition. As the example
of integer quantum Hall effect illustrates, edge states existing
in a realistic finite-size geometry are indispensable to the
explanation of the underlying quantization phenomenon. In
this connection, models with exactly solvable edge state wave
functions are particularly valuable in delineating the role
played by edge states in transport and optical phenomena
[1–5]. The quantum anomalous Hall insulator [6] is a two-
dimensional topological state of matter characterized under
electrical transport conditions by a quantized value of Hall
conductivity and a zero longitudinal conductivity due to spin
splitting under broken time-reversal symmetry. For the partic-
ular case when the quantized value is an integer multiple of the
conductance quantum, the system has an integer Chern num-
ber and is also called a Chern insulator [7]. A half-quantized
Hall conductivity is also possible [8], as is the case for the
surface states of a three-dimensional topological insulator.
The quantum anomalous Hall insulator has been experimen-
tally realized in magnetically doped three-dimensional topo-
logical insulator thin films [9]. Two-dimensional atomically
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thin materials doped with heavy magnetic adatoms [10] have
also been proposed as platforms for realizing a quantum
anomalous Hall insulator [11–13]. This class of system has the
advantage that they provide an additional tunability of topo-
logical phases due to interplay between the magnetization and
an applied out-of-plane electric field [14–16]. Gate-tunable
bilayer graphene quantum dots [17], with magnetic doping or
proximity coupling to a magnetic substrate, could provide a
realistic implementation.

Frequency-dependent conductivity provides a useful probe
for charge carriers’ dynamical response and elementary exci-
tations. In systems where the electron’s momentum is coupled
to the pseudospin or spin degrees of freedom, it reveals
unusual interaction renormalization [18,19] and strong-field
[20] effects. The complex dynamic Hall conductivity can yield
valuable information in topological materials beyond the di-
rect current limit, with its real part providing the dynamics of
the reactive carrier response and imaginary part the dissipative
response. Dynamic Hall response can be probed optically
by the magneto-optical Faraday and Kerr rotations. Three-
dimensional topological insulator thin films under broken
time-reversal symmetry exhibit dramatic Faraday and Kerr
effects in the low-frequency regime that signifies the underly-
ing topological quantization of the Hall conductivity [21–25].
The dynamic Hall response and magneto-optical effects of
topological materials are often theoretically studied assuming
an infinitely extended system, and so far there has been few
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studies on the finite-size effects of these properties due to the
finite planar dimensions of the system. It is the purpose of this
work to perform a semianalytical and numerical study of the
dynamic conductivities and magneto-optical Faraday effect of
a quantum anomalous Hall insulator in a finite circular disk
geometry.

Our theory is based on the low-energy continuum descrip-
tion of a quantum anomalous Hall insulator subject to a van-
ishing radial current boundary condition (“no-spill” boundary
condition). The system is described by a massive Dirac Hamil-
tonian, which would give a half-quantized Hall conductivity
when the system is infinitely extended. We compute the exact
energies and wave functions of the finite disk as a function
of the orbital angular momentum quantum number, and use
the Kubo formula to evaluate the dynamic longitudinal and
Hall conductivities. Contrary to the extended system case, we
find that imposing a change of the topological character of
the system across the boundary through the no-spill bound-
ary condition causes the finite-sized massive Dirac model to
carry a Chern number of 1 instead of 1/2. Our calculations
also show that optical dipole transitions between edge states
contribute to an almost constant value of e2/h in the dynamic
Hall conductivity that remains constant even for frequencies
exceeding the band gap. Combining all three types of optical
transitions among the edge and bulk states, the total dynamic
conductivities of the finite disk are found to agree with the
main features calculated from the massive Dirac model with
an additional parabolic dispersion term that breaks electron-
hole symmetry in an extended system. The finite-size effects
in the conductivities are also seen in the magneto-optical
Faraday rotations. Here we also study the “finite-size effects”
along the out-of-plane direction by considering a substrate
interfacing the quantum anomalous Hall insulator. The finite
thickness of the substrate gives rise to Fabry-Pérot oscillations
of the Faraday effect, which are found to exert a stronger
influence on the Faraday rotation spectrum than the effect of
the finite disk size.

This article is organized as follows. In Sec. II we describe
the model Hamiltonian and boundary condition of the quan-
tum anomalous Hall insulator disk and derive semianalytic
expressions for the eigenfunctions and energies. Section III
describes our calculations and results for the dynamic longitu-
dinal and Hall conductivities using the Kubo formula. A flow
diagram plotting the real parts of the longitudinal and Hall
conductivities is discussed in Sec. IV, which approaches the
behavior of a Chern insulator with increasing disk radius. In
Sec. V, we provide results for the magneto-optical Faraday
rotation of the quantum anomalous Hall insulator disk and
study the effects of the finite disk radius and the presence of
an underlying substrate. Section VI summarizes our work.

