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Electronic states dressed by an out-of-plane supermodulation in the quasi-two-dimensional
kagome superconductor CsV3Sb5
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CsV3Sb5 has attracted much recent attention as the first quasi-two-dimensional (2D) kagome superconductor.
While the kagome layers are 2D in nature, increasing evidence has pointed to the importance of out-of-plane
correlation in this material. However, it remains unclear whether such correlation can change the fundamen-
tal electronic structure of the quasi-2D system. Here, we reveal this missing piece of information, using
angle-resolved photoemission spectroscopy, complemented by scanning tunneling microscope measurements.
The three-dimensional electronic structures in the high-temperature state are revealed, which agree well with
density-functional theory calculations. Electron energy bands are observed in the low-temperature state that
exhibit additional periodicities along the out-of-plane momentum. These results reveal a direct response to the
out-of-plane electronic supermodulation in the single-particle spectral function of CsV3Sb5, thus establishing an
electronic platform to examine emergent phenomena beyond 2D limit in kagome superconductors.

DOI: 10.1103/PhysRevB.105.L241111

The physical properties of layered materials are primarily
2D, but some rare phenomena may appear when the ap-
propriate out-of-plane correlation is turned on, which could
interact with both bulk and surface states of the material.
Recently, a layered kagome material, CsV3Sb5, has attracted
much attention as the first member of a new class of AV3Sb5

(A = K, Rb, Cs) kagome superconductors [1–44]. As shown
in Fig. 1(a), CsV3Sb5 has a typical layered crystal structure
[Fig. 1(a)]. The V sublattice forms a perfect kagome net
[Fig. 1(b), which is interwoven with a hexagonal net of Sb
atoms in the same plane [Fig. 1(a)]. This V3Sb layer is then
bounded above and below by Sb honeycomb lattices and Cs
hexagonal lattices. While topologically nontrivial states and
electron correlation effects are naturally expected from the
2D kagome layers, the existence of 3D charge-density wave
(CDW) orders (TCDW = 94 K) [4–7], a bulk superconduct-
ing state (Tc = 2.5 K) [9], and interlayer-interaction-driven
broken symmetries [2,3,10,11], points to the importance of
out-of-plane correlation in this material system.
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In this paper, we report systematic studies on the evolution
of the 3D electronic structure in CsV3Sb5 (see Supple-
mental Material for experimental details [45]; see also
Refs. [8,9,46–48] therein). The 3D electron energy bands in
the high-temperature state have been measured, which are
consistent with the density-functional theory (DFT) calcu-
lations. However, bands are revealed at a low temperature,
which exhibit additional periodicities along the out-of-plane
momentum (KZ ) beyond that of the crystal lattice. These
results demonstrate the importance of the out-of-plane elec-
tronic supermodulation in CsV3Sb5, which directly changes
the single-particle spectral function of the material. Possible
origins of the corresponding out-of-plane electronic super-
modulation are discussed.

We first examine the 3D electronic structure of CsV3Sb5

in the high-temperature normal state without any electronic
orders. The 3D Brillouin zone (BZ) and the projected in-plane
BZ of CsV3Sb5 are presented in Fig. 1(c). For clarity, we
use �(A), K(H), and M(L) to mark the specific momentum
points in the 3D BZ, and use �̄, K̄ and M̄ to denote the
momentum region only defined by the in-plane momentum,
hereafter. DFT calculations along the high-symmetry direc-
tions in the 3D Brillouin zone are shown in Fig. 1(d). The
most prominent features along the out-of-plane direction are
seen in the band structure near � and A points. The electron-
like band around � (marked in red) is much shallower than
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FIG. 1. Calculated 3D electronic structure of CsV3Sb5 in the
high-temperature normal state. (a) Crystal structure of CsV3Sb5. (b)
The kagome lattice formed by vanadium atoms. (c) Schematic of the
3D BZ and the projected in-plane BZ. (d) DFT band structure along
the high-symmetry directions in the 3D BZ. The red (blue) dashed
line marks the α(α′) band around � (A) point.

