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Disorder-induced phase transitions in three-dimensional chiral second-order topological insulator
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Topological insulators have been extended to higher-order versions that possess topological hinge or corner
states in lower dimensions. However, their robustness against disorder is still unclear. Here, we theoretically
investigate the phase transitions of a three-dimensional chiral second-order topological insulator in the presence
of disorder. Our results show that, by increasing disorder strength, the nonzero densities of states of the side
surface and bulk emerge at disorder strengths of WS and WB, respectively. The spectral function indicates that
the bulk gap is only closed at one of the R4zT -invariant points, i.e., �3. The closing of the side surface gap
or bulk gap is ascribed to a significant decrease of the elastic mean free time of quasiparticles. Based on the
scaling theory of localization length, we obtain two fixed points as two critical disorder strengths for any given
Fermi energy, indicating that the three-dimensional chiral second-order topological insulator gradually enters
the diffusive metallic phase and Anderson insulating phase, respectively. In the end, a global phase diagram is
provided to clearly demonstrate the evolution of different phases.
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I. INTRODUCTION

Higher-order topological insulators, characterized by hinge
or corner states protected by various spatiotemporal sym-
metries [1–22], have invigorated many research fields, such
as spintronics and phononics [23–29]. Although these states
have been extensively observed in bosonic systems [30,31],
the observations are extremely limited in electronic systems.
In particular, a three-dimensional (3D) chiral second-order
topological insulator (SOTI), possessing gapped bulk states,
gapped side surface states, and 1D topologically protected
in-gap hinge states propagating unidirectionally, has not yet
been experimentally observed. Given the ubiquitous disor-
der in crystalline materials, it is crucial to understand their
robustness against disorder [32–35]. Without spin-orbit cou-
pling or magnetic field, a disorder-induced metal-insulator
transition can occur in 3D electronic systems but not 1D
and 2D [36]. Therefore, it is interesting to explore the
electronic transport properties of 3D chiral SOTIs under
disorder.

Based on renormalization-group calculations, it was re-
ported that 3D chiral SOTIs are always unstable against
Coulomb interaction and disorder [37], which has attracted
widespread discussion [38–40]. However, some key infor-
mation was missing. For example, they just considered the
disorder-induced one-loop self-energy correction, and only
one of the R4zT -invariant (a combination of fourfold rota-
tion and time-reversal symmetry) k points (�1) were used
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to study the phase transition. Here, we reexamine their
robustness against disorder by considering all the R4zT -
invariant k points. We find that the bulk gap closes at �3,
i.e., (kx, ky, kz ) = (0, 0, π ), but not �1 as used in previous
reports. Meanwhile, by considering multiple scattering events
[41–45] that is beyond the abilities of the self-consistent Born
approximation [32,33,46–48] and the renormalization-group
approach [37,48], we find the renormalized parameters can-
not be used as the unique criterion for a phase transition
under disorder. It is necessary to consider the broaden-
ing of the energy spectrum caused by multiple scattering
events.

In this paper, we systematically study the phase transi-
tions of a 3D chiral SOTI in the presence of disorder. By
investigating the density of states and the averaged inverse
participation ratio, we find that the side surface gap and bulk
gap successively close at disorder strengths of WS and WB,
respectively. Based on the accurate momentum-space Lanczos
method [49–51], which can rigorously treat all multiscatter-
ing events from impurities, we obtain the scaling properties
of low-energy quasiparticles in a disordered 3D chiral SOTI
around all four R4zT -invariant k points at the first Brillouin
zone. Surprisingly, the spectral function and self-energy show
that the four R4zT -invariant k points exhibit different be-
haviors by increasing the disorder strength (see Fig. 1), i.e.,
disorder only closes the local gap at �3. By employing the
scaling theory of localization length [52,53], we draw a phase
diagram to show the phase boundaries of disorder-induced
phase transitions. One can see that the 3D chiral SOTI first
enters a diffusive metallic phase when the disorder strength
exceeds a critical value of WC1, and then transits into the An-
derson insulating phase when the disorder strength is beyond
the other critical value WC2.
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FIG. 1. Quasiparticle spectral function A(k, E ) along high-
symmetry lines consisting of four R4zT -invariant k points. The color
plot is drawn in a logarithmic scale. The sample is set to be L3 =
1603a3. (a)–(d) Quasiparticle spectral function of s disordered 3D
chiral SOTI with W/t = 0, 2, 4, and 6. Inset: Brillouin zone of the
3D chiral SOTI. �1–4 are R4zT -invariant k points.