II. THEORETICAL MODEL

As depicted in Fig. 1, we consider a quantum anomalous
Hall insulator in a disk geometry with a radius R. The low-
energy physics of a quantum anomalous Hall insulator is
described by the massive Dirac Hamiltonian,

hD = v (σ × p) · ẑ + Mσz, (1)

FIG. 1. Schematic of the system under investigation. The cyan
(dark) area is a quantum anomalous Hall insulator nanodisk with
a radius R and a positive finite mass in the Dirac model Eq. (1),
surrounded by a yellow (light) domain with a mass going to negative
infinity, to ensure a topologically nontrivial domain wall. The outer
region is infinitely large. The linear response dynamics of this system
is studied in Sec. III by initializing a weak perpendicular incident
light with energy ω.

where v is the band velocity of the Dirac model, M > 0 is
the Zeeman interaction that breaks time-reversal symmetry
and provides a bulk band gap, and σ = (σx, σy, σz ) is the
3-vector formed by the Pauli matrices corresponding to the
spin degree of freedom. Under periodic boundary conditions,
the massive Dirac Hamiltonian gives a Chern number 1/2.
To incorporate finite-size effects, we need to specify the
appropriate boundary condition at the edge of the disk. While
a vanishing wave function boundary condition is suitable for
graphene with zigzag edge termination, there is no reason to
assume that such a condition also applies in our case without
appealing to atomistic details at the boundary. In particular,
since we aim to provide a treatment of the finite-size effects of
a quantum anomalous Hall insulator as generally as possible,
we use the no-spill current condition at the boundary, which
is more suitable to be used with a continuum Hamiltonian
model. We will discuss this boundary condition in more detail.

The wave functions and energy eigenvalues are obtained
by solving the eigenvalue problem hDψ = εψ , where ψ is a
two-component spinor. In view of the rotational symmetry of
the system, the eigenvalue problem can be facilitated by using
the following wave function ansatz in polar coordinates [5],

ψ (ρ, φ) =
(

ψ↑
ψ↓

)
= eilφ

(
Al (ρ)

eiφBl (ρ)

)
, (2)

where ρ is the radial position, φ the azimuthal angle, and l
is an integer corresponding to the orbital angular momentum
quantum number. Combining Eqs. (1) and (2), one obtains the
wave functions for states lying both outside and inside of the
bulk energy gap:

�ln(ρ, φ) = eilφ

√
Nln

(
(ε + M ) Jl (βlnρ̃ )

+eiφ
√

ε2 − M2 Jl+1(βlnρ̃ )

)
, |ε|>M,

(3)


ln(ρ, φ) = eilφ

√
Nln

(
(M + ε) Il (blnρ̃ )

−eiφ
√

M2 − ε2 Il+1(blnρ̃ )

)
, |ε|<M,

(4)

where we have defined the system’s characteristic fre-
quency ωR ≡ v/R, the dimensionless wave numbers β =
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FIG. 2. Radial probability density as a function of the scaled di-
mensionless radius ρ̃ (with R = 30 nm) for several typical values of
angular momentum l and energies εln. Hollow-shape-dotted curves
indicate the edge states 
ln and solid-shape-dotted curves the bulk
states �ln.

√
ε2 − M2/(h̄ωR) and b = √

M2 − ε2/(h̄ωR), as well as the
scaled dimensionless radial distance ρ̃ ≡ ρ/R ∈ [0, 1]. Here
Jl (x) is the Bessel function and Il (x) is the modified Bessel
function, both of the first kind. The normalization coeffi-
cients Nln and Nln follow from the normalization condi-
tion of the wave functions 1 = ∫ 2π

0 dφ
∫ R

0 dρρ|ψ (ρ, φ)|2 =
2πR2

∫ 1
0 dρ̃ρ̃|ψ (ρ, φ)|2, and are consequently given by

Nln = 2πR2εln(εln + M )

[
J2

l (βln) + J2
l+1(βln)

− 2l + 1 − M/εln

βln
Jl (βln)Jl+1(βln)

]
, |ε| > M, (5)

Nln = 2πR2(M + εln)εln

[
I2
l (bln) − I2

l+1(bln)

− 2l + 1 − M/εln

bln
Il (bln)Il+1(bln)

]
, |ε| < M. (6)

In a finite-sized geometry, a clear delineation between bulk
and edge states does not exist because there is always some
degree of mixing between bulk and edge states. However, for
the sake of terminology, we shall label �ln (having energies
beyond the bulk band gap) and 
ln (having energies within the
bulk band gap) as the bulk and edge states, respectively. This
terminology is supported by examining the radial probability
density profile as a function of the scaled dimensionless radius
ρ̃ in Fig. 2. It is seen that the in-gap states 
ln displays a
monotonically increasing profile towards the edge of the disk
and indeed behaves like edge states. On the other hand, the
out-of-gap states �ln exhibits oscillations as a function of the
radial position ρ̃ and can therefore be associated with bulk
states. Similar edge and bulk states have also been found in 2D
quantum spin Hall insulator disks with circular and elliptical
geometries [26,27] using a different boundary condition.

To determine the energy eigenvalues, we impose the no-
spill boundary condition that the outgoing radial component
of the current vanishes at the edge of the disk. Within the
massive Dirac model, this condition corresponds to taking

the mass term M outside the disk region to infinity and is
sometimes called the infinite mass boundary condition [5]. We
note that in principle there can be two choices for the sign
of the mass term, with M(ρ > R) → ±∞. Since we assume
M(ρ � R) > 0, the choice M(ρ > R) → −∞ is appropriate
here for a topologically nontrivial domain wall, ensuring a
change in the topological character across the disk boundary
[28,29]. This results in the following constraint between the
two components of the wave function [30,31] ψ↓/ψ↑ = αeiφ ,
with α = −1 (cf. Appendix A for more information). This
choice of M(ρ > R) differs from that in the original Berry’s
paper [30], which addressed a situation without a topological
domain wall. For this reason, we refer to the boundary con-
dition we use here as the topological infinite mass boundary
condition. Armed with the above, one has the following
equations for the eigenenergies εln from Eqs. (3) and (4):

