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We theoretically investigate the electronic properties of finite-sized (e.g., triangular and diamond-shaped)
Kane-Mele-type topological insulator nanoflakes on top of an s-wave superconductor. We find that the second-
order topological superconductor can be generated when the magnetism is only applied on the system boundaries,
which host two Majorana corner states located at the corners of two neighboring boundaries. By tuning the
applied boundary magnetism, we observe that two isolated Majorana corner states can be adiabatically moved
along the system boundaries. Furthermore, we show the possibility of performing topological quantum braiding
of the Majorana corner states towards the far-reaching implications of quantum information and quantum
computation.
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I. INTRODUCTION

Topological quantum computation can eliminate deco-
herence by encoding logical information into anyons with
non-Abelian statistics [1,2], and is considered to be the most
effective approach to realize the fault-tolerant quantum com-
puters. Majorana zero modes behave like Majorana fermions,
each of which is an antiparticle of itself [3], and promise
a platform for realizing a representation of non-Abelian
braiding groups that enable topological quantum computation
[4,5]. However, it remains controversial whether zero-energy
signals are induced by Majorana zero modes in experimental
systems such as unconventional superconductors [6,7], super-
conducting nanowires [8–13], ferromagnetic atomic chains
[14], and two-dimensional superconducting vortices [15,16].
At any rate, it does not affect the exploration of Majorana
zero modes’ braiding design. Later, higher-order topolog-
ical phases have also been proposed as novel topological
phases of matter with nontrivial boundary states at multi-
ple dimensionality. For example, Langbehn et al. proposed
two-dimensional second-order topological superconductors
to realize zero-dimensional Majorana zero modes [17]. By
applying an external magnetic field [18–20], a first-order topo-
logical superconductor can be driven to be the second-order
counterpart, where the localized Majorana zero modes appear
at corners [21–24].

To realize the braiding operation of Majorana zero
modes, the key procedure is the adiabatically time-dependent
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dynamic process, avoiding the collision of Majorana zero
modes during the braiding. However, in a one-dimensional
system, Majorana zero modes cannot bypass each other for
braiding. Fortunately, several systems have been proposed to
avoid blending Majorana zero modes [25–30]. A well-known
approach is to adopt T junctions and manipulate the chemical
potential of quantum wires to realize the real-space braiding
[25]. In addition, Karzig et al. have regulated the direction
of the coupling vector to achieve real-space braiding in the
traditional Y-junction braiding platform [26]. However, these
one-dimensional systems are difficult to be constructed and
manipulated, and adiabatic evolution is extremely challenging
in experiments.

The emergence of a pair of Majorana corner states provides
a new platform for braiding in a second-order topological
superconductor, where the Majorana corner states can be ma-
nipulated via in-plane magnetic field and proximity-induced
spin-singlet superconductivity [31]. Correspondingly, the adi-
abatical braiding of zero-dimensional Majorana corner states
can be realized without the collision of two Majorana corner
states. In Ref. [32], a minimal model for second-order topo-
logical superconductors is constructed to achieve the braiding
by tuning the direction of the in-plane magnetic field. During
the braiding process, the external magnetic field is necessary.
Due to the Meissner effect, the magnetic field is not allowed
to exist within a superconductor. The braiding of non-Abelian
anyons also exists in nonsuperconducting systems [33–35]. It
is also useful to study how to overcome Meissner effect to
achieve braiding in superconducting systems. In graphene, it
is known that the edge magnetism arises in the zigzag nanorib-
bons [36–39] and is sufficiently large enough to open up the
edge gap to host the higher-order topological phase [40].
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FIG. 1. Schematic of Kane-Mele-type nanoflakes on top of
an s-wave superconductor (gray region). (a), (b) Triangular and
diamond-shaped nanoflakes. Inset: The world lines of the two Ma-
jorana corner states in the space-time (x; τ ) diagram. The x-direction
boundary ferromagnetism is represented by the purple arrow on the
sublattices. The blue (red) arrows represent the γ1 (γ2) moving path
during the braiding process.