II. 3D CHIRAL SOTI

The tight-binding model Hamiltonian of 3d chiral SOTI
can be written as [23]

H0 = M

2

∑
r,α

(−1)αC†
r,ασ0Cr,α

+ 1

2

∑
r,α

∑
i=x,y,z

ti(−1)αC†
r+êi,α

σ0Cr,α

+ �1

2i

∑
r,α

∑
i=x,y,z

C†
r+êi,α+1σiCr,α

+ �2

2i

∑
r,α

∑
i=x,y,z

(−1)αniC
†
r+êi,α+1σ0Cr,α, (1)

where M is the mass term. ti, �1, and �2 are the nearest-
neighbor hopping parameters. α (0 or 1) represents the orbital
subspace, n̂ = (1,−1, 0), and C†

r,α (Cr,α) is the creation (an-
nihilation) operator with spin s (↑ or ↓) at site r. σ0 and
σi (i = x, y, z) are Pauli matrices for spin degrees of free-
dom. The basis vectors are spanned by êi (i = x, y, z). �2

breaks both time-reversal symmetry T = τ0σyK and fourfold
rotation symmetry R4z ≡ τ0e−i(π/4)σz simultaneously. For 1 <

|M/t | < 3, the system is a 3D chiral SOTI. Hereinbelow, we
set ti = −t = −1, M/t = 2, �1/t = 1, and �2/t = 1 [20].

A. Density of states and spectral function

First, we study the density of states (DOS) of a 3D chi-
ral SOTI in the presence of disorder, which is considered
as Vdis = V (r)I4×4. V (r) is uniformly distributed between

−W/2 and W/2, where W represents the disorder strength.
The R4zT symmetry is preserved under disorder [37]. The
chiral hinge states are located in the bulk and side surface
gaps. It means that the occurrence of a phase transition will
be related to both magnitudes of the bulk gap and the side
surface gap. Therefore, the evolution of the local DOS of
the side surface and bulk can characterize the robustness of
hinge states against disorder. The local DOS can be evaluated
as ρ(ri, E ) = − Im〈i| 1

E−H+iη |i〉/π . Here, a small artificial
broadening parameter of η = 0.01t is adopted. Based on the
well-developed Lanczos recursive method [54,55], the local
DOS can be numerically calculated. To obtain a high-energy
resolution and reduce the finite-size effect, a large sample
of (L3 = 1603a3) with open boundary conditions is consid-
ered [see Fig. 2(a)]. Figure 2(b) displays the bulk DOS as a
function of energy E − EF (t ) for different disorder strengths,
i.e., W/t = 0, 1, 2, 3, 4, 5, and 6. A pristine 3D chiral SOTI
has a wide bulk gap determined by �1. With the increase
of W , the side surface gap gradually decreases and remains
open until the disorder strength reaches WS/t ≈ 3.5. Once the
disorder strength exceeds WS , a nonzero side surface DOS
emerges at the Fermi level EF , implying the closing of the
side surface gap. Moreover, the bulk DOS exhibits similar
behavior [see Fig. 2(c)], because the bulk gap is larger than
the side surface gap, and it was closed at a stronger disorder
strength of WB/t ≈ 4.5. The bulk and side surface DOS at EF

as a function of W (t ) are displayed in Fig. 2(d).
The closings of the side surface gap and bulk gap signify

the phase transitions in the presence of disorder. To confirm
the possible phase transitions, we elaborate on the averaged
inverse participation ratio expressed as [56,57]

