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Topological junctions in high-Chern-number quantum anomalous Hall systems

Yulei Han ,1 Shiyao Pan,1 and Zhenhua Qiao 2,3,*

1Department of Physics, Fuzhou University, Fuzhou, Fujian 350108, China
2International Centre for Quantum Design of Functional Materials, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and

Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
3Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China

(Received 19 April 2023; revised 4 August 2023; accepted 21 August 2023; published 5 September 2023)

Quantum anomalous Hall effect (QAHE) is the real topological state without magnetic field that is robust
against any perturbations, and is related to a bulk topological number C, counting the number of chiral
edge modes. Such chiral edge modes also exist at the magnetic domain walls between regions with different
Chern numbers. Here, we systematically investigate the electronic properties of topological junctions formed at
boundaries of QAHEs with different Chern numbers. We find that the number of chiral edge modes along the
junction is determined by the difference of Chern numbers of adjacent regions, which can be understood from
the coupling between counterpropagating channels along the junction. Finally, we show that the current partition
of topological junctions can be flexibly manipulated by tuning the number of quantum anomalous Hall regions,
Chern numbers, and the magnetization directions. Our work provides an ideal platform to design multichannel
low-power devices for electronic circuits and switching applications.
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I. INTRODUCTION

Quantum anomalous Hall effect (QAHE) is a topological
phase of matter characterized by quantized Hall conduc-
tance and vanishing longitudinal resistance in the absence
of external magnetic field [1–5]. The bulk is insulating and
the corresponding system boundaries carry conducting chiral
edge states. Its nontrivial topology is closely related to a
topological invariant, i.e., Chern number C [6]. Due to the
bulk-boundary correspondence, the Chern number can be di-
rectly associated with the number of chiral edge states and
the quantized Hall conductance of Ce2/h. Like the traditional
QHE, QAHE is robust against any kind of disorders, and
therefore is the most ideal materials for potential applications
in low-power electronic devices [5].

In 1988, Haldane first proposed the QAHE in a honey-
comb lattice model, which was once considered to be a toy
system [1]. Little progress was made till the first experimen-
tal discovery of monolayer graphene in 2004. Since then,
QAHE has been becoming a seminal hot topic, which is still
attracting more focus from different research fields. Several
representative theoretical proposals are made in various two-
dimensional materials [7–18], among which the C = 1 QAHE
was first experimentally observed in magnetically doped topo-
logical insulator thin films [19–21] and then in intrinsic
magnetic topological insulator MnBi2Te4 [22], moiré bilayer
graphene systems [23], and transition-metal dichalcogenides
[24]. Based on C = 1 QAHE systems, one-dimensional chiral
conducting states can be produced along the magnetic domain
walls formed between QAHEs with opposite Chern numbers
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[25–29], making them suitable for designing programmable
integrated circuits [30] and topological networks [27,31].

Besides the C = 1 QAHE, high-Chern-number QAHE is
highly desired because of their multiple chiral edge channels,
which can significantly improve the performance of QAHE
devices and facilitate potential applications in multichannel
quantum computing [32]. QAHE with high Chern number
was proposed in multilayer of magnetic topological insulators
[33,34] and thin films of topological crystalline insulators
[11]. Recently, it was demonstrated that high-Chern-number
QAH effect can be realized in MnBi2Te4 multilayer with
C = 2 [35–38] and monolayer transitional-metal oxides with
C = 3 [39]. Besides the intrinsic materials, van der Waals
stacking of two-dimensional materials is also an important
approach to achieve high-Chern-number QAH effect [33,40–
43], such as in trilayer graphene/h-BN moiré superlattice
with C = 2 [40], and in magnetic topological insulator-based
multilayer structures with tunable Chern number [33,41–43].
Recently, the topological junction formed by QAHEs with dif-
ferent Chern numbers can be experimentally fabricated, and a
unique chiral edge mode along the junction interface has been
identified in MnBi2Te4 [44] and Cr-doped (Bi, Sb)2Te3/(Bi,
Sb)2Te3 multilayers [45], which can be used to construct
topological circuits by controlling the Chern numbers of each
domain. However, the underlying physical mechanism re-
mains unclear, hindering its potential applications. In addition,
the fractional Hall conductance was observed in graphene
p-n quantum Hall junctions, where the regions with differ-
ent Chern numbers modulated by tuning the carrier densities
[46,47]. However, the band structures associated with the
quantum Hall effect and QAH effect are distinct, i.e., Lan-
dau levels in quantum Hall effect whereas inverted bands in
QAHE, leading to different band origins of topological states.
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In this work, we reveal the physical origin of the unique
chiral edge mode in the topological junctions by utilizing
model analysis and electronic transport calculations. In a two-
domain topological junction with arbitrary Chern numbers,
we find that the current distributions along the junction in-
terface are determined by the Chern numbers of individual
regions, i.e., the number of gapless modes along the junction
interface is proportional to the Chern number difference of
the two domains. To fully understand the underlying physical
mechanism, we construct an effective model and find the
crucial role of coupling between counterpropagating channels
in determining the number of gapless states along the junction
interface. We also show that the number of conducting chan-
nels and the current propagating directions along the junction
interface can be controlled by manipulating the number of
QAHE domains, Chern numbers, and magnetization direc-
tions of each domain.