Inspired by these unique physical properties, we propose
to design and study the second-order topological super-
conductor by using the Kane-Mele-type triangular-shaped
nanoflake on top of a superconducting substrate (gray region),
as displayed in Fig. 1(a). Due to the parity superconduc-
tivity criterion [41,42], time-reversal invariant topological
insulators naturally open superconducting gaps and become
topological trivial superconductors. Further application of
boundary ferromagnetism l1 (purple arrow) breaks the time-
reversal symmetry. Consequently, the system is driven into
a second-order topological superconductor. Majorana corner
states appear at γ1 (blue) and γ2 (red). By manipulating the
strengths of magnetization along three different boundaries

(i.e., l1, l2, and l3), one can see that γ1 (γ2) moves along
the blue (red) arrows along the triangle-shaped boundaries.
Since γ1 crosses the phase-cut line of γ2, γ1 −→ −γ2, and
γ2 −→ γ1, as displayed in Fig. 1(a), the two Majorana zero
modes γ1 and γ2 make a non-Abelian braiding process in
the path successively. Importantly, the Majorana corner states
are adiabatically moved at the boundaries without collision
during the braiding process. We also study a diamond-shaped
nanoflake system, which hosts the two Majorana corner states
in diagonal positions as displayed in Fig. 1(b). By manip-
ulating the strengths of boundary magnetization, γ1 and γ2

swap respectively along the blue and red arrows, realizing the
topological braiding.

The remainder of the paper is organized as follows. In
Sec. II, we introduce the tight-binding Hamiltonian of the
Kane-Mele model with boundary magnetism on top of an s-
wave superconductor. In Sec. III A, we plot the energy spectra
of the zigzag nanoribbon with boundary magnetism on top of
an s-wave superconductor and demonstrate the second-order
topological phase transition process. Then in Secs. III B and
III C, we investigate the distribution and braiding of the Ma-
jorana corner states in both triangular and diamond-shaped
nanoflakes. A brief summary is presented in Sec. IV.

II. MODEL AND HAMILTONIAN

The corresponding tight-binding model Hamiltonian of the
honeycomb lattice can be written as [43]

H = − t
∑

〈i, j〉,σ
c†

iσ c jσ +
∑

〈〈i, j〉〉,σ,σ ′
iλνi jc

†
iσ [ŝz]σσ ′c jσ ′

+
∑

l,σ,σ ′
Blc

†
lσ [m̂ · ŝx]σσ ′clσ ′ + H.c., (1)

where ciσ (c†
iσ ) is the annihilation (creation) operator for an

electron at site i with σ spin. t is the hopping amplitude
between nearest neighboring sites. The second term is the
intrinsic spin-orbit coupling between next nearest neighbors,
with λ measuring the coupling strength. νi j = ±1 indicate
counterclockwise and clockwise hopping paths from site j
to i, respectively. The third term represents the magnetism of
the three boundaries l1, l2, and l3 in Fig. 1(a). The magneti-
zation B1, B2, and B3 can be mediated by the ferromagnetic
gates at the graphene nanoflake boundaries [44,45]. For a
diamond-shaped nanoflake, the magnetic intensities of the
four boundaries l1, l2, l3, and l4 are respectively set to be
B1, B2, B3, and B4, as displayed in Fig. 1(b). The magnetic
orientation is along the unit vector m̂ = (1, 0), meaning that
the direction of magnetization is always along the x direction.
ŝx,y,z are Pauli matrices.

The superconducting proximity effect between a super-
conductor and graphene nanoflake induces a finite pairing
potential �. Thus, the system should be described by a
Bogoliubov–de Gennes Hamiltonian in the 4 × 4 spin

⊗
Nambu space:

HBdG =
(

H i�ŝy

−i�∗ŝy −H∗

)
, (2)

where the basis vector is [ci↑, ci↓, c†
i↑, c†

i↓]T .
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FIG. 2. Energy spectra for the zigzag nanoribbon on top of an
s-wave superconductor with different edge magnetization strengths
(a) Bl = 0, (b) Bl = 0.1t , and (c) Bl = 0.3t . Other parameters are set
to be t = 1, λ = 0.1t, and � = 0.1t .