Pavg =
〈[∑

i,α,s |ψα,s(ri )|2
]2∑

i,α,s |ψα,s(ri )|4
〉
, (2)

where 〈· · · 〉 denotes the disorder average. Figure 2(e) plots
the averaged inverse participation ratio as a function of W at
E = EF for different volumes L3/a3 = 143, 163, 183, and 203.
It is known that Pavg ∼ Ld at a d-dimensional metallic phase,
but Pavg ∼ const at the insulating phase. In the weak disorder
regime, one can see that Pavg ∼ L, implying that there are
one-dimensional metallic chiral hinge states. With a disorder
increase, the extensibility of the metallic chiral hinge states
gradually becomes worse. After that, Pavg ∼ L3, implying that
the massively extended bulk states have a primary impact
on the averaged inverse participation ratio, i.e., the system
goes into a diffusive metallic phase. For even larger disorder
strength, Pavg ∼ const, corresponding to the Anderson insu-
lating phase. It is noteworthy that there is no 3D first-order
topological insulator with a large averaged inverse participa-
tion ratio with Pavg ∼ L2.

To further illustrate the disorder effect, the properties of a
quasiparticle in momentum space are studied. The low-energy
effective model Hamiltonian of the 3D chiral SOTI can be
expressed as [23,37]

H0(k) =
[

M +
∑

i

ti cos (aki )

]
τzσ0 + �1

∑
i

sin (aki )

× τxσi + �2[cos(akx ) − cos(aky)]τyσ0, (3)
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FIG. 2. (a) Schematic of a 3D chiral SOTI with open boundary conditions. (b), (c) Side surface and bulk density of states for a disordered
3D chiral SOTI with W/t = 0, 1, 2, 3, 4, 5, and 6, at a fixed system of L3 = 1603a3. (d) The density of states at E = EF varies with disorder
strength. With an increase of disorder strength, the widths of the side surface gap and the bulk gap gradually decrease, and finally close at
WS/t ≈ 3.5 and WB/t ≈ 4.5, respectively. (e) The averaged inverse participation ratio as a function of disorder strength W for different sample
sizes L3/a3 = 143, 163, 183, and 203 with open boundary conditions at E = EF . Pavg is proportional to L/L3/constant in region I/II/III,
respectively. Over 1000 ensembles are collected for each point.

where σi and τi (i = x, y, z) are Pauli matrices for spin
and orbital degrees of freedom, respectively. a is the lat-
tice constant. The combination of R4z and T is preserved
and generates four R4zT -invariant k points at �i, where
�1−4 are {(0, 0, 0), (π, π, 0), (0, 0, π ), (π, π, π )}, respec-
tively. For the valence and conduction bands, the eigenvalues
of H0(k) are E0(�1) = ±1, E0(�2) = ±3, E0(�3) = ±1,
and E0(�4) = ±5, where ± represents different orbitals.
Each band has two spins, resulting in a twofold degener-
acy. In a large 3D sample with millions of atoms (L3 =
1603a3), we analyze the modification of the energy spectra
in momentum space based on the accurate momentum-space
Lanczos recursive method [49–51], which can capture all
multiscattering events. The quasiparticle spectral function
is bridged with the Green’s function through the equa-
tion A(k, E ) = − Im G(k, E )/π [50]. The energy spectra
along high-symmetry lines, consisting of four R4zT -invariant
k points, are displayed in Fig. 1. When W/t = 0, the spectral
function A0(k, E ) is a δ function, suggesting that the wave
vector k is a good quantum number and all its weight is con-
centrated at the energy E = Ek [see Fig. 1(a)]. In the presence
of disorder, the δ peak becomes broadened due to the disorder-
scattering effect, giving a finite elastic mean free time to the
quasiparticle, and the bulk gap begins to gradually decrease
[see Figs. 1(a) and 1(b)]. The peak width is determined by the
imaginary part of the self-energy, Im �(E ). After entering a
strong scattering region, the spread of the spectral function
becomes prominent, and the bulk gap eventually closes at
�3, while the others remain open, as shown in Fig. 1(d). We
also find |〈�3, α, s|Vdis|�3, α, s〉| 	 |〈�1, α, s|Vdis|�3, α, s〉|,
which means intravalley scattering at �3 is stronger than inter-
valley scattering from �1 to �3. So, we can only focus on �3