(εln + M )Jl (βln) = −
√

ε2
ln − M2Jl+1(βln), |ε| > M, (7)

(M + εln)Il (bln) = +
√

M2 − ε2
lnIl+1(bln), |ε| < M. (8)

Equations (7) and (8) are transcendental equations with multi-
ple roots εln for each given l , where n = 1, 2, . . . indicates the
multiplicity. While a number of candidates for Chern insula-
tors have been proposed in the literature [6,32–36], we choose
the band parameters corresponding to the quantum anomalous
Hall insulator of a Bi2Se3 thin film with v = 5 × 105 m s−1

and a Zeeman energy 2M = 0.1 eV. As a low-energy effective
theory, the massive Dirac model is valid up to a certain
energy cutoff εc. For concreteness we use εc = 0.3 eV as the
energy cutoff, noting that the main findings of our work are
not dependent on the precise value of εc with εc 	 M. We
therefore only seek the numerical roots of Eqs. (7) and (8)
within the range [−εc, εc].

Figures 3(a), 3(c) and 3(e) show the obtained energy spec-
trum for ε as a function of l for different values of R.

One can identify features that correspond predominantly to
bulk states and edge states. The bulk state spectrum contains
a gap in which a one-way chiral edge dispersion runs across.
As R increases from 10 to 100 nm, the delineation between
the bulk and edge spectra becomes more evident. In the limit
R → ∞ that can be achieved physically when R 
 h̄v/M,
the chiral edge state dispersion can be obtained by expanding
Eq. (8) using a large R expansion:

εl � −ε0(l + 1/2), (9)

with ε0 ≡ h̄ωR[1 + h̄ωR/(2M )]. We note that the 1/2 on the
right-hand side originates from the spin angular momentum
of the electron. Gratifyingly, this approximate analytic disper-
sion is in excellent agreement with the exact numerical results
as shown by the red solid line in Fig. 3. Using Eq. (9), the
number of the in-gap states can be estimated as �2M/(h̄ωR),
where �· · ·  denotes the floor function. Figures 3(b), 3(d) and
3(f) show the density of states of the calculated spectrum from
the expression [37]

D(ε) = 1

πA
∑

ν

Im
1

εν − ε − iη
, (10)

where Im stands for imaginary part, A is the area of the disk,
and the broadening parameter is set as η = 2.4 × 10−3 eV

205408-3



ZENG, HOU, QIAO, AND TSE PHYSICAL REVIEW B 100, 205408 (2019)

FIG. 3. Energy spectrum (energy ε versus angular momentum
quantum number l) and the corresponding density of states (DOS) for
v = 5 × 105 m s−1 and M = 0.05 eV. The region shaded in light blue
(gray) indicates the bulk energy gap, within which the red (darker)
line shows the analytic dispersion Eq. (9) of the chiral edge state.

throughout this work. The nonvanishing peaks of the density
of states in the gap indicate the existence of the in-gap
chiral edge states. When the radius increases, the DOS profile
expectedly becomes smoother as more states are introduced
into the system. On the other hand, a small radius (R �
h̄v/M) enhances the quantum confinement effect as seen from
the more prominent resonances from the individual quantum
states.

III. DYNAMIC CONDUCTIVITY

We now introduce into the system a weak, linearly polar-
ized alternating current probe field that is normally incident on
the quantum anomalous Hall insulator disk. With the obtained
energy spectrum and wave functions, we proceed to calculate
the longitudinal and Hall optical conductivities using the
Kubo formula [38] in the real space representation (derivation
is provided in Appendix C):

σi j (ω) = 2iω
e2

h

∑
mm′

f ′
0 − f0

�ε − ω − iη

〈m|xi|m′〉 〈m′|x j |m〉
R2

,

(11)

where i, j ∈ { x, y }, m(m′) is a collective label for the relevant
quantum numbers, f0 is the Fermi-Dirac distribution func-
tion, �ε = ε′ − ε is the energy difference between the final
(primed) and the initial (unprimed) states in a transition, and
ω is the photon energy of the incident light.

The matrix elements in Eq. (11) capture the transition
processes among the bulk states �ln and edge states 
ln

and there are three types of transitions, i.e., edge-to-edge
(E-E), edge-to-bulk (B-E), and bulk-to-bulk (B-B). Using the
expressions of the wave functions Eq. (3) together with their
normalization coefficients Eq. (5), we obtain the following
matrix elements for the three types of transitions:〈

ψS′
l ′n′

∣∣∣ (x
y

)∣∣∣ψS
ln

〉
= R IS′S

l ′n′,ln

(
1 1
i −i

)(
δl,l ′+1

δl,l ′−1

)
, (12)

where S′, S ∈ { B, E } stand for bulk and edge states, δl,l ′ is the
Kronecker delta symbol, and IS′S

l ′n′,ln is a dimensionless radial
integral defined by

IS′S
l ′n′,ln =

∫ 1

0
dρ̃ρ̃2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(M + ε′)(M + ε) Il ′ (bl ′n′ ρ̃) Il (blnρ̃ ) +
√