II. HAMILTONIAN AND METHODS

To explore the electronic and topological properties of
high-Chern-number QAH junctions, we take magnetically
doped topological insulator thin films as our model sys-
tems. The tight-binding model Hamiltonian can be written
as [34,48]

H =
∑
α,i

c†
i+1Tαci +

∑
i∈R

[E0(R) + m(R)]c†
i ci + H.c., (1)

where Tα = Bσz ⊗ s0 + iA
2 σx ⊗ sα with α = x, y, z, E0(R) =

[M0(R) − 6B]σz ⊗ s0, and m(R) = g(R)σ0 ⊗ sz. σ and s are
Pauli matrices for the orbital and spin degrees of freedom,
respectively. The first term represents the electron hopping,
whereas the second term denotes the on-site energy applied
to domain R with R denoting the individual domains of
the topological junction. M0 characterizes the band inversion
strength and g represents the ferromagnetic strength. The thin
film thickness is along z direction, with Nz representing the
layer number. Without loss of generality, hereinbelow we set
A = 1.0, B = 0.7, and M0 = 0.5.

The topological properties of the system are determined by
calculating the momentum-space Berry curvature [6,8]:

�n(k) = −
∑
m �=n

2Im〈ψnk|vx|ψmk〉〈ψmk|vy|ψnk〉
(Em − En)2

, (2)

where En and ψnk are the eigenvalue and eigenstate of the nth
band, respectively. vx/y = 1

h̄
∂E (k)
∂kx/y

stands for velocity operator
along the x/y direction. The Chern number of the system can
be calculated by C = 1

2π

∑
n

∫
BZ d2k�n, where the summation

is over all occupied bands and the integration is over the first
Brillouin zone.

The multiterminal electronic transport properties of the
system are evaluated by the Landauer-Büttiker formula, and
the conductance from lead p to lead q can be written as [49]:

Gpq =
(

e2

h

)
Tr(�qGr�pGa), (3)

where Gr/a is the retarded/advanced Green’s function of the
central scattering region, �p = i(

∑r
p −∑a

p) is the line-width
function coupling lead p to the central scattering region, and

∑r/a
p is the retarded/advanced self-energy of the semi-infinite

lead p that can be obtained by using the variant transfer matrix
method [50]. The real-space local density of states of the
central scattering region for electrons injected from lead p
can be evaluated by ρp(r, ε) = 1

2π
Gr�pGa, where r is the

real-space coordinate and ε is the Fermi level.

III. ELECTRONIC PROPERTIES
OF TOPOLOGICAL JUNCTIONS

To illustrate the electronic properties of topological junc-
tions with two domains (R = 1, 2), we begin with the
Cmax = 2 case and use g = 1.4 (2.5) to simulate C = 1 (2)
QAHE with Nz = 2. In Cmax = 2 situation, each region of
the junction has four possible nonzero Chern numbers, i.e.,
CR = ±1, ±2, yielding two distinct types of combinations,
i.e., (i) |C1| = |C2|, and (ii) |C1| �= |C2|. For |C1| = |C2|, there
are two different combinations, i.e., C1 = C2 and C1 = −C2.
When C1 = C2, the topological junction can be considered as a
homogeneous QAHE without domain wall, implying that chi-
ral gapless states exist simply along the sample edges. When
C1 = −C2 (see Appendix A), the presence of domain wall
can induce one-dimensional topological conducting channels
along the junction interface, as previously predicted [27].