to explore the disorder-induced phase transition in momentum
space.

B. Accurate self-energy of disordered 3D chiral SOTI

By utilizing the accurate momentum-space Lanczos
recursive method, the phase transition can be further
understood through the accurate self-energy solved by

the Dyson equation �(k, E ) = G−1
0 (k, E ) − G−1(k, E ).

Figure 3(a) plots the real part of the quasiparticle
self-energy of the valence band at �1 for different
disorder strengths. Due to disorder effects, the roots
of E − EF − E0(k) = Re �(E − EF ) correspond to the
quasiparticle dispersion Ek, implying a decrease in the energy
of quasiparticles. Furthermore, the elastic mean free time
is inversely proportional to the imaginary part of the
self-energy, given by τ = [h̄/ − 2 Im �(E − EF )], which
can be used to describe the decay time of quasiparticles.

FIG. 3. (a), (b) Real and (c), (d) imaginary parts of self-energy as
a function of energy for different disorder strengths (1 � W/t � 6)
of the valence band at �1 and �3, respectively. At �1/�3, with the
increase of disorder strength, the conduction and valence bands move
away/closer from/to the Fermi level.
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As shown in Fig. 3(c), the elastic mean free time at �1

gradually decreases with the increase of disorder strength.
Because of the particle-hole symmetry, the self-energy
obtained based on the eigenstate basis satisfies the following
relations, Re �(�1, E , αi, s) = − Re �(�1,−E , α j, s) and
Im �(�1, E , αi, s) = Im �(�1,−E , α j, s) (i 
= j), which
ensure that the dispersion relations are symmetric
with respect to the Fermi level. And we find that
Re �(�1, E , αi, s) = − Re �(�3,−E , α j, s) and Im �(�1, E ,

αi, s) = Im �(�3,−E , α j, s) (i = j), as shown in Figs. 3(b)
and 3(d). From a similar analysis, we find that the energy of
the quasiparticle at �3 increases, and the elastic mean free
time decreases with an increase of disorder strength.

Furthermore, we also explore the correction to the hopping
parameters induced by disorder. By doing a unitary trans-
formation, we transform the self-energy from the eigenstate
basis to the orbital-spin basis. Then, we can construct an
effective Hamiltonian including disorder, i.e., Heff = H0(k) +
Uk�(k, E )U †

k . Due to multiple scattering events, the small
elastic mean free time effectively broadens the spectral func-
tion. Therefore the corrected �1 and �2 are nonvanishing,
the bulk gap and side surface gap become closed (see
Appendix A). As functions of the running scale parameter,
the renormalized �1 and �2 go to zero [37], but they cannot
be used as a unique criterion for the phase transition in the
presence of disorder. The broadening of the energy spectrum
eventually leads to bulk gap closing.

