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Linear displacement current solely driven by the quantum metric
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Quantum metric and Berry curvature are the real part and imaginary part of the quantum geometric tensor,
respectively. The T -odd (T , time-reversal) nonlinear Hall effect driven by the quantum metric dipole, recently
confirmed in [Science 381, 181 (2023)] and [Nature (London) 621, 487 (2023)], established the geometric
duality to the T -even nonlinear Hall effect that driven by the Berry curvature dipole. Interestingly, a similar
geometric duality between the quantum metric and the Berry curvature, particularly for the linear response of
Bloch electrons, has not been established, although the T -odd linear intrinsic anomalous Hall effect (IAHE)
solely driven by the Berry curvature has been known for a long time. Herein, we develop the quantum theory
for displacement current under an AC electric field. Particularly, we show that the T -even component of the
linear displacement current conductivity (LDCC) is solely determined by the quantum metric, by both the
response theory and the semiclassical theory. Notably, with symmetry analysis we find that the T -even LDCC
can contribute a Hall current in T -invariant systems but with low symmetry, while its longitudinal component
is immune to symmetry. Furthermore, employing the model Hamiltonians, we arrive at a 1/μ (μ, chemical
potential) experimental observable enhancement of the displacement current owing to the divergent behavior of
quantum metric near Dirac point, similar to the IAHE at Weyl point. Our study reveals the band geometric origin
of the linear displacement current and establishes, together with the IAHE, the geometric duality for the linear
response of Bloch electrons. Additionally, our paper offers the intrinsic Hall effect in T -invariant materials,
which cannot be envisioned in DC transport in both linear and nonlinear regimes.
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I. INTRODUCTION

The quantum geometry [1] of Bloch electrons shows a
fundamental importance among various fascinating responses
of (topological) quantum materials [2–4] under electromag-
netic fields, as unveiled by manipulating the symmetry that
relates the responses to the band geometric quantities [5–8].
For instance, it has been well understood that the band geo-
metric quantity Berry curvature is responsible for the intrinsic
anomalous Hall effect (IAHE) observed in ferromagnetic met-
als [9], where the time-reversal (T ) symmetry is broken owing
to the IAHE conductivity tensor solely determined by the
T -odd Berry curvature [10], as illustrated in Fig. 1(b). Fur-
thermore, the Berry curvature dipole [13–16] that features the
T -even but P-odd (P , space-inversion) properties, can drive
the extrinsic nonlinear Hall effect (ENHE) in T -invariant but
P-broken systems, as illustrated in Fig. 1(d).

Apart from the well-known Berry curvature, the quan-
tum geometric tensor of Bloch electrons also contains a dual
band geometric quantity—the quantum metric [11,17,18],
which recently received much attention, but mainly in the
form of quantum metric dipole that usually appears in the
nonlinear transport of Bloch electrons [12,19–24] and fea-
tures the T -odd and P-odd properties. Among them, the
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quantum metric dipole driven intrinsic nonlinear Hall ef-
fect (INHE) [12,19,20], as illustrated in Fig. 1(c), has been
recently confirmed experimentally in antiferromagnetic topo-
logical insulator MnBi2Te4 [21,22] (that breaks P and T
symmetries). However, how the quantum metric itself is man-
ifested in the linear response of Bloch electrons (as the dual
effect of the IAHE) remains elusive, in sharp contrast with the
Berry curvature.

On the other hand, we notice that the responses discussed
above, as the nonlinear variants of the Ohm’s law [25], gen-
erally feature the Fermi-surface property [12,13,19,20] and
thereby can only be expected in metallic or gapless systems.
However, in addition to the conduction current that appears in
the metallic solids, the current in Maxwell’s equations [26] in
fact contains another contribution, namely the displacement
current that appears in the insulating solids [27]. Although
the connection between the linear/nonlinear responses and the
band geometric quantities of the conducting Bloch electrons
(electrons on the Fermi surface) has been well established,
how the displacement current (even at linear regime) relates to
the band geometric quantity is unexplored. In particular, as the
cousin of the conduction current, whether or not there exists a
Hall effect for the displacement current is also unknown.

In this paper, inspired by the intimate relation between the
electric polarization and the displacement current, we develop
the quantum theory for the linear displacement current under
an AC electric field based on the quantum response theory
within independent particle approximation. We show that the
linear displacement current conductivity (LDCC) comprises
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FIG. 1. Guided by symmetry, the quantum geometric tensor T =
g − i�/2 [11] can be fully probed by four current responses, where
g and � stand for the quantum metric and the Berry curvature,
respectively. (a) The displacement current probes the T -even quan-
tum metric (proposed in this paper). (b) The intrinsic anomalous
Hall effect (IAHE) probes the T -odd Berry curvature [9]. (c) The
intrinsic nonlinear Hall effect (INHE) probes the T -odd quantum
metric dipole ∝ v × g with v the velocity [12]. (d) The extrinsic
(proportional to the relaxation time τ ) nonlinear Hall effect (ENHE)
probes the T -even Berry curvature dipole ∝ v × � [13]. Note that
for the second-order nonlinear responses (c) and (d), the P symmetry
of the probed system must be broken, as regulated by the P-odd
quantum metric dipole and Berry curvature dipole.

both the T -even and the T -odd contributions. Particularly,
we reveal that the T -even DCC is solely determined by the
quantum metric. Remarkably, by symmetry analysis, we find
that the T -even DCC can allow a transverse component and
hence displays a displacement Hall current in T -invariant
systems but with low symmetry, while its longitudinal com-
ponent is less restricted by symmetry. As a benchmark, we
show that the obtained expressions in adiabatic limit can
also be derived by the semiclassical theory accurate up to
the second order. Furthermore, using the low-energy model
Hamiltonians, we find that the displacement current will be
significantly enhanced when the chemical potential is close to
the Dirac point where the quantum metric is divergent, similar
to the behavior of IAHE at Weyl point. Our study uncovers
the band geometric origin of the linear displacement current
and establishes, together with the IAHE, the geometric duality
for the linear response of Bloch electrons, as illustrated in
Figs. 1(a) and 1(b). In addition, our paper delivers the very
first intrinsic Hall effect in T -invariant systems, which cannot
appear in DC transport in both linear and nonlinear regimes,
particularly due to the T -odd nature of the intrinsic DC linear
and nonlinear conductivities.

II. DISPLACEMENT CURRENT FROM ELECTRIC
POLARIZATION

Before presenting the quantum theory, it is instructive
to give a heuristic argument on the origin of displacement

current. In terms of Maxwell’s classical electromagnetic the-
ory, for insulating or gapped systems, the conduction current
vanishes due to the lack of free charges. However, an AC
electric field Eβ (t ) = Eβ cos(ωt ) can generate a displacement
current density JD

β = ∂t Dβ , where Dβ ≡ Eβ (t ) + 4πε0Pβ (t ) is
the displacement field with ε0 and Pβ the vacuum dielectric
constant and the electric polarization induced by the posi-
tional shift of bound charges [28], respectively. Interestingly,
although the (spontaneous) electric polarization of crystalline
solids has been well understood through the geometric phase
of Bloch electrons [10], the displacement current seems not to
appreciate any geometrical effects and also Hall effect, as far
as we know.

