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Yulei Han ,1,2,* Sanyi You,2,* and Zhenhua Qiao 2,†

1Department of Physics, Fuzhou University, Fuzhou, Fujian 350108, China
2ICQD, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly Coupled Quantum Matter

Physics, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China

(Received 3 November 2021; revised 24 March 2022; accepted 25 March 2022; published 4 April 2022)

In bilayer graphene, the application of a perpendicular electric field breaks the inversion symmetry to open a
bulk band gap to harbor the quantum valley Hall effect. When the field varies spatially, a topologically confined
mode (also named the zero-line mode) arises along the zero-field line. In this work, we theoretically investigate
the electronic transport properties of the multichannel zero-line systems. The finite-size effect in topological
systems (e.g., quantum Hall effect, topological insulators) often induces a topologically trivial gap to realize
a normal insulator. To our surprise, we find that the coupling between neighboring zero lines can give rise to
striking electronic properties depending on the number of channels m, i.e., a trivial band gap for even m, whereas
a nontrivial gapless mode for odd m. We further show that these findings apply to various ribbon orientations.
A general effective model is constructed to provide a clear physical picture of the emergence of gapless modes.
In the end, a gate-tunable device is proposed to function as a switch with controllable current partitions. We
believe that our findings are experimentally accessible, and have potential practical applications in designing
multifunctional valley-based electronics.
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I. INTRODUCTION

A monolayer honeycomb lattice with linear Dirac dis-
persion is an ideal platform to explore various topological
phases [1], including the quantum anomalous Hall effect [2],
quantum spin Hall effect [3], and quantum valley Hall ef-
fect [4]. When a spatially varying electric field is applied
to bilayer graphene, the broken inversion symmetry opens a
bulk gap, and a one-dimensional (1D) conducting state, also
known as the zero-line mode (ZLM), appears at the inter-
face between regions with different valley topologies [5–29].
Theoretical studies have found that the ZLM is quite robust
against backscattering with a large mean free path (∼100 μm)
[9], and the robustness can be further enhanced by apply-
ing an external magnetic field [10]. A single-channel ZLM
has been experimentally realized in gated bilayer graphene
with line defects [17,18], or by precise gate alignment
[19–21], indicating promising potential applications in low-
energy-consumption electronics. When two ZLMs form an
intersection, it can function as a topological current splitter,
in which the splitting of ZLMs follows counterintuitive parti-
tion laws [22], and can be effectively tuned by gate voltage
or magnetic field [23]. The theoretical findings have been
realized experimentally in gate-controlled bilayer graphene
systems [24]. The crossing of ZLMs can also be utilized to
design Aharonov-Bohm interferometers with valley-polarized
electronic states [27] or unique oscillation behavior [28], and
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to realize topological corner states formed by two different
types of ZLMs [29].

Multichannel ZLMs, as demonstrated in Fig. 1, are made
up of multiple parallel 1D conducting states. This device
architecture can be realized in a 1D graphene/hBN moiré pat-
tern or graphene/hBN heteronanotubes [30–32], and also in
bilayer graphene systems with line defects [33,34] or periodic
gate alignment [35,36]. The spatial separation of multichan-
nel ZLMs enables it to realize more intricate functions than
single-channel ZLMs, such as the topological solenoid [31].
Due to exponential spatial decay of wave functions, multi-
channel ZLMs can be viewed as the sum over single-channel
ZLMs if the distance between neighboring 1D conducting
channels d is large enough. However, if d is short, the cou-
pling between adjacent 1D conducting channels can lead to
some intriguing physics, e.g., the formation of a band gap in
the integer quantum Hall regime [37] or topological insulators
[38], and the formation of the second-order topological super-
conducting phase in the presence of in-plane magnetic field
and weakly coupled superconductivity [35].