For |C1| �= |C2|, there are two independent cases of
combinations, i.e., (C1, C2) = (1, 2) and (1, −2). When
(C1, C2) = (1, 2), the schematic plot of topological junction
is displayed in Fig. 1(a), which has recently been experimen-
tally fabricated [44,45]. One can find the counterpropagating
doubly degenerated gapless states labeled by red and blue in
Fig. 1(b). As shown in Fig. 1(c), the gapless states are dis-
tributed in different regions, with the two blue gapless states
propagating along the −x direction separately distributed in

FIG. 1. Electronic properties of topological junctions with two
domains exhibiting different Chern numbers. (a) Schematic plot of
a topological junction with (C1, C2) = (1, 2), (b) the corresponding
one-dimensional electronic band structures, and (c) wave function
distributions of the gapless states along the y direction of the junction.
(d)–(f) For a topological junction with (C1, C2) = (1, -2). The red
(blue) arrows represent the gapless states propagating along x (−x)
direction. The black dashed lines in (c) and (f) represent the junction
interface.
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the lower sample edge and the junction interface, and the
doubly degenerated red gapless states propagating along the
x direction located in the upper sample edge. These gap-
less states are clearly illustrated by blue and red arrows in
Fig. 1(a). It is noteworthy that the numbers and distributions
of gapless states in the topological junction are consistent
with the experimental observations [44,45], indicating that our
theoretical models are valid.

When (C1, C2) = (1,−2), the gapless states are triply de-
generated, with three propagating along the x direction of
the junction interface and three propagating along the −x
direction of the sample edges, as shown in Figs. 1(d)–1(f). It
should be noted that the total number of conducting channels
along the junction interface equals to |C1 − C2|. Furthermore,
unlike electric-gating-controlled topological conducting states
in graphene with a fixed number of channels [51–53], the
number of conducting channels in QAHE junctions can be
flexibly tuned by adjusting the Chern number of individual
regions.

IV. ORIGIN OF NUMBER OF GAPLESS MODES ALONG
JUNCTION INTERFACE

In a topological junction, one can categorize the gapless
states into two types based on their distribution, with one type
being located at the sample edges and the other type being
located at the junction interface. The number of chiral edge
states of QAHE is definitely determined by the Chern number
CR, due to the bulk-boundary correspondence. However, the
number of gapless states along the junction interface is deter-
mined by the difference between the Chern numbers of the
two regions, i.e., |C1 − C2|.

To better understand the one-dimensional band structure of
the gapless states along the junction interface, we construct an
effective model on the basis of chiral edge channels confined
in the junction interface. The general Hamiltonian can be
written as [54,55]:

H (kx ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

h̄vFkx δ 0 0
δ −h̄vFkx δ 0 .. ..

0 δ h̄vFkx δ .. ..

0 0 δ −h̄vFkx

: :
: :

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(4)

where ±h̄vFk represent the kinetic energy of each channel
propagating along ±x of the junction interface. δ describes the
coupling strength between counterpropagating channels and is
proportional to exp−d where d measures the distance between
the two domains. The matrix dimension is determined by the
sum of Chern values of individual regions, i.e., |C1| + |C2|.
In general, the solution of the matrix is determined by the
Chern number of each domain. Thus, the analytical diagonal-
ization of the high-dimensional matrix is extremely difficult.
Below, we demonstrate two cases to illustrate the validness of
the effective model and the crucial role of coupling between
counterpropagating channels.

For sake of clarity, we first consider a C = 1 QAHE, which
can also be viewed as a topological junction with C1 = 1 and

FIG. 2. (a) Schematic plot of a topological junction with (C1, C2)
= (1, 1). (b)–(c): The one-dimensional electronic band structures
along the junction interface (b) without and (c) with coupling
between counterpropagating channels, respectively. (d)–(f) For a
topological junction with (C1, C2) = (1, 2). The red (blue) arrows
represent the gapless states propagating along the x (−x) direction of
the junction interface. The black arrows represent the edge states.