III. PHASE TRANSITIONS

To precisely determine the phase boundaries, we nu-
merically calculate the localization length ξ on a quasi-
two-dimensional slice of essentially infinite length (1 × 106)
and finite area L2 by using the transfer-matrix method (see
Appendix B). The periodic condition is applied to eliminate
the possible hinge-state transport. We plot the normalized
localization length ξ/L as a function of W at E = EF for
different areas L2/a2 = 62, 82, 102, and 122 [see Fig. 4(a)].
One can find that there are two fixed points, WC1/t ≈ 5.8
and WC2/t ≈ 21.6. When W < WC1, ξ/L decreases with an
increase of L2, indicating that ξ/L converges to zero when
L2 → ∞, signaling a localized insulating phase, i.e., the 3D
chiral SOTI. When WC1 < W < WC2, ξ/L enlarges with an
increase of L, indicating that ξ/L diverges when L2 → ∞,
signaling a delocalized metallic phase. When W > WC2, ξ/L
behaves similarly to that in the weak disorder case, meaning
that it enters an Anderson insulating phase. Therefore, the
fixed points WC1 and WC2 are two critical disorder strengths
for the insulator-metal and metal-insulator phase transitions,
respectively. To build the phase diagram in the (E − EF ,W )
plane, we calculate the critical disorder strengths WC1 and WC2

for different energies, which define the phase boundaries [see
Fig. 4(b)].

IV. CONCLUSION

Based on accurate numerical calculation methods, we sys-
tematically analyze the disorder-driven phase transitions of
the 3D chiral SOTI in the presence of disorder. The DOS and
spectral function indicate that the side surface gap and bulk

FIG. 4. (a) Normalized localization length ξ/L as a function of
disorder strength W at E = EF calculated on quasi-two-dimensional
slices, with a length of 1 × 106 and different areas of L2/a2 = 62, 82,
102, and 122. WC1/t ≈ 5.8 and WC2/t ≈ 21.6 are two critical points.
(b) Phase diagram in the (E − EF ,W ) plane.

gap successively close at disorder strengths of WS/t = 3.5
and WB/t = 4.5, respectively. It is noted that the bulk gap is
only closed at one of the R4zT -invariant k points, i.e., �3.
We also obtain the accurate self-energy to build an effective
Hamiltonian, revealing that the close of the bulk gap ascribes
to the reduced elastic mean free time of quasiparticles, which
leads to a broadening of the spectral function. When the dis-
order strength is beyond WC1 and WC2, the 3D chiral SOTI can
be successively driven into two different phases: a diffusive
metallic phase and an Anderson insulating phase, respectively.
Our results provide a clear picture to distinguish the disorder-
driven phase transitions of a 3D chiral SOTI.
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APPENDIX A: RENORMALIZED PARAMETERS
INDUCED BY DISORDER

The relationship between renormalized hopping and other
energy parameters at �1 and �3 with the disorder strength is
shown in Table I.
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TABLE I. The relationship between renormalized parameters at
�1 and �3 with the disorder strength. M1 and M2 are the mass terms
of two orbitals, respectively.

M1 M2 �1 �2 ti

W/t = 0 2 2 1 1 −1
W/t = 1 1.98 1.98 1.02 1.02 −1
W/t = 2 1.93 1.93 1.07 1.07 −1
W/t = 3 1.84 1.84 1.16 1.16 −1
W/t = 4 1.75 1.75 1.25 1.25 −1
W/t = 5 1.73 − 0.1i 1.73 + 0.1i 1.27 1.27 −1
W/t = 6 1.61 − 0.48i 1.61 + 0.48i 1.39 1.39 −1

M1 M2 �1 �2 ti

W/t = 0 2 2 1 1 −1
W/t = 1 1.98 1.98 0.98 0.98 −1
W/t = 2 1.92 1.92 0.92 0.92 −1
W/t = 3 1.83 1.83 0.83 0.83 −1
W/t = 4 1.70 1.70 0.70 0.70 −1
W/t = 5 1.51 − 0.1i 1.51 + 0.1i 0.51 0.51 −1
W/t = 6 1.38 − 0.44i 1.38 + 0.44i 0.38 0.38 −1

APPENDIX B: THE TRANSFER-MATRIX METHOD

The localization length ξ describes the exponential de-
cay of the transmission probability t (E ; x, x′) of a electron

between two sites x and x′ in an infinite d-dimensional system
[52,53],

2

ξ
= − lim

|x−x′|→∞
〈ln t (E ; x, x′)〉

|x − x′| . (B1)