(M2 − ε′2)(M2 − ε2) Il ′+1(bl ′n′ ρ̃ ) Il+1(blnρ̃ )√
Nl ′n′Nln/(πR2)

, S′ = S = E,

(ε′ + M )(M + ε) Jl ′ (βl ′n′ ρ̃) Il (blnρ̃ ) −
√

(ε′2 − M2)(M2 − ε2) Jl ′+1(βl ′n′ ρ̃ ) Il+1(blnρ̃ )√
Nl ′n′Nln/(πR2)

, S′ = B, S = E,

(ε′ + M )(ε + M ) Jl ′ (βl ′n′ ρ̃ ) Jl (βlnρ̃ ) +
√

(ε′2 − M2)(ε2 − M2) Jl ′+1(βl ′n′ ρ̃ ) Jl+1(βlnρ̃)√
Nl ′n′Nln/(πR2)

, S′ = S = B.

(13)

Equation (12) expresses an angular momentum selection
rule: transitions are allowed only between states with a
change in angular momenta �l = ±1. The remaining radial
integrations (IS′S

l ′n′,ln) in Eq. (13) are computed numerically.
For the special case of the contribution due to edge-to-
edge transitions, the corresponding conductivity contribution

can be exactly obtained in closed form, as described in
Appendix D.

Figure 4 shows our results for the real (blue) and imaginary
(red) parts of the longitudinal conductivity σxx(ω) when the
Fermi level εF = 0 for different values of R separated into
the three contributions: E-E (first row), B-E (second row),
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FIG. 4. Plots of the longitudinal conductivity σxx (in unit of G0 = e2/h) versus frequency ω for different radius R and for contributions
arising from different types of transitions. Blue (dark) indicates the real part and red (light) the imaginary part. The light blue (gray) regions
indicate the extent of the bulk energy gap. (a1)–(a3) The contribution from edge-to-edge (E-E) transitions, (b1)–(b3) the contribution from
edge-to-bulk (B-E) transitions, and (c1)–(c3) the contribution from bulk-to-bulk (B-B) transitions. Values of v and M are the same as in Fig. 3.

and B-B (third row). First, we note that the finite size of
the disk has a different effect on the E-E conductivity con-
tribution compared to the other two types of contributions
involving the bulk. As R is increased, the E-E conductivity
[Figs. 4(a1)–4(a3)] remains approximately the same while
the B-E and B-B contributions [Figs. 4(b1)–4(b3) and 4(c1)–
4(c3)] display considerable changes. According to the selec-
tion rule in Eq. (12), there can only be one E-E transition
along the chiral edge state dispersion from below to above
the Fermi level, therefore there is always only one peak in the
E-E conductivity regardless of the size of the disk. The peak’s
position is seen to shift toward ω = 0 with increasing R,
because the edge states become more closely spaced with their
energy separation ≈ε0 ∝ 1/R [Eq. (9), to first order]. In con-
trast, for the B-E [Figs. 4(b1)–4(b3)] and B-B contributions
[Figs. 4(c1)–4(c3)], since the number of possible transitions is
directly proportional to the number of bulk states, the number
of peaks increases, and the conductivity approaches a smooth
continuous curve as R increases. The threshold beyond which
the B-B contribution becomes finite corresponds to the bulk
energy gap 2M.

The corresponding dynamic Hall conductivity σxy(ω) is
shown in Fig. 5. The above description for the longitudinal
conductivity is also applicable here, if we note that the roles
of the reactive and dissipative components are played by the
real and imaginary parts of σxy(ω), respectively. For both
the longitudinal and Hall conductivities, the E-E contribution
displays a smooth profile across all values of frequency, which
is the result of only one possible edge-to-edge transition.
The B-E contribution is smaller than both E-E and B-B

contributions by an order of magnitude for the smallest radius
R = 30 nm and is further suppressed with increasing radius.
For frequency within the bulk gap 2M, its profile exhibits
many closely spaced sharp peaks corresponding to the many
possible edge-to-bulk transitions, and is smooth for frequency
beyond the gap. The opposite behavior is seen in the B-B
contribution. Its profile exhibits wild fluctuations due to even
more possible bulk-to-bulk transitions for frequency beyond
the bulk gap, which are suppressed when the disk radius is
increased. There is an important distinction between Fig. 4
and Fig. 5. As shown in Fig. 4, the E-E contribution of
Im[σxx(ω)] quickly drops to zero with increasing ω. However,
the corresponding reactive contribution in the Hall conduc-
tivity, Re[σxy(ω)], becomes a constant e2/h when ω exceeds
the value of the bulk gap 2M. We find that the flatness of this
plateau as a function of ω is not sensitive to the system size,
as seen by comparing Figs. 5(a1)–5(a3). This saturated value
originates from the E-E contribution Re[σ EE

xy (ω)] and can be
obtained analytically (see Appendix D). Adding the three E-E,
B-E, and B-B contributions, we conclude that the total Hall
conductivity in the direct current limit within our finite-size
model is e2/h, rather than e2/2h as would have been expected
for massive Dirac electrons in an extended system.