C2 = 1, as demonstrated in Fig. 2(a). The gapless states of the
system should be absent along the junction interface and only
present along the sample edges [see black arrows in Fig. 2(a)].
Nonetheless, we can still define a pair of virtual counterpropa-
gating channels along the junction interface [see blue and red
arrows in Fig. 2(a)], assuming decoupling between the two
C = 1 QAHEs. Now, the effective matrix can be written as

H (kx ) =
(

h̄vFkx δ

δ −h̄vFkx

)
. (5)

One can obtain the eigenvalues as E± = ±
√

(h̄vFkx )2 + δ2.
For δ = 0, E± = ±h̄vFkx, and the corresponding band struc-
ture is displayed in Fig. 2(b), indicating that decoupling
between the two C = 1 QAHE domains leads to two gapless
states along the interface. For δ �= 0, a band gap of 2δ opens,
resulting in the absence of gapless states along the junction
interface [see Fig. 2(c)]. As a consequence, the gapless states
only exist at sample boundaries [26].

We then consider a topological junction with C1 = 1 and
C2 = 2, as displayed in Fig. 2(d). When the two domains are
decoupled, there should be one channel propagating along x
direction and two channels propagating along −x direction of
the junction interface [see blue and red arrows in Fig. 2(d)].
The effective matrix can be written as

H (kx ) =
⎛
⎝−h̄vFkx δ 0

δ h̄vFkx δ

0 δ −h̄vFkx

⎞
⎠, (6)

The eigenvalues are E1± = ±
√

(h̄vFkx )2 + 2δ2, E2 =
−h̄vFkx. For δ = 0, the eigenvalues are E1+ = h̄vFkx and
E1− = E2 = −h̄vFkx, and the corresponding band structure
is displayed in Fig. 2(e). For δ �= 0, a local gap of

√
2δ

between E1+ and E1− at kx = 0 opens, whereas the gapless
state E2 = −h̄vFkx remains unchanged, as displayed in
Fig. 2(f). Consequently, only one gapless state along the
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FIG. 3. (a) Schematic plot of a topological junction with
(C1, C2) = (1, 1). The orange (blue) regions represent QAH (normal)
insulator, and the distance between the two QAH insulator regions
is denoted by d (d = 3). (b) The one-dimensional electronic band
structures, and (c) the wave-function distributions of electronic states
around the junction interface. (d) Schematic plot of a topological
junction with (C1, C2) = (1, 2). (e) The one-dimensional electronic
band structures, and (f) the wave-function distributions of electronic
states around the junction interface. The red (blue or green) colors
represent the interfacial states propagating along the x (−x) direc-
tion of the junction interface. The black dashed lines in (c) and (f)
represent the junction interface.

junction interface survives, as shown by the solid blue
arrow in Fig. 2(d). For arbitrary C1 and C2, this effective
model can perfectly capture the low-energy physics of
the band structures along the interface of topological
junctions, implying the crucial role of coupling between
counterpropagating channels along the junction interface.

It is worth noting that in a topological junction the strength
of δ decreases exponentially as the distance d between the two
domains increases. In Fig. 1(a), the two directly connected
QAH regions of the topological junction result in d = 0 and
the maximum value of δ. Therefore, the δ-induced local gap
cannot be observed clearly in Fig. 1(b), since the large δ-
induced local gap exceeds the bulk band gap of the system.

In order to clearly demonstrate the δ-induced local gap
from the tight-binding model, we can construct a topological
junction with a nonzero d , i.e., two QAH regions connected by
a normal insulator region. The presence of a nonzero d sug-
gests a weak coupling between counterpropagating channels
along the junction interface, resulting in a visible δ-induced
local gap that is smaller than the bulk gap. As displayed in
Fig. 3(a), the topological junction is composed of two C = 1
QAH regions joined by a d = 3 normal insulator. One can
clearly observe the δ-induced local gap in Fig. 3(b), which
is depicted by red and blue colors, and the wave-function
distributions in Fig. 3(c) demonstrate that the red and blue
states are primarily confined to the interfacial QAH regions,
with a slight mixing of states. Similarly, when (C1, C2) = (1,
2), the topological junction is illustrated in Fig. 3(d). Besides
the coupling between counterpropagating channels induced
gapless states along the junction interface, we can clearly

see the gapped channels labeled by red and blue along the
interfacial QAH regions in Figs. 3(e)–3(f). Therefore, by com-
bining the effective model and the tight-binding Hamiltonian,
we explicitly reveal the essential role of coupling between
counterpropagating channels in determining the number of
gapless states along the QAH junction interface.