It can be obtained by using an iterative expression expressed
as (

�n+1

�n

)
= Tn

(
�n

�n−1

)
, (B2)

where

Tn =
([

t‖
n+1

]−1
(E − εn − H⊥) −[

t‖
n+1

]−1
t‖
n

1 0

)

is the transfer matrix, �n is the wave function at all sites of
the n slice, εn is the energy, H⊥ is the hopping Hamiltonian
in the nth slice, and t‖

n+1 is the diagonal matrix representing
the hopping elements connecting the n − 1 slice with the n
slice. The evolution of the wave function is given by the
product of the transfer matrices τk = Tk × Tk−1 × · · · × T1.
The eigenvalues of limk→∞(τ t

k × τk )1/2k exist and the smallest
Lyapunov exponent corresponds to the largest localization
length ξ .

[1] L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803
(2007).

[2] L. Fu and C. L. Kane, Phys. Rev. B 76, 045302 (2007).
[3] Y. B. Yang, Kai Li, L. M. Duan, and Y. Xu, Phys. Rev. B 103,

085408 (2021).
[4] H. Araki, T. Mizoguchi, and Y. Hatsugai, Phys. Rev. B 99,

085406 (2019).
[5] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Phys. Rev.

B 96, 245115 (2017).
[6] Z. Song, Z. Fang, and C. Fang, Phys. Rev. Lett. 119, 246402

(2017).
[7] M. Sitte, A. Rosch, E. Altman, and L. Fritz, Phys. Rev. Lett.

108, 126807 (2012).
[8] F. Zhang, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 110,

046404 (2013).
[9] F. Liu, Coshare Science 01, v3, 1 (2023).

[10] M. Ezawa, Phys. Rev. B 97, 155305 (2018).
[11] J. Ahn and B. J. Yang, Phys. Rev. B 99, 235125 (2019).
[12] Z. Wang, B. J. Wieder, J. Li, B. Yan, and B. A. Bernevig, Phys.

Rev. Lett. 123, 186401 (2019).
[13] M. Lin and T. L. Hughes, Phys. Rev. B 98, 241103(R) (2018).
[14] S. H. Kooi, G. van Miert, and C. Ortix, Phys. Rev. B 98, 245102

(2018).
[15] G. van Miert and C. Ortix, Phys. Rev. B 98, 081110(R) (2018).
[16] S. Franca, J. van den Brink, and I. C. Fulga, Phys. Rev. B 98,

201114(R) (2018).
[17] A. Matsugatani and H. Watanabe, Phys. Rev. B 98, 205129

(2018).

[18] F. Schindler, Z. Wang, M. G. Vergniory, A. M. Cook, A.
Murani, S. Sengupta, A. Y. Kasumov, R. Deblock, S. Jeon, I.
Drozdov et al., Nat. Phys. 14, 918 (2018).

[19] S. A. A. Ghorashi, T. L. Hughes, and E. Rossi, Phys. Rev. Lett.
125, 037001 (2020).

[20] C. A. Li, S. B. Zhang, J. Li, and B. Trauzettel, Phys. Rev. Lett.
127, 026803 (2021).

[21] A. K. Ghosh, T. Nag, and A. Saha, Phys. Rev. B 104, 134508
(2021).

[22] S. Saha, T. Nag, and S. Mandal, Europhys. Lett. 142, 56002
(2023).

[23] F. Schindler, A. M. Cook, M. G. Vergniory, Z. Wang, S. S. P.
Parkin, B. A. Bernevig, and T. Neupert, Sci. Adv. 4, eaat0346
(2018).

[24] O. Pozo, C. Repellin, and A. G. Grushin, Phys. Rev. Lett. 123,
247401 (2019).

[25] B. Fu, Z. A. Hu, and S. Q. Shen, Phys. Rev. Res. 3, 033177
(2021).

[26] S. Komori and K. Kondo, J. Phys. Commun. 4, 125005
(2020).