Up to the first order of electric field, we find that Pβ (t ) can
be expressed as [10,29–34] (h̄ = e = 1),

Pβ (t ) = −
∑

n

∫
k

fn
[
Aβ

n + Aβ,E
n (t )

]
, (1)

where
∫

k ≡ ∫
dkd/(2π )d with d the dimension of the sys-

tem and fn is the equilibrium Fermi distribution function.
In Eq. (1), the intraband Berry connection Aβ

n contributes
the spontaneous or zero-field electric polarization [29–31,34],
while Aβ,E

n (t ) ≡ Gβα
n Eα (t ) is responsible for the field-induced

electric polarization linear in the electric field [35–37]. In
particular, Gβα

n is the Berry connection polarizability tensor
given by [19,21,22,38,39]

Gβα
n ≡ 2Re

∑
m

rβ
nmrα

mn

εn − εm
, (2)

where rβ
nm ≡ 〈un|i∂β |um〉 with m �= n (|un〉: the periodic part

of Bloch state) is the interband Berry connection and εn is the
energy for the nth band. We wish to mention that Gβα

n encodes
the information of local quantum metric gβα

nm = 2Re[rβ
nmrα

mn].
Particularly, both quantities possess the same symmetry trans-
formation.

By definition, taking the time derivative of field-induced
electric polarization, we obtain a linear displacement current
with a response equation

JD
β = σ D

βα (t )Eα, (3)

where

σ D
βα (t ) = ω sin(ωt )

∑
n

∫
k

fnGβα
n (4)

is the LDCC. Note that Eq. (3) together with Eq. (4) displays
a formal similarity to the IAHE since they are driven by the
real part and the imaginary part of the quantum geometric
tensor, respectively, as compared in Figs. 1(a) and 1(b). In
fact, they can be derived in a unified way, as will be shown
below. Interestingly, we find that σ D

βα may also include a
transverse component σ D

yx when the integral of Gyx
n does not

vanish. Therefore, a displacement Hall effect in T -invariant
systems can be expected due to T Gβα

n = Gβα
n .

We wish to remark that the intrinsic linear (charge)
Hall effect is forbidden by T symmetry in the DC case,
as dictated by the Onsager relation [9] or the T -odd
property of the response coefficient. In general, the
linear DC Hall conductivity can be decomposed as
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σαβ = σ in
αβ + τσ ex

αβ [40,41], where the first term is intrinsic
but T -odd while the second term is T -even but extrinsic due
to the presence of the relaxation time τ [42]. However, for
displacement current, we find that the time derivative for the
field-induced electric polarization replaces the role of τ in DC
case [41] and hence allows the intrinsic T -even linear Hall
effect for the displacement current, which cannot show up in
DC charge transport.

Up to now, we only present a qualitative discussion. Partic-
ularly, Eq. (4) is a hand waving derivation and the rigorous one
should be obtained with quantum mechanical calculations, as
detailed below. Additionally, we wish to remark that Eq. (4)
seems not applicable to gapless systems where the concept of
electric polarization is not well defined [40] particularly due
to the static electric screening. However, this constraint can be
relaxed in AC transport with a high frequency [43].

III. THE QUANTUM THEORY FOR
DISPLACEMENT CURRENT

In this section, we formulate the quantum theory for
displacement current under an AC electric field based
on the quantum response theory [6,44,45]. To be spe-
cific, we start from the quantum Liouville equation for
the density matrix element ρmn within independent particle
approximation [23,24,44],

i
∂

∂t
ρmn = εmnρmn + i(ρmn);kα

Eα (t )

+
∑

l

[rα
mlρln(t ) − ρml (t )rα

ln]Eα (t ), (5)

where (ρmn);kα
= [∂α − i(Aα

m − Aα
n )]ρmn with ∂α ≡ ∂/∂kα ,

rα
ml is the interband Berry connection and Eα (t ) =

Eα cos(ωt ) = 1
2

∑
ω1

Eαeiω1t with ω1 = ±ω is the AC electric
field. Equation (5) can be recursively solved to obtain a series
in increasing powers of the electric field [23,24,44], namely
ρmn = ∑∞

n=1 ρ (n−1)
mn , where ρ (n−1)

mn is proportional to E (n−1)
α .

To our purpose, with ρ (0)
nm = δnm fn [44], the density matrix

ρ (1)
nm at the first order of electric field can be easily obtained

from Eq. (5), which is

ρ (1)
mn = 1

2

∑
ω1

[iδmn∂α fm + fnmrα
mn]

Eαe−i(ω1+iη)t

ω1 − εmn + iη
, (6)

where fnm = fn − fm and η → 0+ is an infinitesimal quantity.
Correspondingly, the current density at the first order of the
electric field, defined as Jβ ≡ ∑

mn

∫
k vβ

nmρ (1)
mn , is found to be

Jβ =
∑

n

∑
ω1

∫
k
vβ

n ∂α fnEα

ie−i(ω1+iη)t

2(ω1 + iη)

+
∑
mn

∑
ω1

∫
k

fnmrβ
nmrα

mnEα

iεnme−i(ω1+iη)t

2(ω1 − εmn + iη)
, (7)

where we have used vβ
nm = iεnmrβ

nm for n �= m. Note that the
first term of Eq. (7) is irrelevant to the band geometry of
Bloch electrons and corresponds to the familiar extrinsic lin-
ear Drude current in DC limit due to limω1→0 i/(ω1 + iη) =
τ [13]. Besides the extrinsic linear Drude current, we note
that Eq. (7) (particularly by the nonresonant contribution of

its second term) further contains the well-known intrinsic
anomalous Hall current and the overlooked linear dis-
placement current phenomenally discussed above, which is
explicitly expressed as

JN
β =

∑
mn

∑
ω1

∫
k

fnmrβ
nmrα

mnEα

iεnme−iω1t

2(ω1 − εmn)
. (8)

At this stage, by writing εnm/(ω1 − εmn) = 1 − ω1/(ω1 −
εmn), we find that Jβ can be divided into (see Appendix A)

JN
β = JC

β + JD
β , (9)

where JC is the intrinsic AC conduction Hall current, given by

JC
β =

∑
n

∫
k

fn�
βα
n Eα cos ωt, (10)

where �βα
n = 2

∑
m Im[rβ

nmrα
mn] is the Berry curvature. In DC

limit, Eq. (10) is nothing but the intrinsic anomalous Hall
current. Furthermore, JD

β = ∂t Pβ stands for the intrinsic dis-
placement current, where Pβ is the AC polarization defined
by

Pβ =
∑

n

∫
k

fn[Gβα
n cos ωt + Fβα

n sin ωt]Eα. (11)

Notably, Gαβ
n and Fαβ

n in Eq. (11) encode the information of
quantum metric and Berry curvature, respectively, given by

