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Topological confinement states in ABA trilayer graphene with antiparallel electric field
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In AB-stacked bilayer graphene, the introduction of an out-of-plane electric field can break the inversion
symmetry to open up a nontrivial bulk gap hosting the quantum valley Hall state. However, in ABA-stacked
trilayer graphene, the out-of-plane electric field cannot open up a nontrivial valley band gap. By applying a pair
of antiparallel electric fields, we theoretically propose three kinds of schemes to open up bulk gaps that harbor
the quantum valley Hall effect in the ABA-stacked trilayer graphene. By further considering the small-angle
twisted trilayer graphene, we can obtain the topological confinement states along the naturally formed domain
walls between ABA- and BAB-stacked regions. It is noteworthy that the synergic effect between the antiparallel
electric fields and the magnetic field can open up a nontrivial band gap possessing the quantum valley Hall effect
and quantum Hall effect simultaneously. Our work not only theoretically proposes how to realize the quantum
valley Hall effect in ABA-trilayer graphene, but also provides an ideal platform to explore the hybrid topological
phases.
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Introduction. In condensed matter physics, searching for
practical schemes to realize topological quantum materials is
always a significant topic [1–6]. At present, it is crucial to
increase the observation temperature of various topological
states via proper materials design and device manufacturing
[7–14]. For different topological systems, such as the Z2

topological insulator and quantum anomalous Hall effects,
their realization usually needs precise manipulation of spins
or spin-orbit couplings, leading to extreme challenges for the
experimental realization [15]. Fortunately, another topologi-
cal state, i.e., the quantum valley Hall effect, can be easily
realized by breaking the inversion symmetry of graphene or
related two-dimensional systems. For example, introducing
staggered sublattice potentials in monolayer graphene, or ap-
plying a vertical electric field in AB-stacked bilayer graphene,
can open up topologically nontrivial band gaps near valleys K
and K ′, hosting the quantum valley Hall phases. At the domain
walls between different valley Hall topological regions, one-
dimensional topological confinement states arise. These states
have attracted widespread attention because they rely solely
on electrical means, making them a promising alternative for
building next-generation high-performance low-power elec-
tronic devices [16–43].

With the increasing number of layers, the stacking order of
the layers provides a vital degree of freedom to manipulate
the properties of two-dimensional materials. For graphene
materials, diverse stacking orders make multilayer graphene
a fertile ground to realize various quantum states, such as

*These authors contributed equally to this work.
†Contact author: lzy92@ustc.edu.cn
‡Contact author: qiao@ustc.edu.cn

superconductor and orbital Chern insulator [44–50]. In the
case of trilayer graphene, the ABA and ABC stacking are two
typical stable stacking configurations, respectively. The ABA-
stacked trilayer graphene has captured broad interest due to
its unique properties of coexisting linear Dirac dispersion
and parabolic dispersion relations [51–62]. Unfortunately, the
ABA-stacked trilayer graphene cannot open a nontrivial en-
ergy gap only through an out-of-plane electric field as simple
as the ABC-stacked one to realize the quantum valley Hall
effect [28]. Therefore, it is still challenging to open up a
topological valley band gap in ABA trilayer graphene.

In this work, we theoretically show that, by introducing
a pair of antiparallel electric fields [63] in ABA-stacked
trilayer graphene, a nontrivial quantum valley Hall gap is
opened, accompanying a Dirac cone pinned on one of the
nontrivial bands. To remove the influence of bulk states
contributed by the Dirac cone, three schemes are proposed to
open up the global gap in the system, thereby realizing the
quantum valley Hall states. Based on the previous discussion
of the topological confinement states, we need a domain
wall separating different valley Hall topological regions.
Fortunately, we obtain natural ABA/BAB-stacked domain
walls to realize the topological confinement states in the
minimally twisted trilayer graphene systems with the same
twisting angles for the first time. Our work provides an
experimentally friendly proposal for the realization of the
topological confinement states in minimally twisted trilayer
graphene. Moreover, the combination of an antiparallel
electric field and a magnetic field can realize the hybrid
topological states, i.e., the coexisting quantum valley Hall
effect and quantum Hall effect simultaneously [64]. Our
findings strongly indicate that ABA-stacked trilayer graphene
is a superior platform for investigating novel quantum effects
and for building high-performance quantum devices.
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FIG. 1. (a) Twisted trilayer graphene with ABA-stacked region
(A1, B2, A3 atoms are on top of each other) and BAB-stacked region
(B1, A2, B3 atoms are on top of each other). In the ABA-stacked
region, we assign specific labels to the atoms as A1, B1, A2, B2, A3,
and B3. (b) Zoomed-in view of the stacked area near the domain wall.
(c) Side view of ribbon cell exhibiting the antiparallel fields.