Besides the gap state induced by interchannel coupling, in
this work, we demonstrate that a robust gapless mode can be
realized in multichannel ZLMs. We systematically investigate
the influence of the number of channels m, the orientation
of edges, and disorder effects on the electronic properties of
multichannel ZLMs. We find that the interchannel coupling of
ZLMs leads to a global band gap when m is even, whereas
the system exists in a gapless mode when m is odd, and the
parity of m has a significant influence on the wave function
distribution. By varying the orientation of nanoribbon edges,
we find that the appearance of a gapless mode for odd m
is independent of the type of edges except for the armchair
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FIG. 1. Schematic plot of a three-channel (m = 3) device in
monolayer graphene. The device is periodic (open) along x (y) direc-
tion. The λkUk (k = 1, 2, 3, 4) is labeled in each subregion along y
direction, where λk (Uk) denotes the sign (strength) of staggered sub-
lattice potential. d measures the distance of adjacent zero-line modes.
The yellow and green arrows represent the movement direction of
electrons in valleys K and K ′, respectively.

edge, where a finite band gap opens up due to strong inter-
valley scattering. And the gapless mode for odd m is quite
robust against strong short-range and long-range disorders.
Based on the tight-binding results, we construct an effective
model to clarify the role of interchannel coupling on electronic
properties. We then propose a gate-tunable device that can be
used as a switch with controllable current partitions. Based on
the recent experimental advances on fabricating multichannel
electronic devices either by manipulating line defects [34] or
by artificial periodic gates in bilayer graphene systems [36],
we believe that these findings can be realized in such systems
and directly extended to classical wave graphene systems
[39–43].

II. METHODS AND SYSTEMS

Hereafter, we use “m” to denote the number of channels.
Figure 1 displays the schematic plot of a three-channel device
(m = 3) in a monolayer honeycomb lattice with staggered
sublattice potential denoted by blue or red color. The multi-
channel 1D conducting states propagate along the x direction,
with a separation distance of d in the y direction. In each
subregion, the presence of a staggered sublattice potential
breaks the inversion symmetry and opens a bulk band gap,
which is equivalent to the effect of vertical electric fields
applied in Bernal-stacked bilayer graphene [4,9,22,23]. The
corresponding tight-binding Hamiltonian of the multichannel
system can be written as [22]

H = −t
∑
〈i j〉

c†
i c j + λkUk

(∑
i∈A

c†
i ci −

∑
i∈B

c†
i ci

)
, (1)

where c†
i (ci) is the creation (annihilation) operator on site i,

t is the hopping energy between the nearest-neighbor sites,
Uk measures the strength of staggered sublattice potential in
the kth subregion, and λk = (−1)k−1 denotes the sign of the
valley Hall effect in the kth subregion (k = 1, 2, . . . , m + 1).
The

∑
i∈A/B in the second term represents the sum over the A

or B sublattice of monolayer graphene. The ZLMs are located
at the lines where λk changes sign as displayed in Fig. 1. For
simplicity, we set Uk = U = 0.05t unless otherwise specified,
and the corresponding band gap of the system is ε = 2U .

III. THE BAND STRUCTURES OF THE MULTICHANNEL
ZLMs FOR DIFFERENT m

We first analyze the 1D band structures of the multichannel
devices for different m with zigzag edges. In the presence
of time-reversal symmetry, a pair of chiral states originating
from valleys K and K ′ exist in each channel. Therefore, we
focus on the low-energy regions around valley K, where only
ZLMs are visible (see Appendix A for the full band structures
of the multichannel ZLMs).

Figure 2 displays the low-energy band structures and the
corresponding wave functions of the multichannel devices for
different m around valley K . We can find distinct features de-
pending on the parity of m, i.e., a finite band gap for even m, or
a gapless mode for odd m. These intriguing features arise from
the coupling between adjacent channels. The sign of valley
Hall topologies λk in a multichannel device can be denoted
as “+ − + − . . .”, indicating that two adjacent channels have
opposite chirality; i.e., the electronic group velocity is positive
for one channel and negative for the other channel at the same
valley (see Fig. 1). This characteristic is explicitly displayed
in Figs. 2(a1) and 2(a2) for the two-channel device (m = 2).
One can find that the states labeled as “A” and “B” have
opposite velocities, and their wave functions are well sepa-
rated along the adjacent channels with a small overlap. For the
four-channel system, as displayed in Figs. 2(c1) and 2(c2), the
modes “A” and “B” have the same chirality and are primarily
distributed in the second and fourth channels. Similarly, the
modes “C” and “D” are mainly distributed in the first and third
channels. We can also observe that a small part of the “B” state
is distributed in the first and third channels, indicating that the
closer to the valley K , the stronger the interchannel coupling.
The systems with even number of channels demonstrate finite
interchannel coupling induced gaps, which can be labeled as
�i (see Fig. 5).

