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Topological corner states in graphene by bulk and edge engineering
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Two-dimensional higher-order topology is usually studied in (nearly) particle-hole symmetric models, so that
an edge gap can be opened within the bulk one. But more often the edge anticrossing deviates even into the
bulk, where corner states are difficult to pinpoint. We address this problem in a graphene-based Z2 topological
insulator with spin-orbit coupling and in-plane magnetization both originating from substrates through a Slater-
Koster multiorbital model. The gapless helical edge modes cross inside the bulk, where the magnetization-
induced edge gap is also located. After demonstrating its second-order nontriviality in bulk topology by a series
of evidence, we show that a difference in bulk-edge on-site energy can adiabatically tune the position of the
crossing/anticrossing of the edge modes to be inside the bulk gap. This can help unambiguously identify two
pairs of topological corner states with nonvanishing energy degeneracy for a rhombic flake. We further find that
the obtuse-angle pair is more stable than the acute-angle one.
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Introduction. It has been well established so far that topo-
logically nontrivial phases in crystalline solid materials can be
understood in a unified and consolidated mathematical picture
in terms of a fiber bundle, constructed from Bloch wave func-
tions over the first Brillouin zone as its base space, bearing
a geometrical structure that is not globally direct-product de-
composable (also referred to as with a global twisting of some
kind) [1–5]. Typical examples are the quantum anomalous
Hall effect [6–8] and quantum spin Hall effect [9–11], whose
corresponding Bloch bundles are respectively categorized by
the Chern class [12,13] and Z2 class [14–16], contributing
therefore to their appellations as a Chern insulator and Z2

topological insulator. On the other hand, another relevant and
intensively reiterated concept is “bulk-boundary correspon-
dence,” not only because of its concreteness to comprehend,
but also its prediction of perfect conducting channels with
the potential for exploitation. Though efforts have been de-
voted to its formulation [17–25], in contrast, it still can hardly
be considered beyond conjecture with respect to the whole
research field of topological physics. One of its statements
may read as follows: A system accommodating a nontrivial
bulk phase has its gapless representatives on its one-less-
dimension boundaries if it changes to a finite geometry. It
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works, for example, for the aforementioned Chern insulator
and Z2 topological insulator with a manifestation as gap-
less chiral and helical edge states, respectively. However,
this relationship has to be modified at least for two cases:
non-Hermitian [26–30] and higher-order topological systems
[31–36]. In the former case, one-by-one situations need cor-
responding generalizations, and in the latter case there are
simply no gapless boundary states at all on boundaries with
unit-lower dimensions. Among various attempts, following
several approved strategies [37–39], to rebuild it in a broader
sense, as a consequence, e.g., one has to find smoking gun
evidence as one-dimensional hinge states [40–42] and zero-
dimensional corner states [39,43–46], respectively, in three-
and two-dimensional topological systems. But these processes
are not always easy to accomplish and one of the difficulties is
represented by that in two-dimensional systems, the first-order
gapless dispersion crosses outside of the bulk gap, making the
“corner states within a gap within a gap” strategy no longer
applicable.

In this Letter, we resolve this problem by using monolayer
graphene as a prototypical system, which is widely adopted
as an ideal arena for various topologically nontrivial phases
[8,9,39,47–55]. Inspired by the ab initio research on a mono-
layer graphene system with bismuth ferrite as the substrate
[56,57] (also see Sec. SI in the Supplemental Material [58])
and the higher-order topology generating routine by opening
gaps for gapless boundary modes [39,59], we first confirm its
bulk nontrivial topology despite a vanishing Chern number by
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both the gapless evolution of the bulk Wannier charge center
and the nonvanishing mirror-graded Zak phases (γ± = π ),
and then we find (i) the tunability of the edge states by
an adiabatic on-site energy difference between the bulk and
the edge atoms, and (ii) an extra acute-angle pair of corner
states degenerated on a different nonvanishing energy from
that of the obtuse-angle pair. Those observations indicate that
topological corner modes, as important evidence of higher-
order nontrivial topology, may not be identifiable as directly
as the topological gapless edge ones, and therefore might
facilitate a step forward in deepening our understanding in the
guiding rule of bulk-boundary correspondence. Additionally,
because of the similarity in mathematical descriptive formal-
ism [60–67], the issue raised and the solution provided for
electronics here are also highly relevant for seeking localized
states of a higher-order topological nature in phononic and
photonic crystals [31,68–71], if the same strategy is followed.