Gβα
n =

∑
m

εmn

ω2 − ε2
mn

2Re
[
rβ

nmrα
mn

]
, (12)

Fβα
n =

∑
m

ω

ω2 − ε2
mn

2Im
[
rβ

nmrα
mn

]
. (13)

Under T symmetry, it is easy to show that T Gαβ
n = Gαβ

n
while T Fαβ

n = −Fαβ
n due to T rα

nm = rα
mn, and therefore the

displacement current in general includes both the T -even and
T -odd contributions, similar to the DC shift and injection
photocurrent under light illumination [44,46]. Throughout this
paper, we focus on the T -invariant systems and hence we will
only consider the first term of Eq. (11). Furthermore, under the
adiabatic limit, we have εmn 	 ω and therefore Gβα

n reduces
to Gβα

n given by Eq. (2). As a result, the AC polarization
Pβ particularly due to the first term of Eq. (11) recovers the
field-induced polarization given by the second term of Eq. (1)
and the time derivative of Pβ further gives the LDCC Eq. (4)
phenomenally discussed above.

At this stage, we wish to remark that the LDCC given by
Eq. (4) features a Fermi-sea form [23,25,47], which means
that the expression for JD

β can be used for the insulating and
also the metallic systems. Furthermore, we emphasize that
the intrinsic linear displacement current given by Eq. (3) [or
the time derivative of the first term of Eq. (11) particularly
under the adiabatic limit] is geometrically dual to Eq. (10),
which, respectively, is driven by the Berry curvature and the
quantum metric, as compared in Figs. 1(b) and 1(a). Note that
the displacement current vanishes in the DC limit (ω → 0)
while Eq. (10) survives in that limit. To close this section,
we summarize that Eqs. (11) and (12) [which gives Eqs. (3)
and (4) under the adiabatic limit] are the main results in
this paper, which can also be derived by the semiclassical
theory [10], see Appendix B.
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FIG. 2. (a) The band dispersion for Eq. (15) along kx direction. Here the red-vertical arrow measures the gap and the horizontal-dashed line
indicates the chemical potential μ. (b) The μ dependence for the longitudinal and Hall displacement current, given by Eqs. (18) and (20),
respectively, by choosing the driving frequency ω = 0.01 meV. Here the vertical shadow highlights the in-gap current plateau. (c) The
frequency dependence for the longitudinal and Hall displacement current when μ is placed inside the gap. Here the dashed-grey line indicates
the global linear dependence on ω. The k-resolved distribution for the quantum metric (d) gxx

− , (e) gyy
− , and (f) gxy

− [here a term svykxσx is added
to break the mirror symmetries of Eq. (15)].

IV. SYMMETRY CONSTRAINTS

After establishing the quantum theory for the displace-
ment current, we now discuss the symmetry constraints for
its conductivity, particularly on its T -even component from
32 crystallographic point groups. Note that the number of
independent components of a physical tensor is determined by
Neumann’s principle [48]. Particularly, for the rank-2 LDCC
tensor, we have

σ D
βα = Rββ ′Rαα′σ D

β ′α′ , (14)

where Rββ ′ stands for the matrix element for the point group
operation R. Note that Eq. (14) has been implemented by
Bilbao Crystallographic Server [49]. As a consequence, by
defining the Jahn notation [V 2] [50] for σ D

βα , we find that σ D
ββ is

allowed by all 32 crystallographic point groups while σ D
βα with

α �= β can only appears in crystallographic point groups with
low symmetry: 1,−1, 2, m, 2/m. Here we wish to remark that
the transverse components of σ D

βα offers the very first intrinsic
Hall effect in time-reversal-invariant systems, which cannot
appear in DC transport since all the intrinsic DC transport
coefficients feature the T -odd nature.

V. MODEL CALCULATIONS

In this section, we illustrate our theory with model
Hamiltonians.

A. Two-dimensional massive Dirac model

In this subsection, we employ a two-band massive model to
illustrate our general proposal. The low-energy Hamiltonian
to describe the massive Dirac fermions located at momenta �

is given by [13]

Hs� = vxkxσy − svykyσx + �σz, (15)

where σi is the Pauli matrix for pseudospin, s = ±1, �

controls the gap magnitude, and vx/y is the Fermi velocity.
For simplicity, we ignore the tilt term sαky in Ref. [13].
The band dispersion for Eq. (15) is ε± = ±h with h =√

�2 + v2
x k2

x + v2
y k2

y , where + (−) denotes the conduction

(valence) band, as shown in Fig. 2(a). Note that Eq. (15)
possesses the mirror symmetry My due to Mys = −s, which
indicates that the transverse LDCC vanishes by Eq. (14). For
the longitudinal LDCC, using Eq. (12) we find

Gxx
± = ±v2

x

(
v2

y k2
y + β2

)
4h3(h2 − ω2)

, (16)

Gyy
± = ±v2

y

(
v2

x k2
x + β2

)
4h3(h2 − ω2)

. (17)

It is easy to see that both Gxx
± and Gyy

± that are even in kx and ky

can lead a nonvanishing longitudinal current. We emphasize
that Gxx

± and Gyy
± encode the diagonal contribution of the quan-

tum metric, as displayed in Figs. 2(d) and 2(e), respectively.
At zero temperature, the longitudinal displacement current
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FIG. 3. (a) The band dispersion for Eq. (21) along kx direction. Here the vertical shadow highlights regime that the displacement current
dominates. In addition, the horizontal-dashed line also indicates the chemical potential. (b) The μ dependence for the longitudinal and Hall
displacement current, given by Eq. (22), by choosing the driving frequency h̄ω = 10−4 meV. Here the dashed-red line highlights the divergent
behavior at μ = 0. (c) The frequency dependence for the longitudinal and Hall displacement current when μ = 0.1 meV. Here the dashed-grey
line indicates the global linear dependence on ω. The k-resolved distribution for the quantum metric (d) gxx

− , (e) gyy
− , and (f) gxy

− .

can be directly calculated as (see Appendix C 1)

JD
x

Ex
= JD

y

Ey
=

⎧⎪⎪⎨
⎪⎪⎩

e2 �27ω sin(ωt )

48π |μ|3 μ /∈ [−�,�],

e2 7ω sin(ωt )

48π�
μ ∈ [−�,�],

(18)

where μ is the chemical potential. Note that have used � 	
h̄ω and vx = vy [13]. Here the elementary charge e is restored
by dimension analysis. By Eq. (18), we find that the longitu-
dinal displacement current will quickly decrease to zero when
the chemical potential μ is away from the gap, whereas a
longitudinal LDCC plateau can be obtained when μ is located
inside the gap, as shown in Fig. 2(b). Note the the longitudinal
displacement current shows a global linear dependence on
the driving frequency ω, as shown in Fig. 2(c) and therefore
will disappear in DC transport. For the gapped situation, one
can easily obtain the AC polarization from the displacement
current, Px/Ex = Py/Ey = 7e2/(48π�) cos(ωt ), which shows
explicitly that AC polarization will be stronger when the gap
decreases.

