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Physical origin of current partition at a topological trifurcation
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In gated bilayer graphene, topological zero-line modes (ZLMs) appear along lines separating regions with
opposite valley Hall topologies. Although it is experimentally difficult to design the electric gates to realize ZLMs
due to the extremely challenging techniques, twisted bilayer graphene provides a natural platform to produce
ZLMs in the presence of a uniform electric field. In this Letter, we develop a set of wave-packet dynamics
for ZLMs in monolayer graphene, which can be utilized to characterize various gapless edge modes and can
quantitatively reproduce the electronic transport properties at topological intersections. To our surprise, at a
topological trifurcation, we show that the counterintuitive current partition (i.e., the direct transport propagation)
originates from the microscopic mechanism “bypass jump” which is proved to exist in both monolayer and
bilayer systems. Our method can be applied to understand the microscopic pictures of the electronic transport
features of all kinds of topological states.
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Introduction. Topological zero-line modes (ZLMs) can
arise at interfaces separating different topological systems,
e.g., classical wave systems [1–7], non-Hermitian systems
[8,9], and various graphene systems [10–33]. Because of their
robustness against backscattering, ZLMs have attracted much
attention in designing low-power topological quantum de-
vices. In particular, gated AB-stacked bilayer graphene acts
as an ideal platform in generating the ZLMs along zero-
field lines separating the regions with opposite valley Hall
topologies. However, the requirements of extremely precise
alignment of the electric gates in bilayer graphene made it un-
realistic for large-scale industrial application. Fortunately, the
manipulation of “twisting” made bilayer graphene again the
central focus in both theoretical and experimental condensed-
matter physics. The twisted bilayer graphene and other van
der Waals materials then naturally provide ideal platforms
(i.e., metallic moiré pattern networks) in designing ZLMs in
the presence of a uniform electric field [34–40] or a substrate
effect [41].

So far, although there havehas been great progress in ex-
ploring the electronic transport properties of the ZLMs from
both numerical calculations and experiments from a macro
perspective, it is still analytically unsolvable whenever the
zero line becomes curved or crossing. The reason is that it is
extremely challenging to derive the analytical solution of the
two-dimensional Dirac equation for curved ZLMs or arbitrary
topological ZLM intersections [27]. Therefore, the fundamen-
tal physical understanding of the transport characteristics of
ZLMs is still missing.

Time-dependent Schrödinger equations and wave-packet
dynamics provide powerful tools in investigating the motion
and scattering problems of quantum particles from an intuitive
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and time-dependent perspective. In several low-dimensional
materials, the wave-packet propagations have been investi-
gated [42–46], but only the evolution of a simple Gaussian
wave packet is adopted in most cases [43–46]. However, the
Gaussian wave packet is not the eigenstate of the Hamiltonian
of the topological system, but leads to strong dissipation dur-
ing the evolution.

In this Letter, we develop a set of wave-packet dynamics
for ZLMs in monolayer graphene, which can clearly describe
the time-dependent evolution of the ZLM at topological in-
tersections. By tracking the trajectories of the electron wave
packets at various topological intersections, one can obtain the
corresponding current partition ratios in an intuitive manner.
In particular, unlike topological bifurcation where forward
scattering is forbidden, in a topological trifurcation, based on
a simplified but effective monolayer graphene model, we find
that the incoming wave packet is divided into three parts at the
intersection, where the direct transmission tunneling is not so
“direct” along the trifurcation point but originates from the
“bypass jump” scattering mechanism which is also proved to
exist in gated Bernal bilayer graphene. Our proposed method
provides a powerful tool in revealing the time-dependent tra-
jectories of electrons and judging the transport properties in
topological materials.

Time-evolution operator. To numerically investigate the
electronic properties of ZLMs, the π -orbital tight-binding
model Hamiltonian of monolayer graphene with sublattice po-
tentials is adopted to obtain all of our wave-packet dynamics
results as follows:

H = −γ
∑
〈i j〉

c†
i c j +

∑
i∈A

UAc†
i ci +

∑
i∈B

UBc†
i ci, (1)

where c†
i (ci) is a creation (annihilation) operator for an elec-

tron at site i, and γ = 2.7 eV is the nearest-neighbor hopping

2469-9950/2022/106(16)/L161413(6) L161413-1 ©2022 American Physical Society

https://orcid.org/0000-0002-6540-1564
https://orcid.org/0000-0002-7195-8561
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.L161413&domain=pdf&date_stamp=2022-10-28
https://doi.org/10.1103/PhysRevB.106.L161413


YOU, HOU, LI, AND QIAO PHYSICAL REVIEW B 106, L161413 (2022)

energy. UA and UB are the staggered AB sublattice site poten-
tials, satisfying UA = −UB = λγ . We set λ = 0.05 in Fig. 2,
and λ = 0.08 in Figs. 3 and 4.