V. CURRENT PARTITIONS
AT TOPOLOGICAL JUNCTIONS

To directly reveal the intriguing electronic properties
of topological junctions, we study the transport proper-
ties of the two-domain topological junctions. To ensure
the existence of gapless states along the junction interface,
i.e. C1 �= C2, we consider four combinations of (C1, C2):
(1, 2), (−1,−2), (1,−2), and (−1, 2). We then construct
topological junctions with four leads labeled as 1–4, as
displayed in Fig. 4. The corresponding four-terminal con-
ductances as a function of the Fermi level are presented in
Figs. 10–13 (see Appendix B), respectively. When the Fermi
level is in the bulk band gap, the four-terminal conductances
are either quantized or vanishing. Therefore, we focus on the
current partitions of the topological junctions.

Figures 4(a)–4(d) display the local density of states of
the topological junction with (C1, C2) = (1, 2) for electrons
injected from leads 1–4, respectively. Due to the presence of
one conducting channel propagating along the left direction
of the junction interface, the electrons injected from lead 1
can only transmit to lead 2 with a quantized conductance of
e2/h, as shown in Fig. 4(a), whereas the electrons injected
from lead 3 become split into two parts at the junction in-
terface and finally transport into leads 2 and 4, respectively, as
displayed in Fig. 4(c). The conductance and current direction
in the bottom/top boundary of the system are determined by
the value and the sign of the Chern number of each domain.
Specifically, the electrons injected from lead 2 transmit to lead
3 along the top boundary with a quantized conductance of
2e2/h, as shown Fig. 4(b), while the electrons injected from

FIG. 4. (a)–(d) Local density of states of topological junctions
with (C1, C2) = (1, 2) for electrons injected from lead 1 to lead 4,
respectively. (e)–(f) For a topological junction with (C1, C2) =
(−1, −2). The color bar represents the density of electrons. The
yellow arrows represent the current flow. The Fermi level is set to
be EF = 0.01 and the length of each region is 30 lattice sites.
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FIG. 5. (a)–(d) Local density of states of topological junctions
with (C1, C2) = (1,−2) for electrons injected from lead 1 to lead 4,
respectively. (e)–(f) For a topological junction with (C1, C2) =
(−1, 2). The color bar represents the density of electrons. The yel-
low arrows represent the current flow. The Fermi level is set to be
EF = 0.01 and the length of each region is 30 lattice sites.

lead 4 transmit to lead 1 along the bottom boundary with a
quantized conductance of e2/h, as demonstrated in Fig. 4(d).

When the magnetization direction is flipped, the Chern
numbers change to (C1, C2) = (−1,−2), and the correspond-
ing local density of states are demonstrated in Figs. 4(e)–4(f).
The conducting channel along the junction interface now re-
verses its propagating direction to the right side, resulting in
different current partition forms. Unlike the above case with
positive Chern numbers, the electrons injected from lead 1
(3) now transmit through the bottom (top) boundary to lead
4 (2) with quantized conductance of e2/h (2e2/h), as shown
in Figs. 4(e) and 4(g), respectively. Meanwhile, the electrons
injected from lead 2 become split into two parts at the junction

FIG. 6. The schematic plot of the current flow in the two-region
topological junctions. The red (blue) color represents the anticlock-
wise (clockwise) loop.

interface and finally transport into leads 1 and 3, respectively,
as shown in Fig. 4(f). The electrons injected from lead 4
only transmit to lead 3 with a quantized conductance of e2/h
[see Fig. 4(h)]. Recently, the above configurations have been
experimentally measured [44]. Our theoretical calculations
provide a deep understanding of the underlying physics of the
topological junction, as well as a thorough explanation of the
experimental observations.