To acquire a nonzero displacement Hall current, we break
the mirror symmetry My of Eq. (15) by introducing an ad-
ditional term svykxσx, which may be physically realized by
strain effects [51], and then we have

Gxy
± = ∓ v2

y

(
v2

x kxky − �2
)

4
(
v2

x k2
x + v2

y (kx + ky)2 + �2
)5/2 , (19)

where we have adopted the adiabatic limit. Equation (19)
encodes the off-diagonal information of the quantum metric,
as shown in Fig. 2(f). In a similar way, the displacement Hall

current at zero temperature is found to be (see Appendix C 2)

JD
x

Ey
=

⎧⎪⎪⎨
⎪⎪⎩

−e2 �2ω sin(ωt )

12π |μ|3 μ /∈ [−�,�],

−e2 ω sin(ωt )

12π�
μ ∈ [−�,�],

(20)

which shows the same behavior with the longitudinal dis-
placement current, as compared in Figs. 2(b) and 2(c). Note
that the magnitude of the linear displacement current is deter-
mined by the dimensionless factor ∼h̄ω/�, which indicates
that this effect will be significantly enhanced when the gap
� → 0 when the driving frequency ω is fixed, as shown
below.

B. Two-dimensional spin-orbit-coupled electron gas

Next we evaluate the displacement current with a gap-
less model. Particularly, we consider the low-energy effective
Hamiltonian for two-dimensional spin-orbit-coupled electron
gas with crystallographic point group 2, which is constructed
by adding Rashba and Dresselhaus spin-orbit coupling and is
written as [52–54]

H = E0 + λR(kyσx − kxσy) + λD(kxσx − kyσy), (21)

where E0 = k2/2m with k2 = k2
x + k2

y . The band
dispersions for Eq. (21) are given by ε± = E0 ±√

(λDky + λRkx )2 + (λDkx + λRky)2 with ± the valance band
and conduction band, respectively, as shown in Fig. 3(a).
Focusing on the band crossing regime [as highlighted by the
vertical shadow in Fig. 3(a)], which in fact corresponds to the
massless Dirac Hamiltonian, the linear displacement current
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under adiabatic limit at zero temperature can be evaluated
(see Appendix C 3),

JD
a = e2

h̄

h̄ω

|μ|CabEb sin(ωt ) a, b ∈ {x, y}, (22)

where Cxy = −λRλD/[8π (λ2
R − λ2

D)] and Cxx = Cyy = (λ2
R +

λ2
D)/[16π (λ2

R − λ2
D)]. Note that Eq. (22) shows a |μ|−1 depen-

dence and does not show a conductivity plateau due to the lack
of a finite gap, as shown Fig. 3(b). Due to this divergent behav-
ior, an enhanced displacement current can be achieved with
a relatively low driving frequency compared to the gapped
situation, as shown in Fig. 3(c). In addition, in Figs. 3(d)–3(f),
the corresponding k-resolved distribution for the diagonal and
off-diagonal components of the quantum metric are shown,
which are responsible for the divergent behavior of the linear
displacement current, in a similar way to the divergent IAHE
in the point-node Weyl point.

VI. SUMMARY

In summary, we formulate the quantum theory for displace-
ment current under an AC electric field. We show that the
T -even LDCC is solely determined by the quantum metric.
In terms of symmetry analysis, we find that the longitudinal
component of the LDCC is immune to symmetry meanwhile
its Hall component can be expected even in T -invariant sys-
tems but with low symmetry, such as the strained transition
metal dichalcogenides (TMDCs) monolayers, the strained sur-
face of topological crystalline insulators, and the insulating
two-dimensional chiral twisting graphene or TMDCs [55–59].
Furthermore, our model calculations demonstrate that an en-
hanced displacement current can be achieved in the massless
Dirac point, such as in two-dimensional graphene monolayer,
where the quantum metric shows a divergent behavior like the
Berry curvature in the Weyl point.

To the experiment aspect, we note that a (0.1–10) GHz
AC electric field may be applied to generate an observable
displacement current signal based on our model calculations.
We wish to mention that such a high-frequency AC electric
field [60] has been used to generate the nonlinear Hall signal
driven by the Berry curvature dipole. Furthermore, the lock-in
technique operated at GHz regime [7] may be employed to
detect the generated longitudinal and transverse AC currents.
In addition, the linear dependence on chemical potential μ

particularly near gap closing point highlights the gate tunabil-
ity in experiments [61].

Last but not least, our paper reveals the band geometric
origin of the linear displacement current and in turn, offers a
desirable tool to detect the quantum metric of Bloch electrons
in quantum materials. Importantly, our paper together with the
IAHE establishes the geometric duality for the linear response
of Bloch electrons. In addition, the transverse displacement
current also provides the very first Hall effect in T -invariant
materials, which is forbidden by T symmetry in DC transport.
Beyond these, the linear displacement current in point-node
Weyl semimetals (which also appreciates the 1/μ divergent
behavior) may be employed to realize the low-energy high-
speed photodetection particularly in terahertz regime [62–64],
which will be explored in the future.
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APPENDIX A: THE DETAILED DERIVATIONS
FOR EQS. (10)–(13)

In this Appendix, we show the detailed derivation for
Eqs. (10)–(13) given in the main text. Particularly, by writing

εnm

ω1 − εmn
= 1 − ω1

ω1 − εmn
, (A1)

we find that JN
β given by Eq. (8) in the main text can be divided

into

JN
β = JC

β + JD
β , (A2)

where

JC
β ≡ 1

2

∑
nm

∑
ω1=±ω

∫
k

fnmrβ
nmrα

mnEαie−iω1t

=
∑
nm

∫
k

fnmrβ
nmrα

mnEαi cos(ωt )

=
∑

n

∫
k

fn�
βα
n Eα cos ωt, (A3)

as given by Eq. (10) in the main text. Here the last term
is obtained by interchanging the dummy index and �βα

n =
i
∑

m(rβ
nmrα

mn − rα
nmrβ

mn) is the Berry curvature. Furthermore,
for the remaining term of JN

β , we have

JD
β =

∑
nm

∑
ω1

fnmrβ
nmrα

mnEα

−iω1e−iω1t

2(ω1 − εmn)
= ∂t Pβ (t ), (A4)

where

Pβ ≡
∑
nm

∑
ω1

fnmrβ
nmrα

mnEα

e−iω1t

2(ω1 − εmn)

=
∑
nm

fnmrβ
nmrα

mnEα

[
eiωt

2(−ω − εmn)
+ e−iωt

2(ω − εmn)

]

=
∑
nm

fnmrβ
nmrα

mnEα

εmn cos(ωt ) − iω sin(ωt )

ω2 − ε2
mn

=
∑

n

∫
k

fn[Gβα
n cos ωt + Fβα

n sin ωt]Eα, (A5)

as given by Eq. (11) in the main text. Note that the last term of
Eq. (A5) is also obtained by interchanging dummy index and
Gαβ

n and Fαβ
n , respectively, is defined as

Gβα
n =

∑
m

εmn

ω2 − ε2
mn

2Re[rβ
nmrα

mn], (A6)