Based on the time-evolution operator,

�(x, y, t + �t ) = exp

(
− i

h̄
H�t

)
�(x, y, t ). (2)

By applying the Cayley form to facilitate matrix opera-
tion [47], we have(

1 + i

2h̄
H�t

)
�(x, y, t + �t ) ≈

(
1 − i

2h̄
H�t

)
�(x, y, t ).

(3)

If the initial wave function �(x, y, t ) is known, the propa-
gated wave function at each time step �t can be obtained.
In Ref. [48], the split-operator technique [43,44] is used to
perform matrix operations more efficiently.

Initial wave function. Constructing a proper initial wave
function is essential in the time-evolution problem. After
Fourier transform, the corresponding low-energy continuum
Hamiltonian near the Dirac points with a position-dependent
Dirac mass can be expressed as h = vF(τzσx p̂x + σy p̂y) +
σzm(x, y), where vF is the Fermi velocity and τz = ±1 labels
valleys K and K ′. Let us focus on the simplest zero-line
case along the y axis for the specific K point, i.e., m(x, y) =
m sgn(x), with m being a constant. By solving the time-
independent Dirac equation h� = E�, one obtains that, when
|E | � |m|, the eigenspinors are extended states, and when
|E | < |m|, the eigenspinors can be written as

�x = exp

(−|m||x| + isgn(m)Ey

h̄vF

)[
1 − isgn(m)
1 + isgn(m)

]
. (4)

Similarly, when the zero line is along the x direction, i.e.,
m(x, y) = msgn(y), the eigenspinors for |E | < |m| are

�y = exp

(−|m||y| − isgn(m)Ex

h̄vF

)[
1

−sgn(m)

]
. (5)

The width d in the direction normal to the zero line is
proportional to 1/m(x, y). For |E | < |m|, based on the linear
dispersion of E = h̄vFk, Eq. (5) can be rewritten as

�y = exp

(
−|y|

d

)
exp[−isgn(m)kx]

[
1

−sgn(m)

]
, (6)

which implies that ZLM is a plane wave in the propagation
direction, but becomes localized within a limited transverse
direction. To construct a wave packet at certain moment t , one
can introduce a Gaussian term in the propagation direction.
When setting the wave-packet center to be �r0 = (x0, y0) in
real space and k0 in reciprocal space, it is noteworthy that
Eq. (6) only applies to the zero-line mode of the zigzag
boundary, while the zigzag boundary of our studied sample
[see Fig. 1(a)] is along the y direction, so Eq. (6) can be
expressed as follows:

�(x, y) = N exp

(
−|x − x0|

d1
− (y − y0)2

2d2
2

)
exp(ik0y)

[
1
1

]
,

(7)
where m < 0, N is the normalization factor, d1 = h̄vF/|m|,
and d2 = h̄vF/�E . Within the tight-binding model [Eq. (1)],
we consider the initial wave packet as a discrete form of

FIG. 1. (a) Schematic plot of a single straight zero line in mono-
layer graphene. Red and blue denote “+/−” sublattice potentials,
respectively. (b) Band structures for the zero line in monolayer zigzag
nanoribbon.

Eq. (7) for the graphene hexagonal lattice, the wave func-
tion is only distributed on each carbon atom, and we take
k0 = 4

√
3π/9a at the K point [see Fig. 1(b)], with a being

the lattice constant of graphene; i.e., the mean energy of the
wave packet is zero.

