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We study the quantum phase diagram of electrons on kagome lattice with half-filled lowest flat bands by
considering the antiferromagnetic Heisenberg interaction J, and short-range Coulomb interaction V. In the
weak J regime, we identify a fully spin-polarized phase. The presence of finite V drives a spontaneous
chiral current, which makes the system an orbital Chern insulator by contributing an orbital magnetization.
Such an out-of-plane orbital magnetization allows the presence of a Chern insulating phase independent of
the spin orientation in contrast to the spin-orbit coupling induced Chern insulator that disappears with in-
plane ferromagnetism constrained by symmetry. Such a symmetry difference provides a criterion to
distinguish the physical origin of topological responses in kagome systems. The orbital Chern insulator is
robust against small coupling J. By further increasing J, we find that the ferromagnetic topological phase is
suppressed, which first becomes partially polarized and then enters a nonmagnetic phase with spin and
charge nematicity. The frustrated flat band allows the spin and Coulomb interaction to play an essential role
in determining the quantum phases.
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Introduction.—The geometrical frustration of kagome
lattice has attracted much attention in the past few
decades [1–21]. At half filling, the frustration of anti-
ferromagnetic spins can lead to quantum spin liquid phases
and other exotic magnetic orders [1–3,7–11]. Besides, the
frustration of electronic hopping leads to a flat band that
shows quadratic crossing with Dirac bands [22]. At a
semimetallic filling with linear or quadratic Fermi point,
the presence of strong electronic interaction can open a
band gap at the Fermi points hosting nontrivial topology
[23–35]. Importantly, the flat band provides a platform
to study the interaction driven exotic states with partial
filling [6,36–38]. Recently, theoretical calculations show that
the (semi)metallic flat bands can be achieved in realistic
materials of kagome or kagomelike lattices [39–44], e.g.,
graphyne [42], where interaction driven orbital magnetism
and Chern insulator have been predicted at mean-field level.
In experiments, kagome lattices of transition metals have
also been observed contributed from various d orbitals near
the Fermi level, which provide novel platforms to investigate
the intriguing physics from the interplay between strong
repulsive interaction, magnetism, and topology [45–58].
The kagome lattices formed by transition metal atoms

exhibit characteristic single-particle band structures, includ-
ing quasi-two-dimensional Dirac bands [45–48] and flat
bands near the Fermi energy [48–52]. Nontrivial band
topology is observed by measuring anomalous Hall effect

and orbital magnetic moments [45–49,53–56]. These topo-
logical responses are closely related to the magnetic phases
and strong electronic interactions as indicated by the
experiments [45–47,49,56]. However, the role of interaction,
and its interplay with magnetism and topological band
structure remain not clearly understood in kagome metal
systems.
In this Letter, we theoretically investigate the interplay

of topological phases and magnetism in the presence of
strong correlation based on the extended t-J model in
Eq. (1) on kagome lattice with antiferromagnetic exchange
interaction J and repulsive Coulomb interaction V. For
electrons at the half-filling of the lowest flat bands, we
identify three phases. At a small J, the short-range
Coulomb interaction V drives a chiral current leading to
spontaneous orbital magnetization and an energy gap
hosting nonzero Chern number independent of the direction
of the fully polarized spin. This distinguishes the orbital
Chern insulator demonstrated here from the traditional one
induced by spin-orbit coupling. Along with the increase of
J, the system first undergoes a quantum phase transition to
the partially spin-polarized phase and finally to the non-
magnetic phase with spin and charge nematic order
stabilized by both J and V.
Model and methods.—We consider a kagome lattice of

spinful fermions described by an extended t-J model with
the Hamiltonian written as
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where c†i;α (ci;α) is the creation (annihilation) operator of a

fermion with spin α ¼ f↑;↓g at site i and ni ¼
P

α c
†
i;αci;α

is the particle number operator. Si ¼ ðSxi ; Syi ; Szi Þ ¼
1
2

P
α;β c

†
i;ασ
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α;β ci;β is the spin operator with σx;y;z being