[27] H. Li and K. Sun, Phys. Rev. Lett. 124, 036401
(2020).

[28] A. Dutt, M. Minkov, I. A. D. Williamson, and S. Fan, Light:
Sci. Appl. 9, 131 (2020).

[29] Y. Yang, J. Lu, M. Yan, X. Huang, W. Y. Deng, and Z. Y. Liu,
Phys. Rev. Lett. 126, 156801 (2021).

[30] Y. You, T. Devakul, F. J. Burnell, and T. Neupert, Phys. Rev. B
98, 235102 (2018).

035303-5

https://doi.org/10.1103/PhysRevLett.98.106803
https://doi.org/10.1103/PhysRevB.76.045302
https://doi.org/10.1103/PhysRevB.103.085408
https://doi.org/10.1103/PhysRevB.99.085406
https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1103/PhysRevLett.119.246402
https://doi.org/10.1103/PhysRevLett.108.126807
https://doi.org/10.1103/PhysRevLett.110.046404
https://doi.org/10.61109/cs.202310.115
https://doi.org/10.1103/PhysRevB.97.155305
https://doi.org/10.1103/PhysRevB.99.235125
https://doi.org/10.1103/PhysRevLett.123.186401
https://doi.org/10.1103/PhysRevB.98.241103
https://doi.org/10.1103/PhysRevB.98.245102
https://doi.org/10.1103/PhysRevB.98.081110
https://doi.org/10.1103/PhysRevB.98.201114
https://doi.org/10.1103/PhysRevB.98.205129
https://doi.org/10.1038/s41567-018-0224-7
https://doi.org/10.1103/PhysRevLett.125.037001
https://doi.org/10.1103/PhysRevLett.127.026803
https://doi.org/10.1103/PhysRevB.104.134508
https://doi.org/10.1209/0295-5075/acd71a
https://doi.org/10.1126/sciadv.aat0346
https://doi.org/10.1103/PhysRevLett.123.247401
https://doi.org/10.1103/PhysRevResearch.3.033177
https://doi.org/10.1088/2399-6528/abd0d4
https://doi.org/10.1103/PhysRevLett.124.036401
https://doi.org/10.1038/s41377-020-0334-8
https://doi.org/10.1103/PhysRevLett.126.156801
https://doi.org/10.1103/PhysRevB.98.235102


SHEN, LI, NIU, AND QIAO PHYSICAL REVIEW B 109, 035303 (2024)

[31] O. Dubinkin and T. L. Hughes, Phys. Rev. B 99, 235132 (2019).
[32] C. Wang and X. R. Wang, Phys. Rev. Res. 2, 033521 (2020).
[33] C. Wang and X. R. Wang, Phys. Rev. B 103, 115118 (2021).
[34] J. H. Wang, Y. B. Yang, N. Dai, and Y. Xu, Phys. Rev. Lett. 126,

206404 (2021).
[35] A. L. Szabó and B. Roy, Phys. Rev. Res. 2, 043197 (2020).
[36] E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V.

Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).
[37] P. L. Zhao, X. B. Qiang, H. Z. Lu, and X. C. Xie, Phys. Rev.

Lett. 127, 176601 (2021).
[38] H. Q. Li, H. Y. Kee, and Y. B. Kim, Phys. Rev. B 106, 155116

(2022).
[39] Y. W. Lee and M. F. Yang, Phys. Rev. Lett. 130, 219701 (2023).
[40] J. R. Wang and C. J. Zhang, arXiv:2202.03417.
[41] E. V. Castro, M. P. López-Sancho, and M. A. H. Vozmediano,

Phys. Rev. B 92, 085410 (2015).
[42] Z. Qiao, Y. Han, L. Zhang, K. Wang, X. Deng, H. Jiang, S. A.