When m = 3, as displayed in Figs. 2(b1) and 2(b2), we
can define three types of ZLMs (labeled as “A”, “B”, and
“C”). The “A” state primarily located at the second chan-
nel has a negative group velocity, whereas the “B” and “C”
states located at the first and third channels have positive
group velocities. It is noteworthy that around the charge neu-
trality point of E/t = 0, the wave function of the gapless
mode “C” is averagely distributed in the two channels with
the same chirality, indicating a coherent electronic state in
these channels. This characteristic can also be observed in the
case of m = 5 [see Figs. 2(d1) and 2(d2)], where the wave
function of the gapless mode labeled as “E” is averagely
distributed in the three channels with the same chirality, i.e.,
the first, third, and fifth channels. As shown in Fig. 2(d2),
we can also find that the modes denoted as “A” and “B” are
mainly distributed in the second and fourth channels with the
same chirality, whereas the modes “C” and “D” are mainly
distributed in the remaining channels. It is worth noting that
the wave function distribution of the gapless mode is k-
independent, whereas the wave function distributions of the
other modes are k-dependent.

The interchannel coupling, determined by the overlap of
wave functions between adjacent channels, is crucial to the
fascinating states in low-energy regions, i.e., a gap for even
m and a gapless mode for odd m. The coupling strength is
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FIG. 2. (a1)–(d1): The one-dimensional zero-line modes in low-energy region around valley K , and (a2)–(d2): the corresponding wave
functions along y direction of the multichannel device for different m. (a1), (a2): For m = 2; (b1), (b2): for m = 3; (c1), (c2): for m = 4; (d1),
(d2): for m = 5. The horizontal black dashed lines in (a1)–(d1) represent E/t = 0.0025. The vertical black dashed lines in (a2)–(d2) represent
the position of channels. The gapless mode is labeled as “C” in (b1) and (b2), and is labeled as “E” in (d1) and (d2). The distance of the adjacent
channels is d = 16.90 nm.

proportional to e−Ud [23,47]. We then quantitatively study the
dependence of coupling strength on system parameters, i.e., d
and m. As d increases, the interchannel coupling induced gaps
�i/t exponentially decay, indicating that the coupling of wave
functions is negligible when d > 30 nm with a vanishingly
small �i/t in the magnitude of 10−5 (see Appendix B).

IV. THE INFLUENCE OF EDGE ORIENTATIONS
AND DISORDERS

The edge orientations and disorders are two crucial aspects
for the experimental realization of multichannel systems. The
presence of ZLMs in valleys K and K ′ is protected by the large
momentum separation. When the edge orientation gradually
deviates from the zigzag type, we find that the neighboring
valleys K and K ′ gradually move toward each other in an
attractive manner, accompanied by a cross of ZLMs. When
the edge evolves into armchair type, the complete mixing of
the two valleys induces a strong intervalley scattering, leading
to a small avoided crossing gap around the charge neutrality
point (see Appendix C). Therefore, the arbitrariness of the
edge orientations does not affect the electronic properties of
multichannel ZLMs except for the armchair edge.

To study the influence of disorders on electronic trans-
port properties, we consider short-range Anderson disorder
and long-range disorder. The Anderson disorder is included

as Hd = ∑
i wic

†
i ci, where wi is uniformly distributed in

the range of [−W/2, W/2] with W measuring the dis-
order strength. The long-range disorder is added to the
Hamiltonian (1) by including the on-site potential Vi =∑Nimp

j=1 w j exp(−|r j − ri|2/2ξ 2) [9], where ri denotes a lat-
tice site, Nimp represents the number of random Gaussian
disorder with a width of ξ = 5a (a = 1.42 Å), and w j is
uniformly distributed in the range of [−W/2, W/2] with W
measuring the disorder strength. This type of disorder can
mimic the effect of charged impurities from substrate inho-
mogeneities [44]. In our calculations, a dense concentration
(1%) of long-range disorder is adopted. The two-terminal con-
ductance can be evaluated by the Landauer-Büttiker formula
[45], G = (e2/h)Tr(�LGr�RGa), where Gr,a are the retarded
and advanced Green’s functions of the central disordered re-
gion, and �L/R = i(

∑r
L/R −∑a

L/R) are the linewidth functions

coupling left/right terminals to the central region.
∑r/a is the

retarded/advanced self-energy of the semi-infinite lead that
can be obtained by using the variant transfer matrix method
[46].