Structural analysis. As mentioned above, we mainly focus
on the twisted trilayer graphene, which harbors the natural
ABA/BAB-stacked domain wall. We adopt the same method
in Refs. [65,66] to design a commensurate cell for trilayer
graphene. Six indices are needed to determine a commen-
surate cell of the twisted trilayer graphene. However, only
four indices are necessary in this work because the top and
bottom layers are completely aligned. We choose the middle
layer as the reference layer. The lattice vectors for the middle
layer can be represented as a1 and a2, respectively. The two
lattice vectors of the commensurate supercell r1 and r2 can be
expressed as

(
r1

r2

)
= M ′ ·

(
a1

a2

)
, (1)

where we use the transformation matrices

M =
(

p q
−q p + q

)
, M ′ =

(
p′ q′

−q′ p′ + q′

)
. (2)

The top and bottom layer lattice vectors a′
1, a′

2 can also be
related via

(
a′

1

a′
2

)
= M ′−1 · M ·

(
a1

a2

)
, (3)

and the rotation angle θ between top and middle layer (or
bottom to middle layer) is

cos(θ ) = 1

2αg
[2p′ p + 2q′q + p′q + q′ p], (4)

where g = m2 + n2 + mn.
As displayed in Fig. 1(a), we build a sandwiched twisted

trilayer graphene after relaxation. The indices to build the
moiré cell are p = 251, q = 250, p′ = 250, q′ = 251, and
the rotation angle is θ = 0.13◦. We could tailor the ribbon
structure as displayed in Fig. 1(b), where the domain wall be-
tween ABA- and BAB-stacked regions emerges. Figure 1(b)
is considered as the ribbon cell with a domain wall structure,
i.e., all the following ribbon band-structure calculations are
based on Fig. 1(b).

To study the relaxation effects in twisted trilayer graphene,
we perform energy minimization by using the large-scale
atomic/molecular massively parallel simulator (LAMMPS)
package [67,68]. For the interlayer interactions, we employ
the dihedral-angle-corrected registry-dependent interlayer
(DRIP) potential that has been reparametrized [69] using the
exact-exchange–random phase approximation (EXX-RPA)
density functional theory (DFT) calculations [70], which in-
cludes dihedral angle corrections based on the well-known
registry-dependent Kolmogorov-Crespi (KC) potential [71].
We use the reactive empirical bond-order 2 (REBO2) potential
to simulate the intralayer interactions. [72].

Tight-binding Hamiltonian of twisted trilayer graphene.
Based on the Slater-Koster method, a tight-binding Hamilto-
nian model [Eq. (8)] is constructed to precisely capture the
electronic properties of the ribbon structure with the domain
wall from the relaxed twisted trilayer graphene [Fig. 1(b)].
The hopping terms for both interlayer and intralayer couplings
have the same expression as [73–75]

ti j = Vppπ (ri j )

[
1 −

(
ri j · ez

|ri j |
)2

]
+ Vppσ (ri j )

(
ri j · ez

|ri j |
)2

,

(5)
with

Vppπ (ri j ) = V 0
ppπ exp

(
−|ri j | − aCC

r0

)
, (6)

and

Vppσ (ri j ) = V 0
ppσ exp

(
−|ri j | − c0

r0

)
, (7)

where ri j represents the distance vector between ith and
jth atoms, and ri j · ez represents the interlayer distance be-
tween the ith and jth atoms. The other parameters are
set to be V 0

ppπ = −2.7 eV, V 0
ppσ = 0.48 eV, aCC = aG/

√
3 =

1.42 Å, c0 = 3.35 Å, and r0 = 0.184aG, where aG is the lat-
tice constant of graphene.

The main Hamiltonian can be written as

H =
∑

i j

ti jc
†
i c j +

∑
i∈Top

U1c†
i ci +

∑
i∈Middle

U2c†
i ci

+
∑

i∈Bottom

U3c†
i ci, (8)
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where U1, U2, and U3 are the onsite energies for each layer
in twisted trilayer graphene, respectively. One can set U1 =
U3 = U to generate the antiparallel electric field. Simply but
without loss of generality, we always set U2 = 0 eV. Although
the antiparallel electric field can open up a gap harboring the
quantum valley Hall effect, there is still a Dirac dispersion
remaining within the gap. Here, we propose three approaches
to manipulate the system to open up a global band gap.