III. RESULTS AND DISCUSSION

A. Zigzag edge states analysis

To illustrate the relationship between s-wave superconduc-
tivity and edge magnetism in the second-order topological
phases, we plot the energy spectra for the zigzag nanorib-
bon on top of an s-wave superconductor with different edge
magnetization strengths Bl in Fig. 2. Other parameters are
set to be t = 1, λ = 0.1t, and � = 0.1t , and the nanoribbon
width is chosen to be N = 40a. At Bl = 0, due to the s-wave
superconducting proximity effect, a superconducting gap of
2� in Fig. 2(a) opens. By introducing magnetization along the
zigzag boundary, the energy gap of edge states is completely
closed at Bl = � = 0.1t as shown in Fig. 2(b). The gap re-
opens with further increase of the edge magnetization strength
[see Fig. 2(c) with Bl = 0.3t]. Both the magnetization and
superconductor can introduce a gap in the helical edge, but
arising from completely different physical mechanisms. The
system forms a domain wall between the |Bl | > |�| bound-
ary and |Bl | < |�| boundary, which gives rise to a Majorana
bound state. The magnetization flips the spin of an incoming
electron (hole), while the superconductor turns an incoming
electron with spin up into an outgoing hole with spin down.
These two different types of reflection processes combine
together to form a Majorana bound state.

B. Triangular-shaped model

Let us start our discussion with a study of an equilateral
triangle-shaped nanoflake with the length of boundary Ln =
60a, with a being the lattice constant. Other parameters are
set to be λ = 0.1t , � = 0.1t , B1 = 0.3t , and B2 = B3 = 0.
In Fig. 3, we calculate the energy spectra of the triangular-
shaped nanoflake deposited on a superconducting substrate.
One can see the in-gap zero-energy Majorana corner states (in
blue) with a neutral charge, the wave-function distributions of
which (blue density dots) are highlighted in the inset of Fig. 3.
The Majorana corner states are only sightly extended along
the edges l2 and l3. The reason is that the energy gap of edge
l1 is greater than the superconducting gap of edges l2 and l3,
as shown in Figs. 2(a) and 2(c). When the energy gap is large,
the barrier is larger. Then the expansion is difficult. Slight ex-
pansion does not affect the formation of the Majorana corner

FIG. 3. Energy levels of a finite-sized triangular-shaped Kane-
Mele-type nanoflake on top of an s-wave superconductor. The blue
dots represent the in-gap Majorana corner states. The wave-function
distribution (blue density dots) of the corner states is plotted in the
inset. The purple arrow indicates the magnetized boundary. The equi-
lateral triangle-shaped nanoflake has a length of boundary Ln = 60a.
The parameters are set to t = 1, λ = 0.1t, � = 0.1t, B1 = 0.3t , and
B2 = B3 = 0.

states. This clearly indicates that the second-order topological
superconductor is produced due to the time-reversal breaking
by applying the system boundary magnetism.

When the Majorana corner states appear in pairs at the
same position, the interpretation of non-Abelian exchange
statistics requires additional symmetry protection [46]. Owing
to the magnetized boundary at the l1 boundary (purple arrow),
two isolated Majorana corner states appear at the two corners.
In this case, no additional symmetry is needed to protect
the isolated Majorana corner states [20]. Thus, the boundary-
magnetism induced second-order topological superconductors
with Majorana corner states may potentially provide a power-
ful platform for the appealing topological braiding processing.

To implement topological braiding, we tune the time-
dependent intensities of boundary magnetism B1, B2, B3, as
displayed in Fig. 4(a). When |Bl | < |�|, Majorana bound
states cannot exist. When |Bl | = |�|, the Majorana bound
state expands along the boundary, because of the emergence
of the gapless edge states in Fig. 2(b). Remarkably, two Ma-
jorana bound states always exist during braiding, even when
certain edges become gapless [18]. When |Bl | > |�|, Majo-
rana corner states appear. The braiding protocol takes five
steps in T/2 time to spatially swap γ1 and γ2.

(i) At τ = 0, we set B1 = 0.3t , and B2 = B3 = 0. One can
see that two Majorana corner states γ1 and γ2 arise respec-
tively at the left and right corners [see Fig. 4(b)]. These two
states can be considered as our initial state in the topological
braiding processing.

(ii) For τ ∈ (0, T/6), B1 decreases from 0.3t to 0.15t , but
B2 increases from 0 to 0.15t . As displayed in Fig. 4(c), γ2 is
located still at the right corner, but γ1 moves from the left to
the upper corner along the l2 boundary (blue arrow).