Figure 3 demonstrates the averaged conductance as a
function of device length along the x direction for different
disorder strengths. To explore the robustness of the gap-
less mode, the Fermi level is set to the charge neutrality
point (E/t = 0.0). In the presence of Anderson disorder, the
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FIG. 3. Averaged conductance as a function of device length for
different disorder strengths. (a) and (b): For short-range disorder with
strength of W/t = 0.02, 0.2, 0.4, 0.6. (c) and (d): For long-range
disorder with strength of W/t = 0.02, 0.2, 0.4. The Fermi level is set
to the charge neutrality point. The distance of the adjacent zero-line
modes with zigzag edge is d = 16.9 nm. Each point is collected by
80 samples for short-range disorder and by 160 samples for long-
range disorder.

averaged conductance for the three-channel device respec-
tively reaches about 0.95 e2/h, 0.79 e2/h, and 0.56 e2/h,
whereas the averaged conductance for the five-channel de-
vice respectively approaches about 0.95 e2/h, 0.85 e2/h, and
0.64 e2/h when W/t = 0.2, 0.4, and 0.6 at the device length
of 500 nm [see Figs. 3(a) and 3(b)]. It is also worth noting
that the disorder strength of W/t = 0.6 is much larger than the
bulk band gap of ε/t = 0.1, meaning that the gapless mode is
much more robust against Anderson disorder. In the presence
of long-range disorder as shown in Figs. 3(c) and 3(d), the av-
eraged conductance for the three-channel device respectively
reaches about 0.97 e2/h and 0.50 e2/h when W/t = 0.2 and
0.4 at the device length of 500 nm, while the averaged con-
ductance for the five-channel device respectively approaches
about 0.99 e2/h and 0.46 e2/h. Because the disorder strength
of W/t = 0.2 is still double that of the bulk band gap, the
gapless mode is robust against long-range disorder. Therefore,
the robustness of the multichannel ZLMs against edge orien-

tations and disorders indicates that experimental realization of
the multichannel devices is highly feasible.

V. EFFECTIVE MODEL OF THE MULTICHANNEL ZLMs

To better understand the numerical results based on the
tight-binding model, we construct an effective model of the
multichannel ZLMs. Based on the basis of each ZLM, the
general Hamiltonian can be written as a tridiagonal matrix
[47]:

H (k) =

⎛
⎜⎜⎜⎜⎜⎝

τ h̄vFk �12 0 0
�21 −τ h̄vFk �23 0 .. ..

0 �32 τ h̄vFk �34 .. ..

0 0 �43 −τ h̄vFk
: :
: :

⎞
⎟⎟⎟⎟⎟⎠

m×m

, (2)

where the diagonal elements ±τ h̄vFk describe the kinetic
energy of each ZLM with valley index τ = ±1. The subdi-
agonal term �i j denotes the coupling between adjacent ith
and jth ZLMs, and satisfies the following conditions: �i j =
� ji, �i j ∝ e−Ui j di j , where Ui j and di j denote the strength
of staggered sublattice potential and interchannel distance
between ith and jth ZLMs, respectively. Analytically, it is
difficult to directly diagonalize the matrix when m > 3. How-
ever, without solving the eigenequation, a rigorous proof of
the existence of the 1D gapless mode in an odd number of
zero-line systems can be derived. The general eigenequation
|H − EI| = 0 can be written as∣∣∣∣∣∣∣∣∣∣∣

τ h̄vFk − E �12 0 0
�21 −τ h̄vFk − E �23 0 ..

0 �32 τ h̄vFk − E �34 ..