Pauli matrices. The hopping term t is set to be the energy
unit, which makes the lowest energy band flat and
quadratically touching with the middle one. The second
term represents the exchange interaction with strength
J > 0 (antiferromagnetic type) between each pair of nearest
neighbor sites. The third and fourth terms are the repulsive
Coulomb interactions between electrons of first (h…i) and
second (⟪…⟫) nearest neighbors with strengths V1 and V2,
respectively. The Hilbert space is constrained by the no-
double occupancy condition, ni ≤ 1, which corresponds to
the on-site Hubbard interaction U ¼ ∞ limit.
We focus on the one-sixth filling case in a finite system

of Ny × Nx unit cells with total number of sites Ns ¼
3 × Ny × Nx and the number of fermions Ne ¼ 2Ns=6. To
illustrate the phase diagram, we set V2 as a fraction of V1

with V1 ¼ 2V2 ¼ V in our calculations and focus on the
competition between interaction V and J [31]. To character-
ize the ground states of the system with interactions, we
employ the finite density matrix renormalization group
(DMRG) algorithm [59–62] on cylinder geometry, where
the boundary is open (periodic) along the x (y) direction. In
DMRG calculations, we set Ny up to four unit cells (eight
lattice sites) and keep the DMRG states up to M ¼ 12 000
to guarantee a good convergence (with the truncation error
smaller than 10−5).
Phase diagram.—As each spin component is conserved in

our model, the ground states are calculated in sub-Hilbert
spacewith total azimuthal spinSz ranging from0 toSmax with
Smax ¼ Ne=2 (results are symmetric about positive and
negative total Sz). For a system of Ns ¼ 3 × 3 × 4 ¼ 36,
we numerically calculate the ground-state energies for
different Sz sector in the parameter space spanned by the
short-range Coulomb interactionV and exchange interaction
J.We identify three phases as shown in Fig. 1(a) according to
the polarization of the ground state.
In phase I, the system is fully spin polarized, i.e., the

ground states of different spin Sz ranging from −Smax to
Smax are all degenerate with a total spin S ¼ Ne=2. Our
results suggest that the spontaneous ferromagnetization in
this system is very strong, which can survive to finite
antiferromagnetic coupling J ∼ 0.4. Interestingly, an inter-
mediate interaction strength V ∼ 0.8 can further enlarge the
regime of the fully polarized phase, which may attribute to
the enlarged energy gap by a larger V. As J increases, we

find that the ferromagnetic phase is suppressed. For an
intermediate J, the ground state jumps from S ¼ Ne=2 to a
partially spin-polarized state with a smaller total S driven
by antiferromagnetic coupling, which is illustrated as
phase II. The partially polarized phase also becomes
excited states and the ground state lies in the spin sector
of total S ¼ 0 labeled as phase III in Fig. 1 for even larger J.
The changing of the color illustrates schematically the
increase of the order parameter with the increase of V,
which plays an essential role in stabilizing phases I and III
(see Supplemental Material [63] for more details).
We further compare results from different system sizes to

show the robustness of the quantum phase diagram. As
shown in Fig. 1(b) at fixed V ¼ 0.6, we present the energy
differenceESz

g − E0
g between ground state energy at different

Sz ¼ 0; 1; Smax as a function of J, for three different system
sizes Ns ¼ 3 × 4 × 3 ¼ 36, 3 × 4 × 4 ¼ 48, and 3 × 3 ×
8 ¼ 72 sites, respectively. The sameenergy evolutionwithSz
is identified for these different systems. For a smaller J, the
ground state has the total spin S ¼ Smax with 2Sþ 1–fold
magnetic degeneracy, where the lowest energies in each Sz
sector has the same energy. For J ¼ 0.8 in phase II, the
ground state has a smaller total spin S (i.e., S < Smax) since
ESmax
g − E0

g > 0whileE1
g − E0

g ¼ 0. For J > 1.0 in phase III,

bothESmax
g − E0

g > 0 andE1
g − E0

g > 0, so the ground state of
the system has total spin S ¼ 0.
The nonpolarized phase III is a nonmagnetic insulator

with spin and charge nematicity. In Fig. 2(a), we plot the
expectation value of electron number operator ni at each
site, where the circle size is proportional to the electron
number hnii. One can find that the charge densities for
different sublattices are imbalanced, where A and B sites
show similar densities, which are much larger than that of

(a) (b)