(iii) For τ ∈ (T/6, T/3), B1 gradually decreases to zero
and B2 increases to 0.3t . As displayed in Fig. 4(d), γ1 is
located still at the upper corner, but γ2 moves from the right
to the left corner along the l1 boundary (blue arrow).
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FIG. 4. Exchange of two Majorana corner states by regulating
the intensity of magnetization. (a) Time-dependent intensi- ties of
boundary magnetism B1, B2, B3 in braiding process. (b)-(f) show the
path and the position of the Majorana corner states. The blue density
dots indicate zero energy distribu- tion and the blue arrows represent
the direction of Majorana corner states movement. The parameters
of the initial state are B1 = 0.3t , B2 = B3 = 0. Other parameters are
the same as those in Fig. 3.

(iv) For τ ∈ (T/3, T/2), B2 gradually decreases to 0.15t
and B3 increases from 0 to 0.15t . As displayed in Fig. 4(e),
we can see that γ2 stays still at the left corner, but γ1 moves
from the upper corner to the right corner along the l3 boundary
(blue arrow).

(v) At τ = T/2, the spatial positions of γ1 and γ2 are
mutually swapped as displayed in Fig. 4(f). The three zigzag
boundaries of the triangular-shaped nanoflake are equivalent
in the same direction of magnetization and superconductivity.
In Fig. 4(f), the domain wall is not formed between the mag-
netization boundaries l2 and l3, and the empty corner between
them does not affect the Majorana corner states. When the
magnetic field is applied along one edge (l1) and along the
other two edges (l2 and l3), the two Majorana corner states
appear in the same corners but γ1 and γ2 exchange spatial
positions, as shown in Figs. 4(a) and 4(f).

Since two Majorana bound states fuse into a Dirac fermion,
the simultaneous extension of two Majorana bound states
leads to the mixing of Majorana bound states in the triangular-
shaped nanoflake. Thus, it is crucial to extend only one
Majorana bound state every time to prevent mixing during
the braiding process. Interestingly, we can see that γ1 and
γ2 exchange positions without spatial collision when they
move along system boundaries. The braiding operation can
be represented by a unitary operator U (γ1, γ2) = exp( π

4 γ1γ2).
The Majorana corner states can be transformed as γ1 −→ −γ2

and γ2 −→ γ1 [4] [see the inset of Fig. 1(a)].
We present an animation of the period T evolution in the

Supplemental Material [47]. For τ ∈ [0, T ], the spatial posi-
tions of γ1 and γ2 are swapped twice and the system returns
to its initial state. After an exchange process, both Majorana
corner states accumulate a π Berry phase and experience a
sign flip, with γ1 −→ −γ1 and γ2 −→ −γ2. Moreover, the
two Majorana corner states can also be exchanged counter-
clockwise by setting the time evolution τ ∈ [T, 0].

FIG. 5. The energy spectra of the triangular-shaped nanoflake
as a function of time τ . The parameter is set to t = 1, λ =
0.1t, and � = 0.1t . Red lines indicate the zero-energy corner states,
always separate from the other states (black lines).

To obtain the correct braiding results in the triangular-
shaped nanoflake, two Majorana corner states are required to
evolve adiabatically during the braiding process. In Fig. 5, we
plot the energy spectra of the triangular-shaped nanoflake as
a function of time τ , by choosing λ = 0.1t and � = 0.1t .
One can see that the zero-energy states (red line) remain
stable throughout the whole process, which indicates that the
isolated Majorana corner states can be completely prevented
from mixing with other states (black line) by an energy gap.
The Majorana extended states locate at the boundary with
|Bl | = |�|. The Majorana corner states appear at the ends
of the boundary with |Bl | > |�|. Since the whole system is
topologically protected, both the Majorana extended states
and Majorana corner states are stable (see Fig. 5). Thus, our
results validate the reasonable operation for Majorana corner
states.