that around A (marked in blue). As such, the band bottom
at � is closer to the Fermi level (EF ), comparing to that
at A point. For simplicity, we label these two bands as α

and α′ hereafter [Fig. 1(d)]. Angle-resolved photoemission
spectroscopy (ARPES) measurements have been carried out
at 200 K (T � TCDW) with different photon energies (Fig. 2).
The electron-like band at the zone center shows a clear photon
energy dependence [Figs. 2(a)–2(c)]. While a moderate broad-
ening of the band is seen at selected photon energies, which
has been suggested as either KZ broadening [12] or quantum
well states on the surface [13], an overall periodic evolution
of the band as a function of the out-of-plane momentum can
be unambiguously identified [Figs. 2(c)–2(d)]. As shown in
Figs. 2(a)–2(c), the bottom of the electron-like band reaches
a minimum binding energy (absolute value of E -EF ) at � and
a maximum binding energy at A, which is consistent with
that of the α and α′ bands in the DFT calculations. We note
that the absolute energies for the band bottom are slightly
different between the experiments and the calculations. This
could be related to the surface potential which is not included
in the DFT calculations, or due to some small uncertainties
on the lattice parameters used in the calculations. Neverthe-
less, an overall agreement is achieved between the measured
and calculated 3D electronic structure in the high-temperature
normal state of CsV3Sb5.

Next, we study the electronic structure of CsV3Sb5 in the
low-temperature state. ARPES measurement at 25 K across
the � point reveals a double-band feature [Fig. 3(a)], which
is different from the single electron-like band around � in the

high-temperature state [Fig. 3(c)]. A careful examination of
the low-temperature momentum distribution curves (MDCs)
confirms the appearance of an electron-like band [marked by
the blue triangles in Fig. 3(b)] in addition to the original α

band (marked by the red triangles in Figs. 3(b) and 3(d); also
see Supplemental Fig. S1 [45]). This is also clearly seen in en-
ergy distribution curves (EDCs) [Fig. 3(e)]. Comparing to the
α band, this other band is weaker in photoemission intensity,
but much deeper in energy [Figs. 3(a) and 3(e)]. Its bandwidth
and overall dispersion are similar to the α′ band around the
A point in the high-temperature state. However, this well-
separated double-band feature disappears along a momentum
cut near the middle point between � and A in the BZ (cut 2 in
Fig. 3(i)]. As shown in Fig. 3(f), hints of two bands may still
be discernible along this cut, but these two electron-like bands
are nearly degenerate in energy. Moreover, the bottom of the
degenerate bands is now between that of α and α′ bands in
the high-temperature state [Figs. 3(e) and 3(f)]. Surprisingly,
the double-band feature appears again along a momentum cut
near the A point [Fig. 3(g); cut 3 in Fig. 3(i)]. The over-
all dispersion and bottoms of the two bands are similar to
those observed near �, mimicking the α and α bands in the
high-temperature states. But, the relative intensity of the two
bands is swapped, and the low-energy band (α band) becomes
much weaker. Then, the double-band feature changes into
degenerate bands again, when the momentum cut is further
moved up to a location near the middle point between A and
� in the next BZ [Fig. 3(h); cut 4 in Fig. 3(i)]. These results
indicate another periodicity of BZ/2 along the out-of-plane
direction. This periodicity of the double-band feature as well
as the swapped intensity between the two bands are more
clearly visualized by the systematic photon-energy dependent
(Kz-dependent) measurements of the EDC at Kx = 0 [across
the band bottom; Fig. 3(j)].