0 0 �43 −τ h̄vFk − E
: :
: :

∣∣∣∣∣∣∣∣∣∣∣
m×m

= 0. (3)

After expanding the first row, we expand the algebraic
cofactor of �12 according to the first column, then the de-
terminant is reduced to (m − 2) dimensions, and we get
(τ h̄vFk − E )A1 + �12(−1)1+2�21B1 = 0, where A1 is the
algebraic cofactor of (τ h̄vFk − E ) and is not important
in our analysis. Iteratively, B1 = (−1)1+1[(τ h̄vFk − E )A2 +
�34(−1)1+2�43B2]. Repeating the process above, when m is
even, we have

Bm/2−1 = (−1)1+1

∣∣∣∣τ h̄vFk − E �(m−1)(m)

�(m)(m−1) −τ h̄vFk − E

∣∣∣∣ = Ce, (4)

where Ce = (τ h̄vFk − E )(−τ h̄vFk − E ) − �2
(m−1)(m). When

m is odd, we get

B(m−1)/2−1 = (−1)1+1

∣∣∣∣∣∣
τ h̄vFk − E �(m−2)(m−1) 0
�(m−1)(m−2) −τ h̄vFk − E �(m−1)(m)

0 �(m)(m−1) τ h̄vFk − E

∣∣∣∣∣∣ = (τ h̄vFk − E )Co, (5)

where Co = [(τ h̄vFk − E )(−τ h̄vFk − E ) − �2
(m−1)(m) −

�2
(m−2)(m−1)]. It is easy to find that when m is odd, the

characteristic polynomial of H (k) has a common factor
(τ h̄vFk − E ) i.e., |H − EI| = (τ h̄vFk − E )[A1 + D] = 0;
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FIG. 4. (a)–(d): Local density of states of the lateral junctions
with different valley Hall topologies for m = 3 and E = 0. The
signs of λk are shown in each subregion. (e)–(i): Schematic plot of
low-energy band structures of the three-channel ZLMs with different
valley Hall topologies around valley K. The corresponding configu-
rations are listed in Table I.

then the gapless mode E = τ h̄vFk is obtained. Obviously,
when m is even, the absence of such common factor indicates
a qualitative difference induced by the parity of m. To clearly
show the influence of parity of m, we provide two analytical
examples for m = 2 and m = 3 in Appendix D.

VI. GATE-TUNABLE CURRENT PARTITION AND SWITCH

Based on the unique electronic properties of the multichan-
nel ZLMs, we propose a gate-tunable lateral junction that can
function as a switch with controllable current partitions. For
the sake of clarity, we fix the number of channels to be m = 3,
since the results for larger m can be deduced from the simplest
case. The signs of λk on the left side of the lateral junction
are fixed to the configuration of “+ − +−” (from bottom to
top), whereas those on the right side can be arbitrarily tuned,
yielding 24 different configurations. Only four of the sixteen
configurations allow the electrons to transmit with a quantized
conductance of e2/h, as displayed in Figs. 4(a)–4(d), whereas
the remaining twelve configurations are insulating. One can
find that the current partition can be tuned by changing the
sign of λk; e.g., when the right side of the junction has the
same configuration as the left side [see Fig. 4(a)], the electron
flows through both the upper and lower channels with equal
amplitude; when reversing the signs of λk on the right side
to “+ + −−” [see Fig. 4(b)], the electrons injecting from the
two side channels transmit to the central channel; when the
sign of λk is changed to “+ + +− (+ − −−)”, as displayed
in Fig. 4(c) [Fig. 4(d)], the electron flows through the upper

TABLE I. The configurations of the three-channel devices for
each type of band category as shown in Figs. 4(e)–4(i). The signs
of λk are used to denote the configurations.

Category Configurations

(e) + − +−
(f) + + +−, + + −−, + − −−
(g) − + ++, − − ++, − − −+
(h) + + −+, + − ++, + − −+, − + +−,

− + −−, − − +−, + + ++,a − − −−a

(i) − + −+
aThese configurations are fully gapped without the presence of ZLM.

(lower) channel due to the coherence of the two channels with
the same chirality.