Fβα
n =

∑
m

ω

ω2 − ε2
mn

2Im[rβ
nmrα

mn], (A7)

as given by Eqs. (12) and (13) in the main text.
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APPENDIX B: THE SEMICLASSICAL FORMULATION FOR DISPLACEMENT CURRENT

In this Appendix, we show that the displacement current can also be derived with the semiclassical theory accurate up to
the second order of the electric field. In particular, under a time-dependent but slowly perturbed electric field, the semiclassical
equation of motions for Bloch electrons up to the second order of electric field are given by [10,19,34,65,66]

ṙ = v̄k − k̇ × �̄ − �̄kt , k̇ = −E(t ), (B1)

where v̄k = ∇kε̄k is the band velocity that considers the field-induced correction, �̄ = ∇k × Ā is the Berry curvature that also
considers the field-induced correction, and �̄α

kt = ∂αAt − ∂tĀα is the Berry curvature defined in the (k, t ) parameter space,
where At = 〈ū|i∂t |ū〉 with |ū〉 the time-dependent Bloch state, and Āα = Aα + Aα,E stands for the Berry connection up to the
first order of electric field. By solving Eq. (B1), we find

ṙ = v̄k + E(t ) × �̄ − �̄kt . (B2)

Correspondingly, the intrinsic current density, defined as J = ∫
k f ṙ, is given by

J =
∫

k
f [v̄k + E(t ) × �̄ − �̄kt ]. (B3)

Furthermore, by restoring the band summation and focusing on the linear intrinsic current response, from the last two terms of
Eq. (B3) we obtain

Jβ =
∑

n

∫
k

fn[�βα
n Eα (t ) + Gβα

n ∂t Eα (t )], (B4)

which corresponds to the conduction current induced by Berry curvature and the displacement current induced by quantum
metric, respectively, as given by Eq. (10) and the adiabatic contribution of Eq. (12) [that is Eq. (4)] in quantum theory,
respectively. Note that the first term v̄ of Eq. (B3) cannot contribute a linear current due to ε̄n = ε − 1/2Eα (t )Gαβ

n Eβ [40].
In addition, for the last term of Eq. (B3), we have used Aα,E

n = Gβα
n Eα (t ) for ∂tĀα

n and ignored ∂αAt
n since At

n ≡ 〈ūn|i∂t |ūn〉
with |ūn〉 = |un〉 + ∑

m �=n(E · rmn/εmn)|um〉 cannot lead a contribution linear in the electric field. Finally, we wish to remark
that the semiclassical formulation is also valid for gapless systems since the concept of electric polarization is not used in the
derivation. In fact, the static screening for metal in AC transport is not well defined [43].

APPENDIX C: THE CALCULATION DETAILS FOR EQS. (18), (20), AND (22)

In this Appendix, we present the calculation details for Eqs. (18), (20), and (22), given in the main text.

1. Eq. (18)

For Dirac Hamiltonian Eq. (15), the frequency-dependent integrand for the nonvanishing displacement current conductivity
is reproduced as

Gxx
± = ±v2

x

(
v2

y k2
y + �2

)
h3(4h2 − ω2)

, Gyy
± = ±v2

y

(
v2

x k2
x + �2

)
h3(4h2 − ω2)

, (C1)

where h2 = v2
x k2

x + v2
y k2

y + β2. When the chemical potential μ ∈ [−�,�], at zero temperature we find that

JD
x = −Exω sin(ωt )

∫
k
Gxx

− = −Exω sin(ωt )
∫∫

dkxdky

4π2

v2
x

(
v2

y k2
y + �2

)
(
v2

x k2
x + v2

y k2
y + �2

)3/2[
ω2 − 4

(
v2

x k2
x + v2

y k2
y + �2

)]
= −Exω sin(ωt )vx

4π2vy

∫∫
dk̄xdk̄y

k̄2
y + �2(

k̄2
x + k̄2

y + �2
)3/2[

ω2 − 4
(
k̄2

x + k̄2
y + �2

)] (C2)

where we have set k̄x = vxkx and k̄y = vyky. Let (k̄x, k̄y) = k̄(cos θ, sin θ ), we find

JD
x = −Exω sin(ωt )vx

4π2vy

∫ +∞

0

∫ 2π

0
k̄dk̄dθ

k̄2 sin2 θ + �2

(k̄2 + �2)3/2[ω2 − 4(k̄2 + �2)]

= −Exω sin(ωt )vx

4πvy

∫ +∞

0
k̄dk̄

k̄2 + 2�2

(k̄2 + �2)3/2[ω2 − 4(k̄2 + �2)]
(C3)
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Furthermore, let u2 = k̄2 + �2, we have k̄dk̄ = udu and find

JD
x = −Exω sin(ωt )vx

4πvy

∫ +∞

�

u2 + �2

u3(ω2 − 4u2)
udu = −Exω sin(ωt )vx

4πvy

(∫ +∞

�

1

ω2 − 4u2
du + �2

∫ +∞

�

1

u2(ω2 − 4u2)
du

)

= −�2Exω sin(ωt )vx

4πvy

∫ +∞

�

[
1

2ω�2

(
1

ω − 2u
+ 1

ω + 2u

)
+ 1

ω2u2
+ 2

ω3

(
1

ω + 2u
+ 1

ω − 2u

)]
du

= −�2Ex sin(ωt )vx

4πvy

[
1

2�2

(
1

2
ln |2u + ω

2u − ω
|
)+∞

�

+ 1

ω

(
−1

u

)+∞

�

+ 2

ω2

(
1

2
ln |2u + ω

2u − ω
|
)+∞

�

]

= −�2Ex sin(ωt )vx

4πvy

[
1

ω�
−

(
1

4�2
+ 1

ω2

)
ln

∣∣∣∣2� + ω

2� − ω

∣∣∣∣
]
, (C4)

Following a similar way, we have

JD
y = −�2Ey sin(ωt )vy

4πvx

[
1

ω�
−

(
1

4�2
+ 1

ω2

)
ln

∣∣∣∣2� + ω

2� − ω

∣∣∣∣
]
. (C5)

In addition, when the chemical potential μ penetrates the lower band, we find

JD
x = −Exω sin(ωt )vx

4πvy

∫ +∞
√

μ2−�2

k̄2 + 2�2

(k̄2 + �2)3/2[ω2 − 4(k̄2 + �2)]
k̄dk̄, (C6)

JD
y = −Eyω sin(ωt )vy

4πvx

∫ +∞
√

μ2−�2

k̄2 + 2�2

(k̄2 + �2)3/2[ω2 − 4(k̄2 + �2)]
k̄dk̄, (C7)

which can be similarly calculated as

JD
x = −�2Ex sin(ωt )vx

4πvy

[
1

ω|μ| −
(

1

4|μ|2 + 1

ω2

)
ln

∣∣∣∣2|μ| + ω

2|μ| − ω

∣∣∣∣
]
, (C8)