After revealing the low-temperature band reconstruction
(also see Supplemental Fig. S2 [45]), we move to discuss
the possible origin. First, the coexistence of two bands at
low temperature seems to suggest a band splitting, which
has been reported in magnetic material systems [49] and
materials with surface quantum-well states [13,50]. How-
ever, CsV3Sb5 does not exhibit any resolvable magnetic order
[9], and 2D band splitting cannot give rise to the out-of-
plane momentum-dependent band reconstruction observed
in the low-temperature measurements. Electron-phonon cou-
pling can also give rise to a replica band at a deeper energy
[51]. But, the energy separation between the two bands at � is
∼300 meV, which is much higher than the phonon energies
in CsV3Sb5. A band folding along the out-of-plane direction
may work better to explain the experimental observations. If
we consider an electronic supermodulation with an out-of-
plane wave vector connecting � and A [Q1 in Fig. 4(b)], then
the unit cell is doubled, and the �MK plane in the BZ will be
folded to the ALH plane. As such, the α band along M-�-M
will be folded to the L-A-L direction, and the α′ band along
L-A-L will also be folded to the M-�-M direction, giving
rise to the double-band feature observed at both � and A in
the experiment [Fig. 4(a)]. When the momentum cut is close
to the middle point between � and A in the BZ, the folded
band has almost the same KZ as that of the original band.
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FIG. 2. The measured 3D electronic structure of CsV3Sb5 in the high-temperature normal state (T = 200 K). (a), (b) Photoelectron
intensity plots along M-�-M (a) and L-A-L (b), measured with 134- and 150-eV photons, respectively. (c) The electron-like band as a function
of photon energies. The red diamonds mark the evolution of the band bottom. The pink dashed line is a guide to the eye. (d) The energy of
the band bottom as a function of photon energies, extracted from (c). The error bars are from the uncertainties in the determination of the
band-bottom position. The measurements have been carried out with circularly polarized light.

Thus, two nearly degenerate bands are observed. This scenario
also explains the swapped intensity between the two bands
as a function of Kz at �̄ [Fig. 3(j)] because photoemission
intensity of a folded band (FB) is in general weaker than
that of the original main band (MB), and the main band
changes from α band at � to α′ band at A in the measure-
ments [Fig. 3(j)]. Since the out-of-plane band folding has
well explained the low-temperature electronic structure at �̄, it
would be interesting to check whether the band folding is also
at work near the M̄ region. We note that a low-temperature
double-band feature is indeed discernible at M, although it
is relatively weak (see Supplemental Fig. S3 [45]; see, also,
Ref. [52] therein). Nevertheless, the band reconstruction at M̄
is more complicated than that at �̄, because the in-plane CDW
order (2×2) has been reported to show a significant effect
on the band structure near M̄ beyond a direct band folding
[27,41].

The last issue to discuss is the origin of the electronic su-
permodulation that accounts for the out-of-plane band folding.
STM measurements and real-space resolved photoemission
experiments have been carried out. Our STM results reveal

two types of surface regions on the cleaved sample: one is
mainly terminated with Cs atoms [Cs-rich region, Fig. 4(d)],
and the other is primarily covered with Sb atoms [Cs-deficient
region, Fig. 4(e)]. The real-space resolved photoemission
measurements demonstrate that the low-temperature out-of-
plane band reconstruction mainly takes place on the Cs-rich
region, evidenced by the strong Cs peak in the core-level mea-
surements [Fig. 4(c)]. On the contrary, the band reconstruction
becomes less clear on the Cs-deficient region (Supplemental
Fig. S4 [45]). These results seem to suggest that the band
reconstruction is related to the Cs atoms on the surface. Then,
the first candidates to consider about are the surface states of
the Cs atoms and the surface reconstructions associated with
Cs atoms. However, both surface states and surface recon-
structions are 2D, which cannot give rise to the out-of-plane
electronic supermodulation (see Supplemental Figs. S5 and
S6 [45]; see, also, Refs. [54,55] therein). Another potential
candidate is the 3D CDW reported in CsV3Sb5 [4–7,29],
which can provide the out-of-plane scattering channel below
the CDW transition temperature. This seems to be consis-
tent with the band folding at low temperature (Supplemental
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FIG. 3. Low-temperature band reconstruction near �̄. (a), (b) Photoelectron intensity plot (a) and MDCs (b) near � [cut 1 in (i)] measured
at 25 K. The red and blue triangles mark the peaks for the two electron-like bands, respectively. (c), (d) Same as (a), (b), but measured at 200
K. (e)–(h) Photoelectron raw spectra (EDCs) measured along cut 1, cut 2, cut 3 and cut 4, respectively. The locations of the momentum cuts are
shown in (i). (j) EDC at KX = 0 (across the band bottom) as a function of the out-of-plane momentum. The measurements have been carried
out with circularly polarized light and the corresponding photon energies are noted. The red (blue) triangles mark the peaks with a smaller
(larger) binding energy. The dark (light) gray belt is a guide to the eye for the main (folded) band.