The first approach is to apply different electric potentials
at each layer, i.e., U1 �= U3. The second approach is to add a
small δ on different sublattices, with the Hamiltonian being
modified as

H =
∑

i j

−ti jc
†
i c j +

∑
i∈Top

(U1 ± δ)c†
i ci +

∑
i∈Middle

U2c†
i ci

+
∑

i∈Bottom

(U3 ± δ)c†
i ci. (9)

Here, setting U1 = U3 = U , U2 = 0, we choose +δ for theA
sublattice (atoms A1 and A3 in Fig. 1) and −δ for the B sublat-
tice (atoms B1 and B3 in Fig. 1) in the ABA region. The signs
of δ for A and B sublattices are reversed in the BAB region.
The third approach is to apply a magnetic field [26] to generate
the Landau level, which shifts the bulk state of the Dirac cone
from the global gap but the topological confinement states are
unaffected. In the presence of a perpendicular magnetic field
B = ∇ × �A, the tight-binding Hamiltonian [Eq. (8)] can be
modified by introducing the Peierls term in the hopping terms,
i.e., ti j becomes ti jeie/h̄

∫
A·dl .

Low-energy continuum model of ABA-stacked trilayer
graphene. To effectively figure out the bulk electronic and
topological properties, we construct a six-band effective
model for the trilayer ABA-stacked graphene. On the ba-
sis of {ψA1 , ψB1 , ψA2 , ψB2 , ψA3 , ψB3}, the Hamiltonian is
expressed as

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U1
3
2 atτxy −γ

3
2 atτ ∗

xy U1

U2
3
2 atτxy

−γ 3
2 atτ ∗

xy U2 −γ

−γ U3
3
2 atτxy

3
2 atτ ∗

xy U3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(10)

where t = −2.7 eV represents the energy of intralayer
nearest-neighbor hopping, while a = 2.46 Å denotes the lat-
tice constant. We introduce τxy = vx + ivy to represent the
momentum near valley K . γ = 0.48 eV is the hopping energy
between carbon atoms at the top site in ABA-stacked trilayer
graphene, i.e., between A1 and B2, as well as between B2

and A3.
Based on this effective Hamiltonian, one can calculate the

valley Chern number. The Berry connection can be expressed
as [76]

b(k) = ∇ × a(k), (11)

and the corresponding Berry phase is


 =
∮

d2kz · b(k). (12)

By using the Wilson loop method, 
n can be expressed as


n = Arg

[ ∏
p

Det[< us(kn,p)|u′
s(kn,p+1) >]

]
, (13)

where s labels the band index. The valley Chern number is

Cυ = 1/2π
∑


n. (14)

By using this formalism, the valley Chern number can be
calculated even for the system with band overlapped.

Antiparallel electric field in ABA/BAB-stacked trilayer
graphene. Using the six-band effective model of ABA tri-
layer graphene, we first calculate the band structure near
valley K without external fields, i.e., U1 = U2 = U3 = 0, as
shown in Fig. 2(a). The band structure consists of Dirac and
parabolic dispersion relations, a quadruple degenerate point
appearing at E f = 0 eV. Figure 2(b) displays the ribbon band
structure [see Fig. 1(b)]. When the antiparallel electric field
is introduced, i.e., U1 = U3 = 0.1 eV, U2 = 0 eV. The corre-
sponding bulk band structures around valley K are displayed
in Fig. 2(c), with bands being sequentially labeled from bot-
tom to top as 1 to 6. Interestingly, this antiparallel electric field
opens an energy gap about 0.1 eV between bands 3 and 4. To
our surprise, the obtained valley Chern number indicates that
it is topologically nontrivial with Cv = 1. Additionally, one
can see that the linearly dispersed Dirac bands [see Fig. 2(c)]
shift upward by a value, being the same as the energy gap
between bands 3 and 4. This leads to the pinning of the Dirac
cone at band 4, forming a triply degenerate point. Correspond-
ingly, the energy bands of the ribbon system are displayed in
Fig. 2(d), where two pairs of topological confinement states
with opposite group velocities are submerged in the bulk states
belonging to the Dirac dispersion. The number of topological
confinement states is determined by the difference of valley
Chern numbers of the regions separated by the domain wall,
obeying the bulk-boundary correspondence. Moreover, it is
noteworthy that the sizes of the bulk energy gap and the
nontrivial energy gap of the strip also essentially coincide.