JD
y = −�2Ey sin(ωt )vy

4πvx

[
1

ω|μ| −
(

1

4|μ|2 + 1

ω2

)
ln

∣∣∣∣2|μ| + ω

2|μ| − ω

∣∣∣∣
]
. (C9)

This is true when the Fermi level penetrates the upper band, where we need to sum over the bands. By assuming that � 	 h̄ω,
we find

ln

∣∣∣∣1 + ω/2|�|
1 − ω/2|�|

∣∣∣∣ = ω/|�| + ω3/3|�|3 + O(ω5/|�|5), (C10)

ln

∣∣∣∣1 + ω/2|μ|
1 − ω/2|μ|

∣∣∣∣ = ω/|μ| + ω3/3|μ|3 + O(ω5/|μ|5), (C11)

therefore we finally obtain

JD
x =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e2

h̄

7h̄ωEx sin(ωt )vx

48π�vy
, μ ∈ [−�,�]

e2

h̄

7h̄ω�2Ex sin(ωt )vx

48π |μ|3vy
, μ /∈ [−�,�]

, JD
y =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e2

h̄

7h̄ωEy sin(ωt )vy

48π�vx
, μ ∈ [−�,�]

e2

h̄

7h̄ω�2Ey sin(ωt )vy

48π |μ|3vx
, μ /∈ [−�,�]

(C12)

which gives the Eq. (18) by taking vx = vy in the main text, where e and h̄ are restored by dimension analysis.

2. Eq. (20)

By introducing an additional term svykxσx into Eq. (15) (that breaks mirror symmetry My), the off-diagonal integrand under
the adiabatic limit is given by

Gxy
± = ∓ v2

y

(
v2

x kxky − �2
)

4
(
v2

x k2
x + v2

y (kx + ky)2 + �2
)5/2 = ∓ v2

x

(
v2

x k2 sin θ cos θ − �2
)

4
[
v2

x k2(cos2 θ + 1 + 2 sin θ cos θ ) + �2
]5/2 , (C13)
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where we have assumed vx = vy and used the polar coordinate, k = k(cos θ, sin θ ). When the chemical potential μ is inside the
gap, we find

σ D
xy ≡ Jx

ωEy sin ωt
= 1

4π2

∫ ∞

0

∫ 2π

0

v2
x

(
v2

x k2 sin θ cos θ − �2
)

4
[
v2

x k2(cos2 θ + 1 + 2 sin θ cos θ ) + �2
]5/2 kdkdθ

= 1

8π2

∫ ∞

0

∫ 2π

0

v2
x

(
v2

x k2 sin θ cos θ − �2
)

4
[
v2

x k2(cos2 θ + 1 + 2 sin θ cos θ ) + �2
]5/2 dk2dθ. (C14)

Let u = v2
x k2(cos2 θ + 1 + 2 sin θ cos θ ) + �2, we find

k2 = u − �2

v2
x (cos2 θ + 1 + 2 sin θ cos θ )

, dk2 = du

v2
x (cos2 θ + 1 + 2 sin θ cos θ )

. (C15)

Therefore, we have

σ D
xy = 1

32π2

(∫ ∞

�2

∫ 2π

0

v4
x sin θ cos θ (u − �2)

v4
x (cos2 θ + 1 + 2 sin θ cos θ )2u5/2

dudθ −
∫ ∞

�2

∫ 2π

0

v2
x �

2

v2
x (cos2 θ + 1 + 2 sin θ cos θ )u5/2

dudθ

)

= − 1

12π�
(C16)

where we have used ∫ ∞

�2

1

u5/2
du = 2

3�3
,

∫ ∞

�2

1

u3/2
du = 2

�
, (C17)

and ∫ 2π

0

sin θ cos θ

(cos2 θ + 1 + 2 sin θ cos θ )2
dθ = −π,

∫ 2π

0

1

(cos2 θ + 1 + 2 sin θ cos θ )
dθ = 2π. (C18)

In a similar way, when the chemical potential μ penetrates the bands, we find

σ D
xy = − �2

12|μ|3 . (C19)

Equation (C16) together with Eq. (C19) gives the Eq. (20) in the main text.

3. Eq. (22)

Within the adiabatic limit, Gab
± reduces to the Berry connection polarizability tensor Gab

± , which for Eq. (21) are given by

Gxx
± = ±

(
λ2

D − λ2
R

)2
k2

y

4
[
(λDky + λRkx )2 + (λDkx + λRky)2

]5/2 , (C20)

Gyy
± = ±

(
λ2

D − λ2
R

)2
k2

x

4
[
(λDky + λRkx )2 + (λDkx + λRky)2

]5/2 , (C21)

Gyx
± = ∓

(
λ2

D − λ2
R

)2
kxky

4
[
(λDky + λRkx )2 + (λDkx + λRky)2

]5/2 . (C22)

We first focus on the Hall component. Particularly, when the chemical potential μ penetrates the lower band, at zero temperature
we find

JD
y = ωEx sin(ωt )

∫
k
�(μ − ε−)Gxy

− = ωEx sin(ωt )

(2π )2

∫∫
�(μ − ε−)

(
λ2

D − λ2
R

)2
kxky

4
[
(λDky + λRkx )2 + (λDkx + λRky)2

]5/2 dkxdky. (C23)

Let

x = λDky + λRkx, y = λDkx + λRky, (C24)

we find

kx = λRx − λDy

λ2
R − λ2

D

, ky = λDx − λRy

λ2
D − λ2

R

.
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Therefore (
λ2

R − λ2
D

)2
k2

x = λ2
Rx2 + λ2

Dy2 − 2λRλDxy,
(
λ2

R − λ2
D

)2
k2

y = λ2
Dx2 + λ2

Ry2 − 2λRλDxy, (C25)(
λ2

R − λ2
D

)2
kxky = (

λ2
R + λ2

D

)
xy − λRλD(x2 + y2), ε± = ±

√
x2 + y2. (C26)

where we have dropped the E0 term in ε± by focusing on the linear dispersion regime. Correspondingly, the Jacobi determinant
is given by

J =
∣∣∣∣∂ (kx, ky)

∂ (x, y)

∣∣∣∣ =

⎛
⎜⎜⎜⎝

+ λR

λ2
R − λ2

D

− λD

λ2
R − λ2

D

+ λD

λ2
D − λ2

R

− λR

λ2
D − λ2

R

⎞
⎟⎟⎟⎠ = λ2

R − λ2
D(

λ2
R − λ2

D

)2 = 1

λ2
R − λ2

D

. (C27)

Substituting Eqs. (C24)–(C27) into Eq. (C23) we obtain

JD
y = −λRλDωEx sin(ωt )

16π2
(
λ2

R − λ2
D

) ∫∫
�(μ +

√
x2 + y2)

1

(x2 + y2)3/2
dxdy = −λRλDωEx sin(ωt )

16π2
(
λ2

R − λ2
D

) ∫ ∞

0

∫ 2π

0
�(μ + ρ)