Wave-packet dynamics at bifurcation point. Let us first
examine the wave-packet dynamics at a bifurcation point. 〈r〉
measures the distance between the wave-packet center and the
coordinate origin [i.e., topological intersection] and is defined
as 〈r〉 =

√
〈x〉2 + 〈y〉2, with 〈x(y)〉 = 〈�|x(y)|�〉. As shown

in Fig. 2(a), in the straight zero line, the wave packet keeps
moving forward along the zero line without any backscatter-
ing; i.e., 〈r〉 versus time is almost linear. For the right-angled
zero line [see Fig. 2(b)], the wave packet from the bottom has
a probability of over 99% of turning into the left zero line,
exhibiting a zero bending resistance [15] of ZLM. One can
see that the minimum of 〈r〉 is nonzero, meaning that the wave

FIG. 2. Time evolution of the wave packet and 〈r〉 for (a) a
single straight zero line, (b) a right-angled zero line, (c) crisscross
zero lines, and (d) a bifurcation with a 30◦ sharp angle. The sample
sizes are L = 170.3 nm and W = 98.4 nm in panels (a)–(c) and L =
97.0 nm and W = 56.1 nm in panel (d). d1 = 4.2 nm, d2 = 10.0 nm.
〈r0〉 = 25.0 nm. The + and − signs indicate the alternating sublattice
potentials.
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FIG. 3. (a) Schematic view of twisted bilayer graphene. The AA (in black) regions denote the topological intersection. The green
lines denote the topological zero lines that separate alternating AB and BA regions distinguished by different valley Chern numbers.
(b) Corresponding simulation of topological intersection in monolayer graphene with sublattice-staggered potentials labeled in blue and red.
(c)–(e) Time evolution of the wave packet. We have U1 = U2 = λγ in panel (c), U1 = 0.1U2 = 0.1λγ in panel (d), and U1 = 4U2 = 4λγ in
panel (e), where λ = 0.08. The sample sizes are L = 97.4 nm and W = 56.8 nm in panels (c)–(e). d1 = 2.6 nm, d2 = 6.0 nm. 〈r0〉 = 14.0 nm.
The + and − signs indicate the alternating sublattice potentials. (f) Simplified schematic of Fig. 3(b), the red and black arrows represent the
permitted and the not permitted scattering direction of the electron wave packet. (g) At a circumference with a given r, a sketch of the tunneling
between adjacent topological zero lines with a distance of d is shown. (h) Low-energy spectrum near valley K of the two topological zero lines
illustrated in panel (g) with a gap induced by the finite-size effect. The red dashed line indicates the Fermi level. (i) Scattering rate versus
gap δ.

packet never reaches the exact turning point during the prop-
agation. In Fig. 2(c), the wave packet is equally partitioned
into two parts at the bifurcation point. Figure 2(d) shows the
propagation of the wave packet at a sharp turn, where the
probability of turning to the left is around 91% and the rest
turn to right. This indicates that, the shorter the distance be-
tween the incoming channel and the scattering channel, the
easier it is for the scattering between the channels to occur. All
these observations and the magnetic field effect of our wave-
packet dynamics in Ref. [48] are exactly consistent with the
findings from electronic transport by using Green’s function
technique [13,15,16], strongly suggesting the feasibility of
our wave-packet dynamics in investigating the fundamental
properties of ZLMs.

Origin of unusual electronic transport at trifurcation point.
Minimally twisted bilayer graphene provides a natural system
in designing ZLM-based electronics [49–53]. However, the
physical origin of the current partition at the trifurcation point
is still unclear; e.g., how can part of the incoming current
directly pass through the trifurcation point? Moreover, the
number of atoms in a unit cell at a tiny twist angle is extremely
large and therefore the numerical calculation is extremely

time-consuming or out of the computational capability. Con-
sidering that gated AB-stacked bilayer graphene and gated
minimally twisted bilayer graphene are equivalent in the scat-
tering problem of trifurcation, for the study of the bilayer
system, we choose the gated AB-stacked bilayer graphene as
our research object, in which the number of atoms is greatly
reduced.