Therefore, in the direct current limit, our system behaves as
a quantum anomalous Hall insulator with an (integer) Chern
number, i.e., a Chern insulator. This motivates the question
whether our system behaves as a Chern insulator in response
to an AC field as well. To address this question, we compare
the calculated conductivities of our finite-size system for
large R with the conductivities from the low-energy Dirac
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FIG. 5. Hall conductivity σxy (in unit of G0 = e2/h) versus frequency ω for different radius R and for contributions arising from different
types of transitions. Blue (dark) indicates the real part and red (light) the imaginary part.

model H = d(k) · σ, defined on an extended system. Here we
consider two cases and take the spin vector d(k) to be linear
in momentum with d1(k) = (Aky,−Akx, M ), and quadratic
in momentum with d2(k) = (Aky,−Akx, M − B(k2

x + k2
y )),

where A, B(> 0), and M are band parameters independent of
momentum. The winding number spanned by the vector d(k)
is evaluated by this integral

C = 1

4π

∫
d2k

d · (∂kx d × ∂ky d )

d3
. (14)

Accordingly, the quantized Hall response of the linear model,
as applicable for the surface states of three-dimensional topo-
logical insulators, is σxy = sgn(M )e2/2h [39], and that of the
second model, as applicable for Chern insulators, is σxy = 0
when M < 0 and σxy = e2/h when M > 0.

For extended systems, momentum is a good quantum num-
ber and the dynamic conductivity for the above models can
be calculated from the Kubo formula [40] in the momentum
representation as usual:

σαβ (ω) = ih̄
∫

d2k

(2π )2

∑
mn

fm − fn

εm − εn

〈n| jα|m〉 〈m| jβ |n〉
εm − εn − (ω + iη)

= iG0

4π

∫
d2k

d

[
j̃−+
α j̃+−

β

ω − 2d + iη
+ ( j̃−+

α j̃+−
β )∗

ω + 2d + iη

]
,

(15)

where j̃α = ∂kα
H . Analytic results of the dynamic conductiv-

ity tensor for the linear Dirac model can be obtained and is
available [41]. For the quadratic Dirac model, we compute the
dynamic conductivity numerically from Eq. (15) with parame-
ters A = h̄v � 0.3291 eV nm, B = h̄2/(2) � 0.0381 eV nm2,

and M = 0.0500 eV. Interestingly, our results show that not
only electronic wave functions and dispersions, but boundary
conditions can also change the topological property of a
system.

Figure 6 shows the dynamic longitudinal and Hall con-
ductivities for the three cases of finite-sized disk with R =
150 nm, linear and quadratic Dirac models defined on an
extended system. For the longitudinal conductivity σxx, we
see from Fig. 6(a) that the qualitative behavior of all three
sets of results resemble each other closely for frequencies
beyond the band gap. Within the gap, there is a peak in
Re(σxx ) and a corresponding zero crossing in Im(σxx ) near
ω = 0 in the case of a finite-sized disk, which are absent
in the extended systems. These features originate from the
E-E transition [Fig. 4(a3)]. For the Hall conductivity σxy, we
see from Fig. 6(b) that the qualitative behavior the finite-
size result matches closely with the extended quadratic Dirac
model result, while the extended linear Dirac model result
displays a similar trend with increasing frequency but the
overall profile is shifted upward. This shift is consistent with
the direct current limit of the Hall conductivity for the three
cases. Close to ω = 0, the finite-size and extended quadratic
Dirac models both give a Hall conductivity Re(σxy) of e2/h,
whereas the linear Dirac model gives e2/2h. In addition, a
strong peak is apparent near ω = 0 in Im(σxy) for a finite-sized
disk due to E-E transition [Fig. 5(a3)].

IV. FLOW DIAGRAM

Further insights can be obtained by mapping σxx and σxy

onto a parametric plot using ω as the parameter. In the
direct current regime, such a σxx σxy plot generates a flow
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FIG. 6. Total longitudinal conductivity σxx (a) and Hall conductivity σxy (b) as a function of frequency, blue (dark) for real part and red
(light) for imaginary part. Results from the finite disk (with R = 150 nm) are shown by the thick solid lines, those from the linear Dirac model
by the dashed lines, and those from the quadratic Dirac model by dot-dashed lines. Conductivities are expressed in unit of G0 = e2/h.

diagram and was studied for quantum anomalous Hall insu-
lators theoretically [42] and experimentally [43,44] using the
system’s size, temperature, and gate voltage as parameters.
The flow diagram of a quantum Hall insulator consists of
two semicircles with a unit diameter located at (±e2/2h, 0)
[45,46] (dashed black semicircles in Fig. 7), while the flow
diagram of the topological insulator surface states forms a
semicircle centered at the origin (dot-dashed black semicircle
in Fig. 7). To study the flow diagram for our finite quantum
anomalous Hall insulator disk, we focus on only the E-E

FIG. 7. Scaling behavior [Re(σxx ) versus Re(σxy )] for the E-E
contribution. The black dot-dashed line shows the behavior of the
topological insulator surface states and the two black dashed lines
the integer quantum Hall state. The various shape-dotted lines show
the behavior for the quantum anomalous Hall insulator disk with
different radii, which approaches the behavior of the integer quantum
Hall state as R increases. Conductivities are expressed in unit of
G0 = e2/h.

contribution of Re(σxx ) and Re(σxy) for frequency ω < 2M.
In this frequency range, contributions involving bulk states
are almost suppressed and thus will not show in the flow
diagram. The various shape-dotted lines in Fig. 7 show the
flow diagram for different values of disk radius from 10
to 150 nm. The diagram resembles large circular arcs for
small Rs, and gradually approaches a semicircle centered at
(−e2/2h, 0) as R is increased (contrast the purple curve for
10 nm and the blue curve for 150 nm). This is consistent
with our finding that the finite disk subjected to the topo-
logical infinite mass boundary condition becomes a Chern
insulator.