1

ρ3
ρdρdθ

= −λRλDωEx sin(ωt )

8π
(
λ2

R − λ2
D

) ∫ ∞

−μ

1

ρ2
dρ = −e2

h̄

h̄ω

|μ|CyxEx sin(ωt ), (C28)

as given by Eq. (22) in the main text, where Cyx = λRλD/[8π (λ2
R − λ2

D)] and we have restored the e and h̄ by dimension analysis.
Note that we obtain the same result when the chemical potential μ penetrates the upper band, which can be derived as follows:

JD
y = −λRλDωEx sin(ωt )

8π
(
λ2

R − λ2
D

) ∫ ∞

0

1

ρ2
dρ + λRλDωEx sin(ωt )

8π
(
λ2

R − λ2
D

) ∫ μ

0

1

ρ2
dρ = −e2

h̄

h̄ω

|μ|CyxEx sin(ωt ). (C29)

In a similar way, the longitudinal linear displacement current can be evaluated as

JD
a = e2

h̄

h̄ω

|μ|CaaEa sin(ωt ), (C30)

as also given by Eq. (22) in the main text, where Caa = (λ2
R + λ2

D)/[16π (λ2
R − λ2

D)].

[1] P. Törmä, Phys. Rev. Lett. 131, 240001 (2023).
[2] Y. Tokura, M. Kawasaki, and N. Nagaosa, Nat. Phys. 13, 1056

(2017).
[3] B. Keimer and J. E. Moore, Nat. Phys. 13, 1045 (2017).
[4] J. W. Xiao and B. H. Yan, Nat. Rev. Phys. 3, 283 (2021).
[5] J. Y. Ahn, G. Y. Guo, N. Nagaosa, and A. Vishwanath, Nat.

Phys. 18, 290 (2022).
[6] Q. Ma, R. K. Kumar, S.-Y. Xu, F. H. L. Koppens, and J. C. W.

Song, Nat. Rev. Phys. 5, 170 (2023).
[7] Q. Ma, A. G. Grushin, and K. S. Burch, Nat. Mater. 20, 1601

(2021).
[8] Y. Tokura and N. Nagaosa, Nat. Commun. 9, 3740 (2018).
[9] N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P.

Ong, Rev. Mod. Phys. 82, 1539 (2010)
[10] D. Xiao, M.-C. Chang, and Q. Niu, Rev. Mod. Phys. 82, 1959

(2010).
[11] G. P. Provost and G. Vallee, Commut. Math. Phys. 76, 289

(1980).
[12] C. Wang, Y. Gao, and D. Xiao, Phys. Rev. Lett. 127, 277201

(2021).
[13] I. Sodemann and L. Fu, Phys. Rev. Lett. 115, 216806

(2015).
[14] Q. Ma, S.-Y. Xu, H. Shen, D. MacNeill, V. Fatemi, T.-R. Chang,

A. M. M. Valdivia, S. Wu, Z. Du, C.-H. Hsu et al., Nature
(London) 565, 337 (2019).

[15] K. Kang, T. Li, E. Sohn, J. Shan, and K. F. Mak, Nat. Mater. 18,
324 (2019).

[16] Z. Z. Du, H.-Z. Lu, and X. C. Xie, Nat. Rev. Phys. 3, 744
(2021).

[17] J. Anandan and Y. Aharonov, Phys. Rev. Lett. 65, 1697 (1990).
[18] M. V. Berry, Proc. R. Soc. London A 392, 45 (1984).
[19] Y. Gao, S. A. Yang, and Q. Niu, Phys. Rev. Lett. 112, 166601

(2014).
[20] H. Y. Liu, J. Z. Zhao, Y.-X. Huang, W. K. Wu, X.-L. Sheng, C.

Xiao, and S. A. Yang, Phys. Rev. Lett. 127, 277202 (2021).
[21] A. Gao et al., Science 381, 181 (2023).
[22] N. Wang, D. Kaplan, Z. Zhang, T. Holder, N. Cao, A. Wang, X.

Zhou, F. Zhou, Z. Jiang, C. Zhang et al., Nature (London) 621,
487 (2023).

[23] K. Das, S. Lahiri, R. B. Atencia, D. Culcer, and A. Agarwal,
Phys. Rev. B 108, L201405 (2023).

[24] Y. D. Wang, Z. F. Zhang, Z.-G. Zhu, and G. Su, Phys. Rev. B
109, 085419 (2024).

[25] S. Murakami, N. Nagaosa, and S.-C. Zhang, Science 301, 1348
(2003).

[26] J. D. Jackson, Classical Electrodynamics (John Wiley,
Hobeken, NJ, 1998).

[27] M. P. Marder, Condensed Matter Physics (John Wiley & Sons,
Hoboken, NJ, 2010).

[28] N. Nagaosa, Ann. Phys. 447, 169146 (2022).

115121-10

https://doi.org/10.1103/PhysRevLett.131.240001
https://doi.org/10.1038/nphys4274
https://doi.org/10.1038/nphys4302
https://doi.org/10.1038/s42254-021-00292-8
https://doi.org/10.1038/s41567-021-01465-z
https://doi.org/10.1038/s42254-022-00551-2
https://doi.org/10.1038/s41563-021-00992-7
https://doi.org/10.1038/s41467-018-05759-4
https://doi.org/10.1103/RevModPhys.82.1539
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1007/BF02193559
https://doi.org/10.1103/PhysRevLett.127.277201
https://doi.org/10.1103/PhysRevLett.115.216806
https://doi.org/10.1038/s41586-018-0807-6
https://doi.org/10.1038/s41563-019-0294-7
https://doi.org/10.1038/s42254-021-00359-6
https://doi.org/10.1103/PhysRevLett.65.1697
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1103/PhysRevLett.112.166601
https://doi.org/10.1103/PhysRevLett.127.277202
https://doi.org/10.1126/science.adf1506
https://doi.org/10.1038/s41586-023-06363-3
https://doi.org/10.1103/PhysRevB.108.L201405
https://doi.org/10.1103/PhysRevB.109.085419
https://doi.org/10.1126/science.1087128
https://doi.org/10.1016/j.aop.2022.169146


LINEAR DISPLACEMENT CURRENT SOLELY DRIVEN BY … PHYSICAL REVIEW B 109, 115121 (2024)

[29] R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651
(1993).

[30] D. Vanderbilt and R. D. King-Smith, Phys. Rev. B 48, 4442
(1993).