Furthermore, as displayed in Figs. 2(e1)–2(e6), we calcu-
late the modulus squared of the wave function near valley K
for the six bands in Fig. 2(c). For bands 1, 6 and bands 3,
4, the corresponding the modulus squared of wave function
is distributed at all layers. In the top and bottom layers, the
curves are degenerate. With the variation of the wave vec-
tor, the curves of the bottom/top layer show opposite trends
compared with that of the middle layer. For bands 2 and 5,
the modulus squared of wave function is only equally dis-
tributed at the top and bottom layers. This indicates that the
wave-function distributions of the Dirac dispersion are only
at the outer layers (top and bottom layers). Therefore, we
pose a reasonable question. Our goal is to open up a global
energy gap in this system to find topological confinement
states induced by valley topological difference. Now that it has
been established that the bulk states contributed by the Dirac
cones are entirely distributed in the system’s outer layers, can
we only manipulate the system’s outermost layers to open
up a gap at this Dirac cone while preserving the quantum
valley Hall phase introduced by the antiparallel electric field?
Following this line of thought, we undertake attempts below.
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FIG. 2. (a), (b) Band structures of the bulk and ribbon for the ABA-stacked trilayer graphene. (c), (d) Band structures of the bulk and
ribbon after applying the antiparallel electric field, i.e., U1 = U3 = 0.1 eV, U2 = 0 eV. Red lines in (d) are the topological confinement states.
(e1)–(e6) The modulus squared of wave function of the six energy bands labeled in (c).

Valley Chern number phase diagram. In the following
cases, i.e., U1 �= U3, the system enters different phases. Here,
we present the phase diagram of valley Chern number in the
(U1, U3) plane, as displayed in Fig. 3(a). One can notice that
the valley Chern number varies between −1 to 1.

Along the green line in the phase diagram at fixed U1 =
0.1 [see Fig. 3(a)], we calculate the bulk band structures
around valley K at the specific positions, as displayed in
Figs. 3(b1)–3(b5). By tuning the value of U3 from 0.2 to −0.2,
one can see that the global band gap can be opened when U3 =
0.2, 0.0, and −0.2. Correspondingly, the valley Chern number
Cv = 0.5, 0.5, and −0.5. When U1 = 0.1 = −U3, i.e., under

a uniform perpendicular electric field, the system goes into a
normal metal phase with Cv = 0, as displayed in Fig. 3(b4).
Interestingly, when U1 = 0.1 and U3 = 0.2, it is noticed that
all the intersections of the Dirac cone and other bands open
energy gaps due to the topological phase transition. We also
calculate the ribbon band structures based on the relaxed
ABA/BAB domain wall. The topological confinement states
can be observed in Figs. 3(c1), 3(c3), and 3(c5), respectively.
The number of topological confinement states is determined
by the difference of valley Chern number.

Let us now move to the second approach. Besides the
antiparallel electric field, i.e., U1 = U3 = U and U2 = 0, we

FIG. 3. (a) Phase diagram of valley Chern number at the plane of U1 and U3. (b1)–(b5) Bulk band structures following the deep green line
in (a). (c1)–(c5) Corresponding ribbon band structures. The ribbon structure is the same as that in Fig. 1(d). Red lines in (c) are the topological
confinement states.
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FIG. 4. (a) Phase diagram of valley Chern number in the plane of U and δ. (b1)–(b5) Bulk band structures following the deep green line
in (a). (c1)–(c5) Corresponding ribbon band structures. The ribbon structure is the same as Fig. 1(d). Red lines in (c) are the topological
confinement states.

further add a small staggered sublattice potential ±δ on the top
and bottom layers, respectively. Theoretically, this staggered
sublattice potential can open up a nontrivial energy gap in the
system characterized by the Dirac dispersion. Here, we set
U and δ in the range between −0.3 and 0.3 eV to obtain a
phase diagram of the valley Chern number, as displayed in
Fig. 4(a), where the valley Chern number can be switched
from −1.5 to 1.5. Similarly, along the green line in the phase
diagram with fixed U = 0.2 [see Fig. 4(a)], we calculate the
bulk band structures around valley K at the specific positions,
as shown in Figs. 4(b1)–4(b5). By tuning the value of δ from
−0.1 to 0.3, one can see the global band gap can be opened,
when δ = −0.1 and δ = 0.3 [see Figs. 4(b1) and 4(b5)]. Cor-
respondingly, the valley Chern number Cv = 1.5 and Cv =
−1.5. When δ = 0.0, the system returns to the situation where