First, for clarity, we apply the developed wave-packet
dynamics in the monolayer graphene model as displayed
in Fig. 3(b) with the conducting topological channels high-
lighted. For the ZLM encoded with certain valley K [e.g.,
incoming from terminal 3], the permitted outgoing termi-
nals are terminals 2, 4, and 6. In twisted bilayer graphene
[see Fig. 3(a)], the AA-stacked region shrinks with decreasing
twisted angle. Unless otherwise specified, in all simulations
of monolayer graphene, the zero-line width (corresponding
to the AA region in twisted bilayer graphene) is set to be
the same as a single hexagonal lattice. When we set U1 =
U2 = λγ , the electron wave packet from terminal 3 is par-
titioned into three parts into terminals 2,4, and 6 at the
topological intersection [see Fig. 3(c)]. Although the central
metallic area is limited enough, the squared modulus of the
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FIG. 4. (a)–(c) Current densities of topological trifurcations in monolayer graphene with staggered sublattice potentials and Bernal bilayer
graphene with patterned interlayer bias at a Fermi level energy of 0.0027 eV. Panel (a) is the monolayer system, and panels (b) and (c) are the
bottom layer and the top layer of the bilayer system, respectively. The green dashed lines are topological zero lines, and the numbers 1–6 are
terminals corresponding to the settings in Fig. 3(f).

forward-propagating wave packet into terminal 6 is ap-
proximately 14%, agreeing well with the result from the
Landauer-Büttiker formalism [52], and the rest is equally
partitioned towards adjacent terminals 2 and 4. The parti-
tion to the adjacent zero lines is well understood due to
the overlap between the incoming and outgoing wave func-
tions [16]. Previously, we attributed the forward propagation
to the contribution of the narrow graphene ribbon with the
same site-potential (corresponding to the AA-stacked ribbon
with uniform bias in twisted bilayer graphene). However, this
is not true. Hereinbelow, we provide an analytical under-
standing by using the developed wave-packet dynamics and
effective models.

In Fig. 2(b), one can observe that the current never reaches
the turning point when there is a angle between incoming
and outgoing zero lines. To clarify, we construct an effective
model of coupled zero lines. At a circumference with a given
radius r of Fig. 3(f), the local electronic structure of the six
intersection points between the circle with a given r and the
trifurcation can be approximated by antiparallel topological
zero lines with a distance d [see Fig. 3(g)]. We attribute the
interaction strength δ between zero-line modes to their mixing
in the overlapping region of wave functions [54], i.e.,

δ = |U |
d

∫ d/2

−d/2
ψ (x)∗−d/2ψ (x)d/2dx = |U | exp

[
−|U |d

h̄vF

]
, (8)

where

ψ±d/2 = exp

[
± |U |

h̄vF
(x ∓ d/2)

]
. (9)

One can get the solution of K ′ from that of K by setting
p̂ to be −p̂. So we only need to focus on K in the following.
The effective Hamiltonian of antiparallel zero lines at K can
be written as

H (ky) =
[

h̄vFky δ

δ −h̄vFky

]
, (10)

where the diagonal elements describe the counterpropagating
ZLMs encoded with valley K . The energy dispersions and

wave functions are respectively

E± = ±
√

(h̄vFky)2 + δ2, (11)

�± = exp(ikyy)√
(E± + h̄vFky)2 + δ2

[
E± + h̄vFky

δ

]
. (12)

The low-energy spectrum is displayed in Fig. 3(h). The
scattering rate between adjacent channels [e.g., between states
A and B at the same energy] can be given by

T = |〈�+(−ky)|�+(+ky)〉|2 = (δ/E+)2, (13)

which is displayed in Fig. 3(i). When the gap induced by the
interaction is vanishing, it means that the electron is located at
infinity where there is no coupling between adjacent channels,
and thus the scattering rate is zero. As the electron approaches
the intersection, δ increases and the electron becomes scat-
tered to the outgoing zero line. The Fermi energy of the
electron determines its closest distance to the intersection.

Next, we extend the effective model to six interacting
counterpropagating zero-line modes encoded with valley K
at the same circumference [see Fig. 3(f)]. The corresponding
Hamiltonian is⎡
⎢⎢⎢⎢⎢⎣

h̄vFky δ 0 0 0 δ

δ −h̄vFky δ 0 0 0
0 δ h̄vFky δ 0 0
0 0 δ −h̄vFky δ 0
0 0 0 δ h̄vFky δ

δ 0 0 0 δ −h̄vFky

⎤
⎥⎥⎥⎥⎥⎦

,

(14)

and the dispersion relations are

E1± = ±
√

(h̄vFky)2 + δ2, (15)