The intriguing transport properties can be clearly explained
by the 1D band structures. For the sixteen configurations, the
1D band structures can be classified into five categories, as
shown in Figs. 4(e)–4(i). And the corresponding configura-
tions for each category are listed in Table I. When the sign of
λk alternately changes to form the “+ − +−” configuration,
the band structure has a gapless mode as discussed before [see
Fig. 4(e)], where the electrons are distributed averagely in the
two channels with positive chirality as shown in Fig. 4(a).
When λk is properly tuned to form a single-channel ZLM with
positive chirality, as displayed on the right side of Figs. 4(b)–
4(d), the band structure can be described as Fig. 4(f), and
thus electron can fully transmit through the system since the
chirality is the same for both sides of the junction. Besides
the above two conducting cases with four configurations,
the two-terminal conductances of junctions with other valley
Hall topologies vanish because of the absence of allowed
channels for the electron to transmit. The remaining twelve
configurations as listed in Table I form three types of band
structures, as displayed in Figs. 4(g)–4(i), i.e., single-channel
ZLM with negative chirality [Fig. 4(g)], two-channel ZLMs
with a band gap [Fig. 4(h)], and three-channel ZLMs with
negative chirality [Fig. 4(i)]. Therefore, by tuning the signs
of λk in each subregion, we can realize the valley current
switch with controllable current partitions. Because the topo-
logical origin of ZLMs in monolayer graphene is the same as
that in bilayer graphene, introducing staggered sublattice po-
tential in monolayer graphene is equivalent to applying gate
voltage in bilayer graphene. Therefore, the same valley cur-
rent switch can be feasibly realized in bilayer graphene by
applying external gates.

VII. SUMMARY

We theoretically explore the electronic properties of multi-
channel ZLMs. Due to the finite-size effect, the interchannel
coupling can induce a gapless mode for odd m, whereas in-
duce a global band gap for even m, and the parity of m has
a significant influence on the wave function distributions. We
find that the gapless mode for odd m can be preserved when
varying the edge orientations except for the armchair edge,
and it is quite robust against both short-range and long-range
disorders, indicating that the multichannel devices are feasible
to be experimentally realized. By constructing an effective
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model, we clearly demonstrate the crucial role of interchannel
coupling. Finally, based on the intriguing gapless modes, we
propose a promising device that can be utilized to realize gate-
tunable electric switch with controllable current partitions.
Considering the recent advances in experimental methodolo-
gies, we believe that these findings can be realized not only in
electronic systems but also in other wavelike systems.
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APPENDIX A: FULL BAND STRUCTURES OF THE
MULTICHANNEL ZLMs

Figure 5 displays the full band structures of the multichan-
nel devices with different m. If the gapless mode is ignored,
the interchannel coupling induced gaps between conduction
and valence bands can be denoted as �i (i = 1, 2, . . .) based
on the distance from the charge neutrality point (see inset of
Fig. 5). The existence of finite gaps �i indicates that the ZLMs
can be selectively activated by tuning the Fermi energy, thus
influencing electronic transport properties.

FIG. 5. Full band structures of the multichannel devices with
different m. (a) m = 2, (b) m = 3, (c) m = 4, and (d) m = 5. The
inset displays the zoom-in low-energy bands around K point. Zero-
line modes are demonstrated in blue lines. According to the distance
from E/t = 0.0, the interchannel coupling induced gaps are labeled
as �i (i = 1, 2, . . .). The distance of the adjacent zero-line modes is
d = 16.90 nm and the zigzag termination is adopted.

FIG. 6. (a), (b): The interchannel coupling induced gaps �i/t as
a function of the distance d for (a) even m and (b) odd m, respectively.
(c) The �i/t as a function of m for d = 1.99 nm.

APPENDIX B: THE INFLUENCE OF SYSTEM SIZE
ON THE INTERCHANNEL COUPLING

Figures 6(a) and 6(b) display the interchannel coupling
induced gaps �i/t as a function of the distance d for even
and odd m, respectively. As d increases, �i/t exponentially
decays, indicating that the coupling of wave functions is neg-
ligible when d > 30 nm with a vanishingly small �/t in the
magnitude of 10−5. At a fixed small d , we can find that �i

decreases with the increase of m. To clearly show this trend,
we calculate the dependence of �i/t on m at a small d , as
displayed in Fig. 6(c). One can find that �i gradually decays
with the increase of m. When m = 100, �1/t is still larger
than 10−3, and the energy difference among �i is visible,
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FIG. 7. Band structures of the multichannel devices for (a1)–(a4)
m = 4 and (b1)–(b4) m = 5 with different edge orientations. Zero-
line modes are highlighted in blue. From top to bottom rows, the edge
orientations are (p, q) = (3, 2), (5,4), (7,6), and (1,1), respectively,
showing a variation from zigzag to armchair edges. The distance of
the adjacent zero-line modes is d = 16.90 nm.

indicating that the above discussed selective channels of
ZLMs can still be tuned by Fermi energy.