FIG. 1. (a) Phase diagram vs repulsion-interaction strength V
and exchange-interaction strength J. Phases I, II, and III are
fully spin polarized spontaneous Chern insulator phase, partially
polarized intermediate phase, and nonpolarized phase with spin
and charge nematicity, respectively. (b) Lowest energy level at
each sector of azimuthal spin polarization Sz vs exchange-
interaction strength J at V ¼ 0.6. Circle, triangle, and square
stand for the system with Ns ¼ 36, 48, and 72, separately.
The phase diagram is calculated for Ns ¼ 3 × 3 × 4 ¼ 36 site
system. The first and second nearest neighbor interactions are
V1 ¼ 2V2 ¼ V. The dashed lines indicate the phase boundaries.
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sublattice C. The intraunit cell charge density difference
δni ¼ nA;i − nC;i at ith unit cell is plotted as a function of
the unit cell position ix in the inset of Fig. 2(b). The charge
imbalance away from the boundaries shows weak spatial
dependence. In themiddle of the system,we can see that such
a charge-density pattern preserves the translation symmetry
of the system while breaks the rotation symmetry leading to
the nematicity. We have checked that such density and spin
patterns are robust against the width Ly of the cylinders, by
lowering the spin and interaction energy [63]. The insulating
nature of this phase is characterized by a finite charge
excitation gap defined as Δ2e¼E0

gðNeþ2ÞþE0
gðNe−2Þ−

2E0
gðNeÞ which is calculated in the ground state Sz ¼ 0 spin

sector by adding and removing two electrons (one spin up
and one spin down). The scaling behavior of the charge gap
as a function of 1=Ns is plotted in Fig. 2(b), where one can
find that the charge gap is finite in thermodynamic limit
suggesting the system is an insulator.
Since J represents the strength of the antiferromagnetic

coupling, we also check if there is any magnetic order.
We show that the state is nonmagnetic due to the small
site filling number where the antiferromagnetic coupling
becomes less efficient. The spin-spin correlation jhSi · Sjij
decreases exponentially as a function of the distance
between two sites as shown in the lower panel of
Fig. 2(c), where the correlation between sites i and j with
the same y coordinate is plotted as a function of their
distance ix − jx along the x direction. Nevertheless, the
spin-spin correlation between the nearest neighboring sites
shows nematicity that further lowers the total energy [63].
We also study the electron hopping function Gij ≡ hc†i cji

as shown in the upper panel of Fig. 2(c) where the mag-
nitude of Gij also decreases exponentially as the distance
increases, being consistent with a charge insulator state.
The partially polarized phase II shows a spin polarization

close to the fully polarized state [63] with flipped spins
appear at the boundary of the system. To understand if such
a phase can extend to intermediate spin polarization, larger
systems are required, which is beyond our current simu-
lation capability.
Spontaneous chiral current.—We now turn to phase I

where the system is fully spin polarized. Our result is
complementary to the kinetic ferromagnetism in Ref. [6]
that is insensitive to the sign of hopping energy and focus
on the regime of jtj ≪ V. Besides, the weak J limit
corresponds to a large U and the ferromagnetic ground
state agrees with the graph-theory analysis of t-U model on
kagome lattice with Hubbard U > 0 [64]. In the following,
we reveal the nontrivial orbital effect and electronic top-
ology besides the ferromagnet when the Coulomb inter-
action beyond on-site Hubbard U is included.
We demonstrate that spontaneous chiral currents appear

in the ferromagnetic phase of the spinful model in the
presence of finite V. We consider a chiral-symmetry-
breaking hopping term hC ¼ iχtC

P
hiji;α c

†
i;αcj;α as a per-

turbation, where tC ≪ t ¼ 1 is small and χ ¼ �1 when
the electron hopping is clockwise-anticlockwise in each
triangle. We can then detect the loop current following the
Hellmann-Feynman theorem [33,65,66] via

hji ¼ 1

2Ns

∂EðtCÞ
∂tC

����
tC→0

; ð2Þ

where EðtCÞ ¼ hΨjHðhCÞjΨi with jΨi being the ground
state of the system and Ns the number of sites. In
Fig. 3(a), we show the ground state energy difference
E0
gðtCÞ − E0

gðtC ¼ 0Þ as a function of tC for Ns ¼ 36 with
J ¼ 0.4, 0.8, and 1.4 representing three different phases,
respectively. One can find that in the ferromagnetic region,

(a) (b)

FIG. 3. (a) Variation of ground state energy due to the presence
of nonzero tC at different J for Ns ¼ 36 sites. The slope of each
curve at tC ¼ 0 represents the average current hji of the system as
labeled by the number nearby. (b) Size scaling of current at the
corresponding J. The repulsion interaction V ¼ 0.6 here.