[31] R. Resta, Rev. Mod. Phys. 66, 899 (1994).
[32] I. Souza, T. Wilkens, and R. M. Martin, Phys. Rev. B 62, 1666

(2000).
[33] G. Ortiz and A. A. Aligia, Phys. Status Solidi B 220, 737

(2000).
[34] C. Xiao, B. Xiong, and Q. Niu, Phys. Rev. B 104, 064433

(2021).
[35] C. Aversa and J. E. Sipe, Phys. Rev. B 52, 14636 (1995).
[36] R. W. Nunes and X. Gonze, Phys. Rev. B 63, 155107

(2001).
[37] I. Souza, J. Iniguez, and D. Vanderbilt, Phys. Rev. Lett. 89,

117602 (2002).
[38] C. Wang, R.-C. Xiao, H. Y. Liu, Z. Zhang, S. Lai, C. Zhu,

H. Cai, N. Wang, S. Chen, Y. Deng et al., Natl. Sci. Rev. 9,
nwac020 (2022).

[39] S. Lai, H. Liu, Z. Zhang, J. Zhao, X. Feng, N. Wang, C. Tang,
Y. Liu, K. S. Novoselov, S. A. Yang, and W.-B. Gao, Nat.
Nanotechnol. 16, 869 (2021).

[40] C. Xiao, W. Wu, H. Wang, Y.-X. Huang, X. Feng, H. Liu,
G.-Y. Guo, Q. Niu, and S. A. Yang, Phys. Rev. Lett. 130, 166302
(2023).

[41] C. Chen, D. Zhai, C. Xiao, and W. Yao, arXiv:2303.09973.
[42] D. Zhai, C. Chen, C. Xiao, and W. Yao, Nat. Commun. 14, 1961

(2023).
[43] K. Arakawa, T. Hayashida, K. Kimura, R. Misawa, T. Nagai, T.

Miyamoto, H. Okamoto, F. Iga, and T. Kimura, Phys. Rev. Lett.
131, 236702 (2023).

[44] J. E. Sipe and A. I. Shkrebtii, Phys. Rev. B 61, 5337 (2000).
[45] J. E. Moore and J. Orenstein, Phys. Rev. Lett. 105, 026805

(2010).
[46] H. Wang and X. F. Qian, npj Comput. Mater. 6, 199

(2020).
[47] Here the Fermi-sea form of LDCC means that this conductivity

is determined by all states below the Fermi level.

[48] R. E. Newnham, Properties of Materials: Anisotropy, Symmetry,
Structure (Oxford University Press, Oxford, 2005).

[49] S. V. Gallego, J. Etxebarria, L. Elcoro, E. S. Tasci, and J. M.
Perez-Mato, Acta Crystallogr. Sect. A 75, 438 (2019).

[50] C.-P. Zhang, X.-J. Gao, Y.-M. Xie, H. C. Po, and K. T. Law,
Phys. Rev. B 107, 115142 (2023).

[51] B. T. Zhou, C. P. Zhang, and K. T. Law, Phys. Rev. Appl. 13,
024053 (2020).

[52] J. Schliemann and D. Loss, Phys. Rev. B 68, 165311 (2003).
[53] S. Q. Shen, Phys. Rev. B 70, 081311(R) (2004).
[54] O. Pal and T. K. Ghosh, Phys. Rev. B 109, 035202 (2024).
[55] E. Y. Andrei and A. H. MacDonald, Nat. Mater. 19, 1265

(2020).
[56] L. Balents, C. R. Dean, D. K. Efetov, and A. F. Young, Nat.

Phys. 16, 725 (2020).
[57] D. M. Kennes, M. Claassen, L. D. Xian, A. Georges, A. J.

Millis, J. Hone, C. R. Dean, D. N. Basov, A. N. Pasupathy, and
A. Rubio, Nat. Phys. 17, 155 (2021).

[58] E. Y. Andrei, D. K. Efetov, P. Jarillo-Herrero, A. H. MacDonald,
K. F. Mak, T. Senthil, E. Tutuc, A. Yazdani, and A. F. Young,
Nat. Rev. Mater. 6, 201 (2021).

[59] C. N. Lau, M. W. Bockrath, K. F. Mak, and F. Zhang, Nature
(London) 602, 41 (2022).

[60] D. Kumar, C.-H. Hsu, R. Sharma, T.-R. Chang, P. Yu, J. Y.
Wang, G. Eda, G. Liang, and H. Yang, Nat. Nanotechnol. 16,
421 (2021).

[61] T.-Y. Zhao, A.-Q. Wang, X.-G. Ye, X.-Y. Liu, X. Liao, and Z.-
M. Liao, Phys. Rev. Lett. 131, 186302 (2023).

[62] J. Ahn, G. Y. Guo, and N. Nagaosa, Phys. Rev. X 10, 041041
(2020).

[63] J. Liu, F. Xia, D. Xiao, F. J. G. de Abajo, and D. Sun, Nat. Mater.
19, 830 (2020).

[64] Y. Zhang and L. Fu, Proc. Natl. Acad. Sci. USA 118,
e2100736118 (2021).

[65] O. Bleu, G. Malpuech, Y. Gao, and D. D. Solnyshkov, Phys.
Rev. Lett. 121, 020401 (2018).

[66] Z. Liu, Z. H. Qiao, Y. Gao, and Q. Niu, Phys. Rev. Res. 6,
L012005 (2024).

115121-11

https://doi.org/10.1103/PhysRevB.47.1651
https://doi.org/10.1103/PhysRevB.48.4442
https://doi.org/10.1103/RevModPhys.66.899
https://doi.org/10.1103/PhysRevB.62.1666
https://doi.org/10.1002/1521-3951(200007)220:1<737::AID-PSSB737>3.0.CO;2-9
https://doi.org/10.1103/PhysRevB.104.064433
https://doi.org/10.1103/PhysRevB.52.14636
https://doi.org/10.1103/PhysRevB.63.155107
https://doi.org/10.1103/PhysRevLett.89.117602
https://doi.org/10.1093/nsr/nwac020
https://doi.org/10.1038/s41565-021-00917-0
https://doi.org/10.1103/PhysRevLett.130.166302
https://arxiv.org/abs/2303.09973
https://doi.org/10.1038/s41467-023-37644-0
https://doi.org/10.1103/PhysRevLett.131.236702
https://doi.org/10.1103/PhysRevB.61.5337
https://doi.org/10.1103/PhysRevLett.105.026805
https://doi.org/10.1038/s41524-020-00462-9
https://doi.org/10.1107/S2053273319001748
https://doi.org/10.1103/PhysRevB.107.115142
https://doi.org/10.1103/PhysRevApplied.13.024053
https://doi.org/10.1103/PhysRevB.68.165311
https://doi.org/10.1103/PhysRevB.70.081311
https://doi.org/10.1103/PhysRevB.109.035202
https://doi.org/10.1038/s41563-020-00840-0
https://doi.org/10.1038/s41567-020-0906-9
https://doi.org/10.1038/s41567-020-01154-3
https://doi.org/10.1038/s41578-021-00284-1
https://doi.org/10.1038/s41586-021-04173-z
https://doi.org/10.1038/s41565-020-00839-3
https://doi.org/10.1103/PhysRevLett.131.186302
https://doi.org/10.1103/PhysRevX.10.041041
https://doi.org/10.1038/s41563-020-0715-7
https://doi.org/10.1073/pnas.2100736118
https://doi.org/10.1103/PhysRevLett.121.020401
https://doi.org/10.1103/PhysRevResearch.6.L012005