APPENDIX C: THE INFLUENCE OF EDGE
ORIENTATIONS

Based on the unit vectors of graphene, i.e., a1 = (1, 0)a0,
a2 = (1/2,

√
3/2)a0, where a0 = 2.46 Å is the lattice con-

stant, one can tailor arbitrary edges of the nanoribbon with the
vector of r = pa1 + qa2; e.g., (p, q) = (1, 0) corresponds to
a zigzag edge whereas (p, q) = (1, 1) represents an armchair
edge.

Figure 7 displays the band structures of the multichannel
device for four types of graphene nanoribbons varying from
zigzag to armchair edges, where the edge orientations are
(p, q) = (3, 2), (5,4), (7,6), and (1,1), respectively. One can
find that the bulk band gaps remain unchanged during the
deformation of edges with a value of 2U = 0.1t . The multi-
channel ZLMs highlighted in blue appear for the four types
of nanoribbons inside the bulk band gaps. When the edge
termination deviates from the zigzag type, as illustrated in
the first three rows of Fig. 7, the neighboring valleys K and
K ′ gradually move toward each other in an attractive manner,
accompanied by a cross of ZLMs. When the edge evolves

FIG. 8. Zoom-in band structures of Fig. 7 near the charge neu-
trality point for (a1)–(a4) m = 4 and (b1)–(b4) m = 5. The edge
orientations are (p, q) = (3, 2), (5,4), (7,6), and (1,1), respectively.
The light yellow region represents the interchannel coupling induced
gap �1.

into armchair type, as displayed in Figs. 7(a4) and 7(b4), the
valleys K and K ′ exactly overlap and a finite gap opens up due
to strong intervalley scattering.

Figure 8 shows the zoom-in band of Fig. 7 around the
charge neutrality point. For even m, as shown in Figs. 8(a1)–
8(a3), the interchannel coupling induced gaps always exist,
and the gaps �1 remain unchanged during the variation of
edge orientations, whereas the gap increases for armchair edge
as shown in Fig. 8(a4) due to the coexistence of interchannel
coupling and strong intervalley scattering. For odd m, as dis-
played in Figs. 8(b1)–8(b3), the gapless modes always survive
and the gaps �1 remain fixed when the edges are not armchair
type. Therefore, the arbitrariness of edge orientations does
not affect the electronic properties of multichannel ZLMs
except for the armchair edge, indicating the high feasibility
of experimental realization of the multichannel devices.

APPENDIX D: TWO ANALYTICAL EXAMPLES OF THE
EFFECTIVE MODEL

We consider the case of m = 2 and m = 3. For m = 2, the
effective Hamiltonian can be written as

H (k)m=2 =
(

τ h̄vFk �12

�21 −τ h̄vFk

)
. (D1)

It is easy to find the eigenvalues of E = ±
√

(h̄vFk)2 + �2
12

and eigenstates of �± = [(E ± τ h̄vFk)/�12, 1]′eikx. We can
find the interchannel coupling induced gap of 2�12.

For m = 3, the effective model can be described as

H (k)m=3 =
⎛
⎝τ h̄vFk �12 0

�21 −τ h̄vFk �23

0 �32 τ h̄vFk

⎞
⎠. (D2)

The eigenvalues are E1 = τ h̄vFk, E2± =
±

√
(h̄vFk)2 + �2

12 + �2
23, and the corresponding eigenstates

are �1 = [−�23/�12, 0, 1]′eikx, �2± = [�12/�23, (±E −
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τ h̄vFk)/�23, 1]′eikx. A gapless mode E1 exists and the
corresponding k-independent wave function �1 is only
distributed at the first and third channels with the same

chirality. We can also find that the amplitude of the gapless
ZLM in the two channels can be tuned by the ratio of coupling
of adjacent ZLMs.
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