V. FARADAY EFFECT

The dynamic Hall conductivity and its quantized value
near the direct current limit can be probed with magneto-
optical Faraday effect in topological systems [21,41,47]. We
consider a setup consisting of a quantum anomalous Hall
insulator nanodisk on top of a dielectric substrate, surrounded
by vacuum. For concreteness, we choose silicon [48] as the
substrate, which has a dielectric constant εSi = 11.68. Using
the scattering matrix formalism, the transmitted electric field
can be expressed as

E t = t̄B(I − r̄′
Tr̄B)−1t̄T E0, (16)

where E0 is the incident field, and r̄, r̄′ and t̄, t̄ ′ are 2 × 2
matrices accounting for single-interface reflection and trans-
mission, respectively. The subscript T labels the top interface
at the quantum anomalous Hall insulator between vacuum and
the substrate while B labels the bottom interface between the
substrate and vacuum. Equation (16) expresses the transmitted
field in the form of geometric series resulting from Fabry-
Pérot-like repeated scattering at the top and bottom interfaces.
The incident light is normally illuminated onto the setup and
is linearly polarized.

Resolving the transmitted electric field into its positive
and negative helicity components E t

± = E t
x ± iE t

y, the Faraday
rotation angle is given by

θF = 1
2 (arg E t

+ − arg E t
−). (17)

Our results for the Faraday angle are shown in Fig. 8,
computed with different values of disk radius R and substrate
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FIG. 8. Faraday rotation angle θF (in milliradian) as a function of ω for different values of radius R and substrate thickness a. The light
blue (gray) region indicates the extent of the bulk energy gap. The two blue dashed horizontal lines indicate the values of − arctan(α/2) ≈
−3.649 × 10−3 and − arctan α ≈ −7.289 × 10−3, with α being the fine structure constant.

thickness a. θF shows both finite-size effects due to a finite
R and Fabry-Pérot resonances [49] due to the presence of
an underlying substrate, which serves as an optical cavity.
Let us first focus on the first row Figs. 8(a1)–8(a4) with a
small radius R = 30 nm. The effect of discrete energy eigen-
states in a finite disk is reflected in θF as fluctuations with
frequency [Fig. 8(a1)], similar to the behavior seen in the dy-
namic conductivities. As the substrate thickness is increased
[Figs. 8(a2)–8(a4)], these fluctuations become overwhelmed
by the periodic oscillations resulting from the Fabry-Pérot
resonance. For larger radius values across the rows, the fluc-
tuations due to finite disk effect become smoothened and only
Fabry-Pérot oscillations remain. Since the lowest Fabry-Pérot
resonance frequency is c/(2a

√
εSi), more resonances appear

for a thicker substrate. When the frequency value is equal
to the band gap, we notice a kink in θF that becomes more
apparent for thinner substrates, resulting from the onset and
peak features in σxx and σxy. Another interesting feature is
the nonmonotonic increase in the envelope of the Fabry-
Pérot oscillations, which become apparent when both a and
R are large [Figs. 8(b4), 8(c4), and 8(d4)]. The envelope
of oscillations is seen to increase with frequency when the
frequency is increased towards the gap and then decreases
when the frequency is further increased outside the gap. For
large disks, the low-frequency Faraday rotation is closest to
the universal value − arctan α ≈ −7.3 mrad [indicated by the
lower dashed line in Figs. 8(c1) and 8(d1)] as predicted for
extended systems [21] when the substrate thickness a is small,
where α = 1/137 is the fine structure constant. Here the value
θF � − arctan α is consistent with the low-frequency limit

of the dynamic Hall conductivity Re(σxy) � e2/h. For small
radius [Fig. 8(a1)], θF deviates from this universal value due
to finite size effects.

VI. CONCLUSION

In conclusion, we have studied the finite-size effects in
the dynamical conductivities and magneto-optical Faraday
rotation of a quantum anomalous Hall insulator disk. We
find that the continuum massive Dirac model subjected to
the topological infinite mass boundary condition becomes a
Chern insulator with a unit Chern number. In addition, the
overall frequency dependence of both the longitudinal and
Hall conductivities matches those calculated from an infinitely
extended Chern insulator model described by the massive
Dirac Hamiltonian with an additional parabolic term. A flow
diagram plotting the edge state contribution to Re(σxx ) versus
Re(σxy) shows a semicircle in agreement with that expected
for a integer quantum Hall insulator. Our numerical results
further show that the edge-to-edge transitions constitute the
dominant contribution in Re(σxy) for frequencies not only
within but also beyond the bulk band gap. Studies on the
magneto-optical Faraday rotation of a small disk show fluc-
tuational features as a function of frequency. These features
arise due to optical transitions between discrete bulk states
and is present only for frequencies beyond the band gap. The
direct current limit of the Faraday angle shows noticeable
deviations with decreasing disk radius from its theoretical
value arctan α (where α = 1/137) based on extended model.
In the presence of an underlying substrate, we find an interplay
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between the Fabry-Pérot resonances and the finite-size effects
due to the size quantization in the Faraday rotation spectrum.
Our findings highlight the importance of finite-size effects
in optical measurements of dynamic Hall conductivity and
Faraday effect in which the laser spot coverage exceeds the
sample size.