System model. We employ the Slater-Koster multiorbital
tight-binding model to describe the monolayer graphene in
a 16-dimensional Hilbert space, S = Ssublatt. ⊗ Sorbit. ⊗ Sspin,
where the sublattice, atomic orbital, and spin subspaces
Ssublatt./orbit./spin are spanned by the bases Bsublatt. = {|A〉, |B〉},
Borbit. = {|s〉, |px〉, |py〉, |pz〉}, and Bspin = {|↑〉, |↓〉}, respec-
tively. By including the first-nearest-neighbor hoppings, the
Hamiltonian reads

H = HSK + HSOC + HM + HAB,

where HSK, HSOC, HM, and HAB are terms resulting from the
wave function overlapping from the Slater-Koster method
[72–75], atomic spin-orbit coupling (SOC), exchange field,
and sublattice potential, respectively. These terms can be ex-
pressed in second-quantization form,

HSK =
∑

iα

c†
iα (εiαs0)ciα +

∑
〈i j〉αβ

c†
iα (tαβs0) c jβ, (1)

HSOC = ξSOC

∑
i,αβ

c†
iα (s · l )αβ ciβ, (2)

HM = M
∑

iα

c†
iα (s · n̂M ) ciα, (3)

HAB = U
∑

i∈A, j∈B,α

(c†
iαciα − c†

jαc jα ), (4)

where i and j label the atomic position in real space and
〈· · ·〉 means to sum over nearest neighbors. α and β take
integer values from 0 to 3 and correspondingly stand for all
four outer-shell atomic orbitals in Borbit.. The creation oper-
ator c†

iα = (c†
iα↑, c†

iα↓) is understood with spin as its internal
degree of freedom. The spin Pauli matrices are denoted as
s = (sx, sy, sz ). Hereinbelow, all energies are measured in eV
and the length is in the unit of lattice constant a, if not other-
wise explicitly indicated.

Further details of Eq. (1) can be found in Sec. SII in the
Supplemental Material [58]. In Eq. (2) the matrix element of
the atomic spin-orbit coupling takes the form of the atomic-
orbital subspace Borbit. as [76,77]

(s · l ) = i

⎛
⎜⎝

0 0 0 0
0 0 −gsz sy

0 gsz 0 −sx

0 −sy sx 0

⎞
⎟⎠, (5)

where g = 1 if not otherwise indicated. The parameter ξSOC

is the atomic spin-orbit coupling strength and it is re-
lated to the “intrinsic spin-orbit coupling” strength as t2 =
|εs|ξ 2

SOC/(18V 2
spσ ), where εs is the on-site energy of the s

orbital relative to that of the p orbital [78]. The latter considers
a second-nearest-neighboring hopping among pz orbitals and
is responsible for a bulk gap 	Ebulk = 6

√
3t2 [9], which can

be used as an estimation of the bulk gap in this Letter. The
general form of magnetization term Eq. (3) has a unit vector
n̂M = (sin θM cos φM, sin θM sin φM, cos θM ) specifying an ar-
bitrary direction of the magnetization. In our consideration,
we choose θM = π/2 and φM = 0, i.e., M = M êx, as it can
be shown in the phase diagram in Fig. 1(c) that the in-plane
direction of magnetization does not display its importance,
concerning topological states.

Band structure and bulk topology. Before we start to
search for corner states, it is highly necessary to confirm
the nontrivial topology of the bulk system. With an in-plane
magnetization, the system can host two phases, as depicted
in Fig. 1. When the sublattice potential is larger (|U | > |M|),
a quantum valley Hall phase appears [Fig. 1(a1)] with val-
ley Chern numbers [8,79,80] (CK , CK ′ ) = (−1, 1) contributed
by the Berry curvature in proximity of the two valleys
[Figs. 1(a2) and 1(a3)]; whereas if |U | < |M|, a VW-shaped
band structure takes form around the global band gap and
the Brillouin zone corners [Fig. 1(b1)], however, the corre-
sponding Chern number vanishes. In both cases, the in-plane
direction of the magnetization is irrelevant, which can be
drawn from Fig. 1(c), where one can see an isotropic phase
border, namely the white dashed circle.

However, the latter state does not have to be trivial just
because of a vanishing Chern number. Without explicit indi-
cation, we set a zero sublattice potential case hereafter. Then
we can check the bulk topology with two methods: One is the
bulk Wannier charge center (WCC) [81,82] (see Sec. SIII in
the Supplemental Material [58]) and the other is the mirror-
graded Zak phase. The former method generates the Wannier
charge center evolution for the above quantum valley Hall
effect and the other globally gapped state with a dominant in-
plane magnetization in Figs. 2(a) and 2(b), respectively. The
major difference is that the latter is gapless but the former is
not, and the gapless Wannier charge center behavior indicates
the nontrivial bulk topology.