Yang, J. Wang, and Q. Niu, Phys. Rev. Lett. 117, 056802 (2016).
[43] Y. Kuno, Phys. Rev. B 100, 054108 (2019).
[44] S. S. Krishtopenko, M. Antezza, and F. Teppe, Phys. Rev. B

101, 205424 (2020).
[45] U. Chattopadhyay, S. Mittal, M. Hafezi, and Y. D. Chong, Phys.

Rev. B 103, 214201 (2021).

[46] Y. Zheng and T. Ando, Phys. Rev. B 65, 245420 (2002).
[47] C. A. Li, B. Fu, Z. A. Hu, J. Li, and S. Q. Shen, Phys. Rev. Lett.

125, 166801 (2020).
[48] P. M. Ostrovsky, I. V. Gornyi, and A. D. Mirlin, Phys. Rev. B

74, 235443 (2006).
[49] W. Zhu, Q. W. Shi, X. R. Wang, X. P. Wang, J. L. Yang, J. Chen,

and J. G. Hou, Phys. Rev. B 82, 153405 (2010).
[50] W. Zhu, W. Li, Q. W. Shi, X. R. Wang, X. P. Wang, J. L. Yang,

and J. G. Hou, Phys. Rev. B 85, 073407 (2012).
[51] B. Fu, W. Zhu, Q. W. Shi, Q. X. Li, J. L. Yang, and Z. Y. Zhang,

Phys. Rev. Lett. 118, 146401 (2017).
[52] A. MacKinnon and B. Kramer, Phys. Rev. Lett. 47, 1546

(1981).
[53] L. Sheng, D. Y. Xing, D. N. Sheng, and C. S. Ting, Phys. Rev.

B 56, R7053 (1997).
[54] S. Wu, L. Jing, Q. Li, Q. W. Shi, J. Chen, H. Su, X. Wang, and

J. Yang, Phys. Rev. B 77, 195411 (2008).
[55] W. Zhu, Q. W. Shi, X. R. Wang, J. Chen, J. L. Yang, and J. G.

Hou, Phys. Rev. Lett. 102, 056803 (2009).
[56] J. H. Pixley, P. Goswami, and S. Das Sarma, Phys. Rev. Lett.

115, 076601 (2015).
[57] H. Li, C. Z. Chen, H. Jiang, and X. C. Xie, Phys. Rev. Lett. 127,

236402 (2021).

035303-6

https://doi.org/10.1103/PhysRevB.99.235132
https://doi.org/10.1103/PhysRevResearch.2.033521
https://doi.org/10.1103/PhysRevB.103.115118
https://doi.org/10.1103/PhysRevLett.126.206404
https://doi.org/10.1103/PhysRevResearch.2.043197
https://doi.org/10.1103/PhysRevLett.42.673
https://doi.org/10.1103/PhysRevLett.127.176601
https://doi.org/10.1103/PhysRevB.106.155116
https://doi.org/10.1103/PhysRevLett.130.219701
https://arxiv.org/abs/2202.03417
https://doi.org/10.1103/PhysRevB.92.085410
https://doi.org/10.1103/PhysRevLett.117.056802
https://doi.org/10.1103/PhysRevB.100.054108
https://doi.org/10.1103/PhysRevB.101.205424
https://doi.org/10.1103/PhysRevB.103.214201
https://doi.org/10.1103/PhysRevB.65.245420
https://doi.org/10.1103/PhysRevLett.125.166801
https://doi.org/10.1103/PhysRevB.74.235443
https://doi.org/10.1103/PhysRevB.82.153405
https://doi.org/10.1103/PhysRevB.85.073407
https://doi.org/10.1103/PhysRevLett.118.146401
https://doi.org/10.1103/PhysRevLett.47.1546
https://doi.org/10.1103/PhysRevB.56.R7053
https://doi.org/10.1103/PhysRevB.77.195411
https://doi.org/10.1103/PhysRevLett.102.056803
https://doi.org/10.1103/PhysRevLett.115.076601
https://doi.org/10.1103/PhysRevLett.127.236402