ACKNOWLEDGMENTS

Work at USTC was financially supported by the Na-
tional Key Research and Development Program (Grant No.
2017YFB0405703), the National Natural Science Foundation
of China (Grant No. 11974327), Anhui Initiative in Quantum
Information Technologies, and the Fundamental Research
Funds for the Central Universities. Work at Alabama was sup-
ported by startup funds from the University of Alabama and
the U.S. Department of Energy, Office of Science, Basic En-
ergy Sciences under Early Career Award No. DE-SC0019326.
We are grateful to the supercomputing service of AM-HPC
and the Supercomputing Center of USTC for providing the
high-performance computing resources.

APPENDIX A: INFINITE MASS BOUNDARY CONDITION

For completeness, here we include the derivation for the
infinite mass boundary condition following Ref. [30]. Rather
than vanishing wave function, this boundary condition re-
quires that the normal component of the current at each
point on the boundary vanishes, and for our case this means
eρ · j(R) = 0 along the radial direction. For a general two-
dimensional massive Dirac model defined on a domain D in
the real space,

H = CI + Aσ · (−i∇ ) + Mσz,

we consider the total energy E = ∫
D d2x �†H�, which can

be written as

E =
∫
D

d2x[�†(CI + Mσz )�] − iA
∫
D

d2x

× [∇ · (�†σ�) − ∇�† · σ�]

=
(∫

D
d2x[�†(CI + Mσz )�] − iA

∫
D

d2x[�†σ · ∇�]

)∗

− iA
∮

∂D
dl en · j. (A1)

In the last equality, Gauss’ theorem in two dimensions is used
to rewrite the last term into a line integral. Equation (A1)
implies that E = E∗ − iA

∮
∂D dl en · j, where j = �†σ� is

the current operator. Since E is real, we have en · j = 0. Next
we show how this condition leads to the constraint between
the two components of the wave function � = (�↑, �↓)�:

0 = eρ · j(R) = �†eρ · σ� = �†(σx cos φ + σy sin φ)�

= (�∗
↑ �∗

↓)

(
0 e−iφ

eiφ 0

)(
�↑
�↓

)
= 2Re{�∗

↓�↑eiφ}.

Therefore, on the boundary, the two components of the
wave function satisfy �↓/�↑ = iαeiφ , with α = ±1 for
sgnMin sgnMout = ±1 [30], where Min/out represents the mass

term for the region of interest (the nanodisk) or the region
surrounding it.

APPENDIX B: VANISHING WAVE FUNCTION
BOUNDARY CONDITION

The zigzag boundary condition is used in graphene along a
zigzag edge where one of the pseudospin components is taken
to vanish. In addition to the fact that there is no microscopic
justification for applying the same boundary condition to two-
dimensional quantum anomalous Hall insulators, here we also
show explicitly that in the massive Dirac model with a finite
M such a boundary condition cannot be applied.

If we try to find edge states by setting one component, say
the first one, of the spinor wave function in Eq. (3) to vanish
on the boundary (ρ̃ = 1) just as what was done in Ref. [5],
that means for l �= 0, we have ε = ±M. However, this makes
the second component also vanish, so states with ε = ±M do
not exist.

Then how about the states with ε = 0? To that end, we
need to first set ε = 0 and then solve the Schrödinger equation
which results in a modified Bessel equation as the radial
equation. The wave function takes the form below [up to a
normalization coefficient and κ = M/(h̄v) > 0]:


ln(ρ, φ) ∼ eilφ

(
Il (κρ)

−ieiφIl+1(κρ)

)
. (B1)

For this wave function, neither of the components can
vanish on the boundary with a finite M.

APPENDIX C: DERIVATION OF THE KUBO FORMULA IN
THE REAL-SPACE REPRESENTATION

Here we provide a derivation of the real-space Kubo
formula used in this paper based on density matrix. Let
us start from the Liouville–von Neumann equation ih̄∂tρ =
[H, ρ] and consider a system subjected to a time-dependent
perturbation H = H0 + H ′(t ). In linear response, the density
matrix is expanded to first order ρ = ρ0 + δρ, with δρ satisfy-
ing ih̄∂tδρ = [H0, δρ] + [H ′, ρ0]. Assuming a sinusoidal time
dependence of H ′(t ) ∝ e−iωt , δρ therefore satisfies h̄ωδρ =
[H0, δρ] + [H ′, ρ0]. Solving for the matrix element of δρ

from above and using the relations H0 |m〉 = ε |m〉 , ρ0 |m〉 =
f0(ε) |m〉 gives

〈m′|δρ|m〉 = f0(ε′) − f0(ε)

ε′ − ε − h̄(ω + iη)
〈m′|H ′|m〉 , (C1)

where f0 is the Fermi-Dirac distribution. Using the summation
convention and denoting the elementary charge as e = |e| >

0, the perturbation is H ′ = eAb pb/m = evbEb/(iω). Using
the Heisenberg equation of motion, 〈m′|va|m〉 = 〈m′|ẋa|m〉 =
〈m′|[xa, H]|m〉/(ih̄) ≈ 〈m′|xa|m〉 (ε − ε′)/(ih̄). For a two-
dimensional system of area A, the average paramagnetic
current density is Jp

a = Tr{δρ ja} where ja = (−e)va/A is the
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single-particle current density operator. This gives

Jp
a =

∑
mm′

〈m′|δρ|m〉 〈m| ja|m′〉

= −2π

h̄
G0

∑
mm′

( f ′
0 − f0)�ε2

�ε − h̄(ω + iη)

〈m|xa|m′〉 〈m′|xb|m〉
A Ab,

(C2)

where G0 ≡ e2/h is the conductance quantum and �ε ≡ ε′ −
ε is the energy difference between two transition states. The
paramagnetic current-current correlation function �ab(ω), de-
fined through Jp

a = �ab(ω)Ab, is therefore

�ab(ω) = −2π

h̄
G0

∑
mm′

( f ′
0 − f0)�ε2

�ε − h̄(ω + iη)

〈m|xa|m′〉 〈m′|xb|m〉
A .