Furthermore, a mirror operator in the working representa-
tion (S,B) can be found to have this form [83,84],

Mx = σx ⊗ diag{1,−1, 1, 1} ⊗ (isx ), (6)

whose determination is detailed in Sec. SIV of the Supple-
mental Material [58], to commute with the bulk Hamiltonian
with a vanishing lattice momentum in the x direction (con-
necting two nearest carbon atoms): [Mx, H (0, ky )] = 0. The
unitary operation U that diagonalizes Mx facilitates to direct-
sum decompose H (0, ky ) as

UH (0, ky )U† = H+(ky) ⊕ H−(ky). (7)

Both H±(ky)’s spectra are globally gapped as shown in
Figs. 2(c)–2(e), and they do not have much difference. Ac-
tually, every band is at least locally gapped from any other
one. But neither of H±(ky) owns a chiral symmetry, hence the
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FIG. 1. (a1) Quantum valley Hall, (CK , CK ′ ) = (−1, 1), with Berry curvature in (a2) and (a3). (b1) An insulating state, neither quantum
anomalous Hall nor quantum valley Hall, with Berry curvature in (b2) and (b3). (c) Phase diagram with a circled phase border, with colors
encoding the band gap. ξSOC = 0.100 (	Ebulk = 0.001 64) and energy in eV.

usual winding number evaluation technique [85] is inapplica-
ble here. Fortunately, we can find, by means of the Wilson
loop again, their corresponding Zak phases [45,86] and the
result is γ± = π .

In summary, the gapless bulk Wannier charge center evo-
lution and the nonvanishing mirror-graded Zak phase jointly
confirm consistently that the gapped bulk phase in Fig. 1(b1)
is topologically nontrivial, but it is not a Chern insulator either.
We then can reasonably expect it to be a second-order topo-
logical insulating phase. To find its higher-order embodiment,
we next check corresponding systems with spatial dimension
reduced.

FIG. 2. Characterization of the bulk topology. (a) and (b) Wan-
nier charge center (WCC) evolution for the corresponding phases
in Figs. 1(a1) and 1(b1). (c) and (e) Band structures for H±(ky ) in
Eq. (7), with Zak phases γ± = π . (d) Zoom-in for the global gap.

In-gap gapped edge modes with tunability. In the absence of
magnetization, the system is in a Z2 quantum spin Hall effect,
as the Kane-Mele model shows [9,87]. Indeed, our model
gives a consistent result that the band structure of a zigzag
nanoribbon is gapped out in the bulk and meanwhile the
gapless helical edge modes link the valence and conduction
bands [Fig. 3(a), gray curves]. However, a major difference
emerges because of the absence of particle-hole symmetry
that the intersection of the edge modes does not locate within
the bulk gap (light-blue region), outside of which as well,
consequently, the edge gap is opened up, when the in-plane
magnetization takes effect [Fig. 3(b), gray curves]. This sit-
uation is harmful to the search for topological corner states
located within the edge gap, which contains now also bulk
states as well as edge states. By adiabatically introducing an

FIG. 3. Band structures of zigzag nanoribbons with tunability
of edge modes. (a) Quantum spin Hall effect. (b) Bulk insulating
phase from in-plane magnetization. ξSOC = 1.000 (	Ebulk = 0.164)
and energy in eV.
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FIG. 4. Topological corner states. (a) The blue band structure is
the same as that in Fig. 3(b), red circles show the energy spectrum
of a finite zigzag-edged rhombic sheet, and the dashed-framed inset
shows the local density of states of corner states. (b) The energy
spectrum of the same rhombic finite sheet with g ∈ [0, 1] in Eq. (2).
ξSOC = 1.000 (	Ebulk = 0.164), M = 0.033, Uedge = −0.250, and
energy in eV.

on-site energy difference between the edge and bulk atoms
[88,89], the edge modes can be tuned to be inside the bulk gap,
regardless of whether or not the edge gap is absent [Figs. 3(a)
and 3(b), blue curves]. The bulk band structures exhibit es-
sentially no difference, before and after the introduction of
such an on-site energy difference, and as can be seen the blue
and the gray bulk almost coincide with each other in Fig. 3.
Because such a process is adiabatic, the same topological state
maintains.