E2± = ±
√

(h̄vFky)2 + 4δ2, (16)

where E1± are doubly degenerate. As the radius of the cir-
cumference decreases, the energy gap of the system becomes
larger. Therefore, there is no low-energy electronic state near
the trifurcation point; i.e., theoretically no electron at low
energy can reach the intersection. However, why is there still
forward propagation of the electronic transport?
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To show the scattering process intuitively, one can consider
a scattering model as displayed in Fig. 3(f). According to
Eq. (13), let us assume an incoming electron [encoded with
valley K] from terminal 3. It can be scattered into outgoing
terminals 2 and 4. It is naturally expected that the outgoing
current at terminal 2(4) can also be scattering into incom-
ing terminals 1(5) and 3. And subsequently, the incoming
current at terminal 1(5) can further be scattered into out-
going terminals 6 and 2(4). This indicates that the “direct”
transmitting current from terminal 3 to terminal 6 is not so
“direct,” but undergoes a complex route along the paths of
3 ⇒ 2(4) ⇒ 1(5) ⇒ 6. In a recent work [52], the clue of the
“bypass jump” can be inferred from the fact that forward
scattering is insensitive to the increasing size of the narrow
graphene ribbon with the same site-potential within a certain
range. We also construct effective models of gated Bernal
bilayer graphene [48], and the results show that the scattering
mechanism of the “bypass jump” is still valid.

The more direct evidence of the existence of the “bypass
jump” mechanism is that we obtained the current densities of
the topological trifurcations in monolayer and bilayer systems
based on the nonequilibrium Green’s function method [48],
which intuitively display the current flow. In Fig. 4, the size
and direction of the blue arrows indicate the magnitude and
flow direction of the current, respectively. In the monolayer
system, i.e., Fig. 4(a), current from terminal 3 to terminal 6
undergoes a complex route along the paths of 3 ⇒ 2(4) ⇒
1(5) ⇒ 6. Interestingly, in the bottom layer [Fig. 4(b)] and
the top layer [Fig. 4(c)] of biased Bernal bilayer graphene,
the area where current is forbidden to pass is larger near
the topological trifurcation, and the process of scattering via
terminal 5 into terminals 4 and 6 is clearly shown.

Based on the above analysis, a topological transistor for
the monolayer system can be designed by tuning the ratio
of U1/U2 to realize the on-off state [see Fig. 5(c)]; i.e., the
scattering probability T63 from terminal 3 to terminal 6 can
be continuously tuned between 0 and 1. In particular, when
U1/U2 = 0.1, T63 = 0.83 [see Fig. 3(d)]; when U1/U2 = 4.0,
T63 = 0 [see Fig. 3(e)]. In Figs. 5(a) and 5(b), one can clearly
observe the direct coupling of wave functions between ad-
jacent channels [e.g., 1 and 2] when U1/U2 = 0.1. On the
contrary, the penetration depth of the electron wave packet in
the U1 regions approaches zero and the scattering by “bypass
jump” becomes vanishing when U1/U2 = 4.0. In Ref. [48],
we demonstrate how to manipulating T63 via tuning the ratio
of U1/U2. Interestingly, the design of the topological transis-
tor also implies the “bypass jump” mechanism of electrons,
because increasing the sublattice potentials of the U1 region
[i.e., decreasing the gap δ of the U1 region in Fig. 5(d)] is

FIG. 5. (a) and (b) Zoom of the second subgraph of Figs. 3(d)
and 3(e). (c) Scattering rate from terminal 3 to terminal 6 versus the
ratio of U1/U2. (d) At a circumference with a given r, the evolution
of the band structure from terminal 3 to terminal 6 is shown.

equivalent to cutting off the propagation path of the electron
wave packet.

Conclusion. In summary, we demonstrate the zero bending
resistance and the ballistic transport properties at a sharp turn
from a microscopic point of view. At the topological trifurca-
tion point belonging to the monolayer system, an alternative
current partition rule modulated by the relations between U1

and U2 is clarified. In particular, in both monolayer and bilayer
systems, an alternative scattering mechanism in the form of a
“bypass jump” is revealed to understand the unusual current
partition at the topological trifurcation point. Our methods can
not only be used to study the electronic transport properties
of other topological systems but also open up an alternative
avenue to investigate the electronic transport behaviors of
electron wave packets in large-scale topological networks.
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