To verify the robustness of the braiding process, we
calculate the exchange of Majorana corner states in a
triangular-shaped nanoflake with four different kinds of de-
fects. In Figs. 6(a)–6(c), we consider the case when two
atomic sites are missing at the l1 boundary, as displayed as
hollow circles in Fig. 6(a). One can see that two Majorana
corner states γ1 and γ2 are still located at the two corners,
when only the l1 boundary is magnetized, as displayed in
Fig. 6(a). Although the atomic defects exist at the boundary,
γ2 can still move from the right corner to the left corner along
the l1 boundary (blue arrow) in Fig. 6(b). In Figs. 6(d)–6(f),
we consider the other case that two atoms are not magnetized,
as displayed as red circles in Fig. 6(d). For the initial state of
topological braiding processing, two Majorana corner states
γ1 and γ2 are still located at the two corners of the triangular-
shaped nanoflake, as displayed in Fig. 6(d). In Fig. 6(e), γ2

is shown to move along the magnetic defect boundary. In
Figs. 6(g)–6(i), we consider the case when two atomic sites
(hollow circles) inside a triangular-shaped nanoflake are miss-
ing. The braiding operation relies on boundary effects. Thus,
braiding results are insensitive to bulk defects. In Figs. 6(j)–
6(l), we consider the case when two atomic sites (hollow
circles) at the left corner are missing. It is noted that the
braiding results do not change even if the corner lattices are
missing. The energy of the in-gap ground states is slightly de-
viated from zero due to the finite-size effects in Figs. 6(c), 6(f),
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FIG. 6. (a)–(c) Two atomic sites are missing (hollow circles) at
the l1 boundary of a triangular-shaped nanoflake. (d)–(f) Two atoms
are not be magnetized (red circles) at the l1 boundary of a triangular-
shaped nanoflake. (g)–(i) Two atomic sites are missing inside a
triangular-shaped nanoflake. (j)–(l) Two atomic sites are missing at
the left corner of a triangular-shaped nanoflake. (a), (b), (d), (e), (g),
(h), (j), (k) The wave-function distributions of two Majorana corner
states are shown by blue density dots. (c), (f), (i), (l) The energy
spectra as a function of time τ . Red lines indicate the zero-energy
corner states, always separate from the other states (black lines).
Other parameters are the same as those in Fig. 3.

6(i), and 6(l). The deviation can be eliminated by increasing
the size of a nanoflake without changing the physical results.
Therefore, the braiding process can still be considered to be
adiabatic. Our results show that the exchange of Majorana cor-
ner states is robust against the defects. All these suggest that
the braiding of Majorana corner states in a triangular-shaped
nanoflake can be achieved, even if atomic vacancy defect and
magnetic defect appear anywhere. The Majorana bound state
is topologically protected, so it is insensitive to small defect
perturbations.

To illustrate the degree of robustness to the four different
representative kinds of defects, we plotted the energy spectra
as a function of defective atom number n, as shown in Fig. 7,
with Figs. 6(a), 6(d), 6(g), and 6(j) serving as insets show-
casing the location and condition of the defects, respectively.
The parameters are set to be t = 1, λ = 0.1t,� = 0.1t, B1 =
0.15t, B2 = 0.15t, and B3 = 0, corresponding to the bound-
ary magnetization condition at the maximum zero-energy
deviation point in the braiding process in Fig. 6. There is
no bulk gap closure and phase transition as the number of
missing atoms at the edges increases in Fig. 7(a). Although
in-gap states are slightly deviated from zero, this deviation can

FIG. 7. Energy spectra as a function of the number of atoms with
different defects. (a) Atoms are missing at the edge, with Fig. 6(a) as
an inset showing the location of the defects. (b) Atoms are nonmag-
netized at the edge, with Fig. 6(d) as an inset showing the location
of the defects. (c) Atoms are missing inside a triangular-shaped
nanoflake, with Fig. 6(g) as an inset showing the location of the
defects. (d) Atoms are missing at the corner, with Fig. 6(j) as an
inset showing the location of the defects. The parameters are set to
t = 1, λ = 0.1t, � = 0.1t, B1 = 0.15t, B2 = 0.15t, and B3 = 0.

be eliminated by increasing the size of a nanoflake without
changing the physical results. Therefore, it does not destroy
the braiding, unless further defects destroy the system struc-
ture. For the nonmagnetic atom case as shown in Fig. 7(b),
one can see that there are multiple zero-energy states, but
the braiding becomes disrupted. The reason is that magnetic
defects divide the magnetization boundary into multiple seg-
ments, forming multiple edge domain walls. But such case
is relatively rare because the boundary magnetism is usually
uniformly distributed at zigzag boundaries. For the third kind
of defects shown in Fig. 7(c), one can see that the Majo-
rana bound states are not influenced even when 20 atoms
are missing inside the triangular-shaped nanoflake. For the
fourth case with corner defect, Fig. 7(d) illustrates that the
exchange of Majorana corner states is very robust for weak
corner defect (smaller n). But there is a significant splitting
of the zero-energy state for strong corner defect (larger n),
resulting in the disruption of braiding.