Anomalous topological corner states. Here, we study the
corner states in a rhombic finite sheet edged with zigzag
boundaries. In Fig. 4(a), the blue band structure exhibits the
dispersion of the corresponding one-dimensional zigzag sys-
tem, where a clear edge gap (light-red region) within the bulk
gap (light-blue region) can be seen. Within this edge gap,
four topological corner states appear in the spectrum of a
finite rhombic sheet, as the red circles depict, where only a
small portion of the states with low energies of interest is
presented. Different from the situation reported previously,
the four states come in pairs degenerated on nonzero energies.
The lower-energy pair (labeled as 1 and 2) takes up the acute
diagonal angles, and the higher-energy pair (3 and 4) the
obtuse diagonal, as shown respectively in the dashed-framed
inset of Fig. 4(a). The four corner states combined together
leave no corners of the finite sheet unoccupied.

To reveal the newly emerged acute-angle occupying pair of
corner states, we now vary the g factor in Eq. (2) within the
unit range [0, 1] to introduce the difference in SOC between
the in-plane and the out-of-plane components. As shown in
Fig. 4(b), the rightmost case with g = 1 is the topological
equivalent of that in Fig. 4(a), where the two pairs of corner
states have a relatively large inverse participation ratio (IPR =∑

i | 〈ψ |i〉 |4 for a normalized state |ψ〉 with
∑

i | 〈ψ |i〉 |2 = 1)
[90–94] because of their comparatively high degree of lo-
calization and the acute-angle corner state is more localized

than the obtuse-angle one. Furthermore, the spectrum evolves
with decreasing g. The edge gap formed between the (green-
blue) edge states moves downward as a whole, in which
course the (green) obtuse-angle corner states remain in the
middle of the gap, indicating the stability of the obtuse-angle
corner state in two senses: (i) Its energy position relative
to the edge gap, and (ii) its degree of localization, both of
which are effectively unaffected. On the other hand, the new
acute-angle corner states do not enjoy those two kinds of
robustness, because as g changes they change both its rel-
ative energy and inverse participation ratio. But in general
the acute-angle corner state has a higher degree of local-
ization and a better energy degeneracy. This shows that the
acute-angle corner state is more sensitive to the difference be-
tween the in-plane and out-of-plane components of spin-orbit
coupling.

We further find that both types of corner states are ro-
bust against sheet shapes and orbital-dependent magnetization
strengths, but the direction of magnetization can control the
distribution of the acute-angle corner state. One can see that
the two types of corner states are relatively stable because
of their topological nature and meanwhile they differ from
each other in their own right. More about the effects of
sheet-shape and magnetization direction dependencies can
be found in the last section of the Supplemental Material
[58].

Summary and discussion. We propose the introduction
of the bulk-edge on-site energy difference, with experimen-
tal feasibility by split-gate technology [95], as a solution
to the problem of identifying localized states with higher-
order topology in two dimensions when the edge gap position
acts as an obstacle. Through a combination of a series of
evidence, we show that a second-order topological phase
without particle-hole symmetry can be realized in a mono-
layer graphene system with an in-plane magnetization, but its
corner embodiment is not easily found, hidden in the jungle
of edge and bulk states. As for the nontrivial bulk topology,
we show that the insulating state has a zero Chern number
but the behavior of its Wannier charge center is gapless and
both mirror-graded subspaces carry a nonvanishing π Zak
phase. When mentioning higher-order topology, the “bulk-
boundary correspondence” is an unavoidable topic, following
which we check the zigzag-edged one- and zero-dimensional
systems. In the former we find that, in the region of interest, a
clear delineation cannot be achieved between the helical edge
crossing and the bulk states. However, we also find that a
bulk-edge on-site energy difference can amend it by tuning
the edge crossing/gap into the bulk gap window. Then within
that gap within a gap, four midgap corner states with nonzero
energy degeneracy in pairs can be found unambiguously. Fur-
thermore, we examine the properties of the corner states and
find that the obtuse-angle corner state is more stable against
a variation of coupling between px and py orbitals and the
direction of in-plane magnetization. Bearing nontrivial topol-
ogy in nature, both types are robust with respect to the shapes
of the finite sheets. These results not only suggest an acces-
sible way to “find” corner states, but also provide a sample
which a future full-fledged higher-order topological version
of bulk-boundary correspondence should take into account.
Our findings are not limited to electronic systems or two
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dimensions, and should also be of importance to higher-order
topology in phononic and photonic crystals, due to similar
governing laws.
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