Fig. S2 [45]), as well as our STM results which reveal the
characteristic modulation for the 3D CDW order on the Cs
termination [Fig. 4(d)]. However, this scenario might not ex-
plain the less clear band reconstruction on the Cs-deficient
region, since the 3D CDW order can also be seen on the
Sb termination [2]. Nevertheless, we note that the electronic
structures on the Sb termination would be more complicated,
which are affected by a combined effect of both the 3D
CDW order and another interesting 4×1 CDW order [2]. If
the 3D CDW scenario works, then the reported (2 × 2 × 2)
CDW order would give rise to the scattering wave vector
(Q1) that accounts for the other out-of-plane periodicity of
BZ/2 observed at �̄ [Fig. 4(b)]. In the meantime, another
(2 × 2 × 4) CDW order has been observed by x-ray diffrac-
tion [6], which would provide a smaller scattering wave vector
[Q2, Fig. 4(b)]. It remains to be explored whether a BZ/4
periodicity can be further identified in the electronic structure.
The last possibility is the existence of an out-of-plane order
near the Cs surface, which reconstructs the out-of-plane elec-
tronic structure. In principle, the electronic states near �̄ are
dominated by Sb Pz orbital [29,37] (see Supplemental Fig. S7

[45]), which is presumably more sensitive to out-of-plane cor-
relation near the surface layers, whereas the V d orbitals at M̄
might be influenced by the order that is more long range in the
bulk [6]. Future work would be stimulated to explore whether
such a hidden order [56] could appear in the low-temperature
state of CsV3Sb5, and whether the few layers near the Cs
surface would be affected. If yes, it would be interesting to
investigate whether this near-surface out-of-plane order also
interacts with the topological surface states in this material
system [9,27].

In summary, our work reveals the 3D electronic struc-
ture of CsV3Sb5 in the high-temperature normal state and
unveils a direct coupling of an out-of-plane electronic su-
permodulation to the single-particle spectral function at low
temperature. We note that electronic states dressed by the
out-of-plane correlation in CsV3Sb5 may have important im-
plications. For instance, high-temperature superconductivity
in cuprates shows 3D superconducting coherence with pri-
marily 2D copper-oxygen planes [57,58]. The experimental
identification of 3D charge order in cuprates reveals an inti-
mate link between superconductivity and charge order beyond
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FIG. 4. Out-of-plane band folding. (a) Folding of the DFT bands
along the out-of-plane direction. The α(α′) band around � (A) point
is shown in red (blue). The blue dashed line indicates a holelike band
close to the bottom of the α′ band in the DFT calculation. However,
this band disappears when in-plane component of the charge order
[27] or electron correlation [53] is considered in the calculation. (b)
Schematic of the scattering process along the out-of-plane direction.
(c) Photoemission core-level measurements on the Cs-rich and Cs-
deficient regions, respectively. (d) STM measurement on the Cs-rich
region. (e) Same as (d), but on the Cs-deficient region. The STM
setup conditions are Vs = 20 mV, It = 780 pA, T = 4.8 K in (d), and
Vs = −100 mV, It = 140 pA, T = 4.8 K in (e).

simple competition [59]. In quasi-2D kagome metals, the ex-
istence of 3D superconductivity is rare. It is first realized in
CsV3Sb5, where the out-of-plane electronic supermodulation
also appears and dresses the quasi-2D electronic structure.
It would be interesting to explore the nature of the out-of-
plane interaction that stabilizes the 3D ordering tendencies in
CsV3Sb5 and other quasi-2D kagome superconductors.
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