C. Diamond-shaped model

Next, we turn to study a diamond-shaped nanoflake with
a boundary length of Ln = 40a. The parameters are set to
be λ = 0.1t and � = 0.1t . Figure 8(a) displays the energy
levels of the diamond-shaped nanoflake deposited on a su-
perconducting substrate, by setting B1 = B2 = 0.3t and B3 =
B4 = 0. One can see that the in-gap zero-energy Majorana
corner states (blue dots) with a neutral charge appear at the
two obtuse angles, as displayed in the inset of Fig. 8(a). The
resulting Majorana corner states appear at the opposite corners
of the diamond-shaped nanoflake [40,48]. Thus, it is difficult
to mix two Majorana corner states in the diamond-shaped
nanoflake. Then, we change the parameters to be B1 = 0,
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FIG. 8. Energy levels of the finite-sized diamond-shaped Kane-
Mele-type nanoflake on top of an s-wave superconductor. The blue
dots represent the in-gap corner states. The wave-function distribu-
tion (blue density dots) of the corner states is plotted in the inset.
(a) The purple arrow indicates the magnetized boundaries l1 and l2.
The intensities of magnetization are set to B1 = B2 = 0.3t and B3 =
B4 = 0. (b) The purple arrow and red arrow indicate the boundaries
l2 and l3 are magnetized in opposite directions. The diamond-shaped
nanoflake has a length of boundary Ln = 40a. The parameter is set to
t = 1, λ = 0.1t, � = 0.1t, B1 = 0, B2 = −B3 = 0.3t , and B4 = 0.

B2 = −B3 = 0.3t , and B4 = 0 and calculate the energy level
of the diamond-shaped nanoflake, as displayed in Fig. 8(b).
One can also see that the in-gap zero-energy Majorana cor-
ner states (blue dots) with a neutral charge appear at the
two acute angles [see the inset of Fig. 8(b)]. The position
of the Majorana corner states can be changed by regulating
the strength of boundary magnetism of the diamond-shaped
nanoflake. In this way, we can realize the topological
quantum braiding via moving of the two Majorana corner
states.

Next we focus on the concrete topological quantum braid-
ing process by tuning the time-dependent intensities of
boundary magnetism B1, B2, B3, and B4 as displayed in
Fig. 9(a). The braiding protocol takes seven steps to spatially
swap γ1 and γ2 in T/2 time.

(i) At τ = 0, we set B1 = B2 = 0.3t and B3 = B4 = 0.
One can see two Majorana corner states γ1 and γ2 appear
respectively at the left and right obtuse angle, as shown in
Fig. 9(b). These two states can be considered as our initial
state in topological braiding processing.

(ii) For τ ∈ (0, T/8), B1 decreases from 0.3t to 0.15t ,
B2 = 0.3t , B3 decreases from 0 to −0.15t, and B4 = 0. As
displayed in Fig. 9(c), γ2 is located still at the right corner,
but γ1 moves from the left to the upper corner along the l3
boundary (blue arrow).

(iii) For τ ∈ (T/8, T/4), B1 gradually decreases to zero
and B3 decreases to −0.3t . As displayed in Fig. 9(d), γ1 is
located still at the upper corner, but γ2 moves from the right
to the bottom corner along the l1 boundary (blue arrow).

(iv) At τ = T/4, B1 = 0, B2 = −B3 = 0.3t , and B4 = 0.
As displayed in Fig. 9(e), γ1 and γ2 go through a clockwise
movement to the upper and lower corners.