U1 = U3. When δ = 0.1 or δ = 0.2, the system is still in a
metallic phase. Besides the bulk band structures, we also cal-
culate the corresponding ribbon band structures, as displayed
in Figs. 4(c1)–4(c5). The topological confinement states can
be observed clearly in Figs. 4(c1) and 4(c5), where the number
of topological confinement states is equal to the difference of
the valley Chern number. It is noteworthy that, as displayed
in Figs. 4(b1) and 4(c1), one of the topological confinement
states possesses the feature of monolayer graphene, which
implies the existence of hybrid topological states consisting
of monolayer and bilayer topological confinement states. Fur-
thermore, our ribbon is formed by the relaxed ABA/BAB
domain wall, where the stacking order of carbon atoms can be
changed. To realize topological confinement states, it is neces-
sary to reverse the sign of δ after passing through the domain

FIG. 5. (a)–(d) Ribbon band structure with the antiparallel electric field and magnetic field. Red lines are the topological confinement states
and yellow lines are the quantum Hall edge states. The parameters are chosen to be U1 = U3 = 0.1 eV, U2 = 0 eV. (e1)–(e6) The modulus
squared of wave function in (c), labeled from 1 to 6 at Ef = 0.02 eV.
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wall. This operation also offers a plausible explanation for the
appearance of the topological confinement state contributed
by monolayer graphene.

The influence of magnetic field. In condensed matter
physics, applying a magnetic field is a common research
technique. We then demonstrate that the cooperation of an
antiparallel electric field and a perpendicular magnetic field
can effectively open up a topologically nontrivial global gap in
the trilayer graphene system. For convenience and in contrast
to the two approaches mentioned above, we add the magnetic
field in all three layers. For similarity, we set U1 = U3 =
−0.05 eV. When the magnetic field is absent, i.e., B = 0 T, the
system is a metal with a Dirac cone as previously mentioned.
With the increase of the magnetic field, the bulk states con-
tributed to by the Dirac cone are gradually suppressed. Then,
two pairs of topological confinement states with opposite
group velocities emerge. When the magnetic field reaches 3 T,
the Dirac cone transforms into discrete Landau levels falling
in the gap of the quantum valley Hall, as displayed in Fig. 5(d).
In this gap, two pairs of topological confinement states and a
pair of quantum Hall edge states with opposite group veloc-
ities can be observed clearly, which implies that the hybrid
topological states can coexist in this system. Furthermore, our
previous work demonstrated that a magnetic field can sig-
nificantly enhance the robustness of topological confinement
states [26]. Thus, it is promising to simultaneously observe
both the quantum valley Hall and quantum Hall effects in this
system. For clarity, we explore the situation with B = 2 T
and choose different positions corresponding to topological
confinement states or quantum Hall edge states marked by
numbers 1 to 6 in Fig. 5(c). It is evident that the localized
topological confinement states, respectively, numbers 2, 3,

4, and 5, are distributed along the domain walls throughout
three layers, as displayed in Figs. 5(e2)–5(e5). Meanwhile, the
quantum Hall edge states 1 and 6 are equally distributed at the
top and bottom layers along the left and right boundaries [see
Figs. 5(e1) and 5(e6)], respectively.

Conclusion. In this study, by introducing a pair of iden-
tical antiparallel electric fields, we successfully open up a
gap harboring the quantum valley Hall effect in ABA-stacked
trilayer graphene for the first time. Meanwhile, there is a
Dirac cone pinned on the conduction band nearest to the
Fermi level. Three methods are used to open up a global
energy gap where the quantum valley Hall effect is pre-
served. Then, based on small-angle twisted trilayer graphene,
we obtain topological confinement states along the domain
wall between ABA/BAB stacking regions. Particularly, one
of the methods combining the antiparallel electric fields and
the magnetic field provides a platform to explore the quan-
tum valley Hall effect and quantum Hall effect at the same
time. Our work paves the way for exploring novel topo-
logical quantum states and designing low-power quantum
devices.
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