We then study the electronic transport properties of topo-
logical junction with (C1, C2) = (1,−2), as displayed in
Figs. 5(a)–5(d). In this case, three electronic channels are
propagating along the right side of the junction interface. One
of the channels is contributed by region R1, while the other
two are contributed by region R2. As displayed in Fig. 5(a),
the electrons injected from lead 1 directly transmit to lead 4
along the junction interface with a quantized conductance of
e2/h. Similarly, the electrons injected from lead 2 transmit
straight to lead 3 along the junction interface a quantized
conductance of 2e2/h, as shown in Fig. 5(b). The electrons
injected from lead 3 (4) transmit along the top (bottom)
boundary, as displayed in Figs. 5(c) and 5(d), respectively.
When the magnetization direction is reversed, the Chern num-
ber changes to (C1, C2) = (−1, 2), and the electron loops in
each region reverse transport directions, as demonstrated in
Figs. 5(e)–5(h).

To clearly show the move direction of electrons in topolog-
ical junctions with different combinations of Chern numbers,
we show the schematic plot of the current flow in Fig. 6. The
transport results presented above demonstrate that coupling
of interfacial channels occurs only between counterpropagat-
ing channels along the junction interface, i.e., C1 · C2 > 0;
whereas the two regions of the junction are decoupled when
the interfacial channels in the two regions propagate in the
same direction, i.e., C1 · C2 < 0. Therefore, the current par-
tition of the topological junction can be tuned feasibly by
adjusting the Chern numbers or the magnetization directions
of individual regions.

VI. TOPOLOGICAL JUNCTIONS WITH HIGHER CHERN
NUMBERS AND MORE DOMAINS

We then demonstrate how the above conclusion can be
extended to systems with higher Chern numbers and more
domains. In a two-domain topological junction with higher
Chern numbers, Figure 7 displays the four-terminal conduc-
tance inside the bulk gap in the (C1, C2) space, where C1 and
C2 vary from −4 to 4. From the discussion in the previous sec-
tion, we know that the current partitions between G12 and G34

are different. However, we can observe that G12 and G34 have
the same distributions in (C1, C2) space, and both are nonzero
only when C1, C2 > 0. For instance, when C2 > C1 > 0, the
conductance G12 is equal to C1e2/h, whereas G32 flowing
through the junction interface should be (C2 − C1)e2/h, re-
sulting in the conductance G34 being C2e2/h − G32 = C1e2/h.
When the magnetization direction changes, the chirality (elec-
tron flow direction) also reverses, causing Gpq and Gqp to be
symmetric about the phase space center (C1, C2) = (0, 0).
Based on this variation pattern, the four-terminal conductance
diagram can be further extended to situations with higher
Chern numbers.
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FIG. 7. (a) Schematic plot of a four-terminal transport device with two domains. (b)–(i) The conductance Gpq from lead p to lead q inside
the bulk gap with p, q = 1–4 in the (C1, C2) space. The color bar represents the quantized value of conductance in unit of e2/h. The G13, G24,
G31, and G42 are all zero in the (C1, C2) space and do not show here.

We the explore the influence of the number of domains
on the electronic distributions of topological junctions. In
order to induce coupling between counterpropagating chan-

FIG. 8. Electronic properties of topological junctions with
three domains. (a) Schematic plot of a topological junction with
(C1, C2, C3) = (1, 2, 1), (b) the corresponding one-dimensional
electronic band structures, and (c) wave function distributions of
the gapless states along the y direction. (d)–(f) For a system with
(C1, C2, C3) = (2, 1, 2). (g)–(i) For a system with (C1, C2, C3) = (1,
2, 3). The red (blue) arrows represent the gapless states propagating
along the x (−x) direction. The black dashed lines in (c), (f), and (i)
represent the junction interface.

nels along the junction interfaces, we assume that the Chern
numbers of individual domains are all positive. Figure 8 dis-
plays three typical three-domain topological junctions with
distinct electronic distributions, each containing two junc-
tion interfaces. When C2 > C1 and C2 > C3, as displayed in
Figs. 8(a)–8(c) for (C1, C2, C3) = (1, 2, 1), a gapless state
propagates along −x direction of the first junction interface
(y ≈ 20), while another gapless state propagates along x di-
rection of the second junction interface (y ≈ 40). Conversely,
when C2 < C1 and C2 < C3, as displayed in Figs. 8(d)–8(f)
for (C1, C2, C3) = (2, 1, 2), the propagating directions of the