(v) For τ ∈ (T/4, 3T/8), B2 decreases from 0.3t to 0.15t ,
and B4 decreases from 0 to −0.15t . As displayed in Fig. 9(f),

FIG. 9. Exchange of two Majorana corner states by regulating
the intensity of magnetization. (a) Time-dependent intensities of
boundary magnetism B1, B2, B3, and B4 in the braiding process.
(b)–(h) The path and the position of the Majorana corner states.
The blue density dots indicate zero-energy distribution and the blue
arrows represent the direction of the Majorana corner states’ move-
ment. The parameters of the initial state are B1 = B2 = 0.3t and
B3 = B4 = 0. Other parameters are the same as those in Fig. 8.

we can see that γ2 stays still at the lower corner, but γ1 moves
from the upper corner to the right corner along the l4 boundary
(blue arrow).

(vi) For τ ∈ (3T/8, T/2), as B2 decreases to zero and B4

decreases to −0.3t , γ1 is located still at the right corner and γ2

moves from the lower to the left corner along the l2 boundary
(blue arrow), as shown in Fig. 9(g).

(vii) Finally, the spatial positions of γ1 and γ2 are swapped
at τ = T/2, as shown in Fig. 9(h).

Importantly, we can see that γ1 and γ2 exchange positions
without spatial collision when they move along the system
boundaries. To braid Majorana bound states efficiently, the
two Majorana bound states of the diamond-shaped nanoflake
can be extended simultaneously along two opposite edges
without mixing at |Bl | = |�|. The braiding process γ1 −→ γ2

and γ2 −→ −γ1 can be represented by a unitary transforma-
tion operation U (γ2, γ1) = exp(−π

4 γ1γ2) [4] [see the inset of
Fig. 1(b)].

The spatial positions of γ1 and γ2 are swapped twice along
the diamond-shaped boundaries for τ ∈ [0, T ], as displayed
in the Supplemental Material [47]. The Hamiltonian of the
system returns to its initial expression. Such braiding oper-
ation can be represented by a unitary operator U (γ2, γ1) =
exp(−π

2 γ1γ2) with a transformation γ1 −→ −γ1 and γ2 −→

115413-6
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FIG. 10. The energy spectra of the diamond-shaped nanoflake
as a function of time τ . The parameter is set to t = 1, λ =
0.1t, and � = 0.1t . Red lines indicate the zero-energy corner states,
always separate from the other states (black lines).

−γ2. In addition, the two Majorana corner states can also be
exchanged counterclockwise by reversing the time evolution
to τ ∈ [T, 0].

To obtain the correct braiding results in the diamond-
shaped nanoflake, two Majorana corner states are required to
evolve adiabatically during the braiding process. In Fig. 10,
we plot the energy spectra of the diamond-shaped nanoflake
as a function of time τ , by choosing λ = 0.1t and � =
0.1t . One can see that zero-energy states (red line) re-
main stable throughout the whole process, which indicates
that the isolated Majorana corner state can be completely
prevented from mixing with other states (black line) by
an energy gap. Thus like topological quantum braiding in
the triangular-shaped nanoflake in Fig. 4, the operation
of Majorana corner states is also controllable and reliable
in the diamond-shaped nanoflake. Similar to the braiding
process in the triangular-shaped nanoflake, the braiding of
Majorana corner states in the diamond-shaped nanoflake
is robust against atomic vacancy defect and magnetic
defect.

IV. SUMMARY

We have studied Kane-Mele-type topological insulator
nanoflakes on top of an s-wave superconductor. The energy
levels and the wave-function distributions have been calcu-
lated. It is found that two isolated Majorana corner states
appear at the corners of the system. It implies that the
second-order topological superconductor is induced by the
time-reversal symmetry-breaking boundary magnetism. By
tuning the time-dependent intensities of boundary magnetism,
the Majorana corner states can be transformed as γ1 −→ −γ1

and γ2 −→ −γ2. In addition, we calculated the energy levels
and the wave-function distributions of the diamond-shaped
nanoflake. Our results show that two Majorana corner states
appear at opposite corners of the diamond-shaped nanoflake.
We have tuned the boundary magnetization to complete the
exchange of γ1 and γ2 in the braiding protocol. Importantly,
Majorana corner states remain stable throughout the braiding
process, which indicates that the isolated Majorana corner
state can be completely prevented from mixing with other
states by an energy gap. These braiding processes are robust
against the atomic vacancy defect and magnetic defect at
the boundary. Our proposals will simplify the experimental
braiding setup required on the second-order topological su-
perconductor platforms.
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