(C3)

The conductivity, consisting of both paramagnetic and
diamagnetic contributions [40], can now be obtained as

σab(ω) =�
p
ab(ω) − �

p
ab(0)

iω

=2π i

A G0

∑
mm′

( f ′
0 − f0)�ω

�ω − ω − iη
〈m|xa|m′〉 〈m′|xb|m〉

=2π i

A G0

∑
mm′

( f ′
0 − f0)

(
ω

�ω − ω − iη
+ 1

)

× 〈m|xa|m′〉 〈m′|xb|m〉

=2π i

A G0

∑
mm′

( f ′
0 − f0)ω

�ω − ω − iη
〈m|xa|m′〉 〈m′|xb|m〉

+ 2π i

A G0

∑
mm′

( f ′
0 − f0) 〈m|xa|m′〉 〈m′|xb|m〉 , (C4)

where �ω ≡ (ε′ − ε)/h̄.
The second term vanishes identically because of the com-

mutativity among the components of the coordinate operator,∑
mm′

( f ′
0 − f0) 〈m|xa|m′〉 〈m′|xb|m〉

=
∑

m′
f ′
0 〈m′|xbxa|m′〉 −

∑
m

f0 〈m|xaxb|m〉

=
∑

m

f0 〈m|[xb, xa]|m〉 = 0, (C5)

where in deriving the second line we have used the com-
pleteness of states. Therefore substituting Eq. (C5) back into
Eq. (C4), we obtain the final expression of the conductivity
Eq. (11) in the main text with area A = πR2 for a disk of
radius R,

σ̃ab(ω) = 2i
∑
mm′

( f ′
0 − f0)ω

�ω − ω − iη

〈m|xa|m′〉 〈m′|xb|m〉
R2

. (C6)

APPENDIX D: ANALYTICAL EXPRESSIONS FOR
EDGE-TO-EDGE CONDUCTIVITIES

The following integral that appears in the edge-to-edge
conductivity in Eq. (13):

Jl ′l (b
′, b) =

∫ 1

0
dρ̃ρ̃2Il ′ (b

′ρ̃)Il (bρ̃), (D1)

generally requires numerical calculation. However, when the
Fermi level is located in the middle of the bulk band gap
at ε = 0, it can be evaluated analytically. This requires first
noticing that there is a symmetry in the roots of Eq. (8),
namely, if a state labeled by (−l, ε) is a solution, so is
(l − 1,−ε), because the modified Bessel function satisfies
I−l (x) = Il (x) for integer l . When the Fermi level is at ε = 0,
the only transition allowable by the selection rule Eq. (12)
is between l = 0 and l ′ = −1. Since −εl=0 = εl=−1 ≡ ε0/2,
from the definition of b, one also has b2

l=0 = b2
l=−1 ≡ b2 where

b =
√

M2 − ε2
0/4/(h̄ωR) and ε0/2 is the smallest positive root

that can be obtained formally from Eq. (7)

ε = M
I2
0 (b) − I2

1 (b)

I2
0 (b) + I2

1 (b)
, (D2)

which, when expanded for large R 
 h̄v/M, gives the ap-
proximate analytic expression below Eq. (9). Now Eq. (D1)
becomes

J−1,0(b) = I2
1 (b)

2b
. (D3)

Then the edge-to-edge contribution in Eq. (13) can be
evaluated as

IEE
−1,0 = bh̄ωR∣∣[1 − I2

0 (b)/I2
1 (b)

]
bε0 + (2M + ε0)I0(b)/I1(b)

∣∣ .
(D4)

Consequently, the edge-to-edge conductivity from Eq. (11)
gives

σ EE
i j (ω) = e2

h

2ω

iR2

[
x+−

i x−+
j

ω + ε0 + iη
− (x+−

i x−+
j )∗

ω − ε0 + iη

]
, (D5)

which can be evaluated in a closed form as(
σ EE

xx

σ EE
xy

)
= e2

h
2ω

(
IEE

−1,0

)2

(
−i +i

−1 −1

)( 1
ω+ε0+iη

1
ω−ε0+iη

)
. (D6)

For frequencies far away from the gap ω 
 2M, the real
part of the Hall conductivity quickly saturates to the value
Re(σ EE

xy ) = −4(IEE
−1,0)2

e2/h, as seen in the first row of figures
in Fig. 5. In the large R 
 h̄v/M limit, ε0 is given approxi-
mately by Eq. (9). In the limit of an extended system R → ∞,
ε0 → 0, b → ∞ and I0(b)/I1(b) → 1, giving IEE

−1,0 → 1/2.
Then in this limit one has Re(σ EE

xy ) = −e2/h.
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