FIG. 9. Electronic properties of topological junctions with two
domains harboring opposite Chern numbers. (a) Schematic plot of
a topological junction with C1 = −C2 = 1, (b) the corresponding
one-dimensional electronic band structures, and (c) wave-function
distributions of the gapless states along the y direction of the junction.
(d)–(f) For a topological junction with C1 = −C2 = 2. The red (blue)
arrows represent the gapless states propagating along the x (−x)
direction. The black dashed lines in (c) and (f) represent the junction
interface.
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FIG. 10. The four-terminal conductance of the two-region topo-
logical junction with (C1, C2) = (1, 2) as a function of Fermi level
EF.

gapless states in the two junction interfaces become reversed.
When C2 > C1 and C2 < C3, as depicted in Figs. 8(g)–8(i)
for (C1, C2, C3) = (1, 2, 3), the gapless states in both
junction interfaces propagate along −x direction. Thus, the
conclusion drawn from the two-domain topological junction
can be directly extended to systems with higher Chern num-
bers and more QAHE domains. Moreover, the number of
QAHE domains is a crucial factor in tuning current partitions
of the topological junctions.

VII. SUMMARY

We comprehensively investigated the electronic proper-
ties of topological junctions in high-Chern-number quantum
anomalous Hall systems. Our results demonstrate that the
choice of Chern number of individual domains is crucial
in determining the intriguing electronic distributions along
the junction interface. Specifically, the number of topological
gapless states along the junction interface is determined by the
Chern number difference of the two domains, i.e., |C1 − C2|,

FIG. 11. The four-terminal conductance of the two-region topo-
logical junction with (C1, C2) = (−1, −2) as a function of Fermi
level EF.

which is further elucidated by an effective model. Our findings
also highlight the crucial role of coupling between counter-
propagating channels in determining the number of gapless
states along the junction interface. Furthermore, we show
that the number of channels and the propagating direction
of electrons along the junction interface can be flexibly con-
trolled by varying the number of quantum anomalous Hall
domains, Chern numbers, or the magnetization directions of
individual regions. Our work elucidates the physical origin
of the existence of topological chiral edge states along the
QAHE junction interface, which could facilitate the potential
applications of multichannel topological circuits, switching
devices, and chiral interconnects.
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APPENDIX A: ELECTRONIC PROPERTIES
OF TOPOLOGICAL JUNCTIONS WITH TWO DOMAINS

HARBORING OPPOSITE CHERN NUMBERS

As displayed in Figs. 9(a)–9(b), when C1 = −C2 = 1, the
topological junction is periodic along the x direction, and
we can observe the counterpropagating double-degenerated
gapless states labeled by red and blue in the one-dimensional
electronic band structures. One can see from Fig. 9(c) that the
wave-function distributions of the gapless states denoted by
the dots in Fig. 9(b) are mainly distributed along the junction

FIG. 13. The four-terminal conductance of the two-region topo-
logical junction with (C1, C2) = (−1, 2) as a function of Fermi
level EF.

interface for the red gapless states, and along the sample
edges for the blue gapless states, as explicitly demonstrated
in Fig. 9(a). Similarly, when C1 = −C2 = 2, as displayed in
Figs. 9(d)–9(f), the gapless states are quadruple degenerated
and the wave function distributions shown in Fig. 9(f) are
similar to those in Fig. 9(c). The explicit gapless states are
displayed in Fig. 9(d), where two pairs of edge states propa-
gate along the −x direction and four gapless states propagate
along the x direction of the junction interface. Therefore,
when C1 = −C2, the total number of conducting channels
along the junction interface is even and equals to |C1 − C2| =
2|C1|. Compared with the previous one-dimensional conduct-
ing channels in C = 1 QAH junctions [26,27], we can now
create multiple conducting channels in high-Chern-number
topological junctions, which is advantageous for experimental
detection due to the advanced technology in fabricating mag-
netic topological insulators with large Chern number and the
larger electronic conductance.
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APPENDIX B: FOUR-TERMINAL CONDUCTANCE OF
THE TOPOLOGICAL JUNCTIONS WITH TWO DOMAINS

Figures 10–13 display the four-terminal conductances
of two-region topological junctions as a function of the

Fermi level. The combinations of the Chern numbers (C1, C2)
in the two regions are, respectively, (1, 2) for Fig. 10,
(−1,−2) for Fig. 11, (1,−2) for Fig. 12, and (−1, 2) for
Fig. 13.
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