(a)

(b) (c)

FIG. 2. Measurements of the ground state in phase region III
with J ¼ 1.5 and V ¼ 0.5. (a) Charge density at each site. Circle
size represents the magnitude of density. (b) Scaling behavior of
the charge gap. Inset: intraunit cell charge density imbalance δni
as the unit-cell position along x direction ix. (c) Dependence of
electron hopping function Gij and spin-spin correlation between
two sites on their distance.
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the ground state energy decreases linearly as a function of
tC (we use small tC up to 0.008) corresponding to a loop
current of j ¼ 0.028 for each triangle. The constant current
at weak J is robust against the system size Ns, as shown in
Fig. 3(b) where the scaling behavior of the current as a
function of 1=Ns is plotted by the red line with solid circles.
We find that the current is finite in the order of 10−2 at the
large Ns limit, suggesting the existence of finite current in
the thermodynamic limit. The finite current supports the
quantum anomalous Hall effect for phase I with nonzero V.
For partially polarized and nonmagnetic phases with

J ¼ 0.8 and J ¼ 1.4, the ground state energies decrease
near quadratically with tC as shown in Fig. 3(a). For
J ¼ 0.8, the current keeps a small value whereas the
current drops a lot at J ¼ 1.4 as Ns increases. We caution
that because of the quadratic behavior of currents for phase
regions II and III, we will see much reduced or vanishing
current if we take the small tC limit, which is negligible as it
is related to an energy difference at the same order as the
relative error in DMRG.
Spontaneous orbital magnetization.—The spontaneous

chiral current will manifest itself by a nonzero spontaneous
orbital magnetization. In the presence of nonzero loop
current, the mean-field electronic structure is plotted in
Fig. 4(a), which is independent of the spin orientation and
exhibits a band gap as labeled by the shadow region. When
the chemical potential lies in the band gap at 1=6 filling,
nonzero out-of-plane orbital magnetizationMorb appears as
shown in Fig. 4(b) [63]. Inside the gap, the linear dependence
ofMorb on chemical potential is attributed to the chiral edge
state of the Chern insulator. The corresponding magnetic

moment per unit cell isμBð2me=m�Þwhere theme is themass
of electron and the effective mass m� ¼ ð2πℏÞ2=tAu is
defined by the energy unit t and the unit cell area Au. By
employing the typical hopping energy t ∼ 0.5 eV and lattice
constanta ∼ 0.5 nm of kagome lattice in kagomemetal [48],
the corresponding magnetic moment per unit cell is about
0.05μB. This makes the spontaneous Chern insulator an
orbital magnet independent of the spin polarization.
In contrast, for the topological phase induced by spin-

orbit coupling, the band topology and the associated orbital
magnetization show strong dependence on the spin ori-
entation [63,67]. In the presence of the symmetry-allowed
Kane-Mele type spin-orbit coupling [63] in a plannar
kagome lattice, the in-plane ferromagnetism (the azimuthal
angle θ ¼ π=2) cannot open a band gap as shown in
Fig. 4(c). Thus, in the absence of chiral current, the system
is topologically trivial with in-plane ferromagnetism, which
is constrained by the symmetry. The corresponding orbital
magnetization is also zero as shown in Fig. 4(d) where the
orbital magnetization is plotted as function of the spin
orientation in the presence of only spin-orbit coupling and
ferromagnetism. One can find that both the magnitude and
the sign of the orbital magnetization depend strongly on the
spin-orientation θ.
Summary and discussion.—We have demonstrated the

quantum phase diagram of an electronic kagome lattice
with half-filled lowest flat band by considering the inter-
play between the short-range Coulomb interaction V and
the nearest neighbor antiferromagnetic Heisenberg inter-
action J. In the large J limit, the system is a nonmagnetic
insulator with spin and charge nematicity. The Coulomb
interaction V plays an essential role to stabilize this phase
in the presence of flat band with frustrated kinetic energy.
As J decreases gradually, the system becomes partially
polarized first. In the weak J regime, the system exhibits a
fully spin-polarized ferromagnetic phase. The short-ranged
Coulomb interaction V drives the formation of spontaneous
chiral current, which manifests itself as an orbital magnet.
The orbital magnetization points out of plane that is also
independent of the spin polarization. This provides another
example for the presence of orbital magnet independent of
the spin polarization besides the magic-angle twisted
bilayer graphene [68–70].
Such out-of-plane orbital magnetization breaks the

mirror symmetries and thus allows the presence of an
orbital Chern insulator, which is independent of the spin
polarization. In contrast, the Chern insulator induced by
spin-orbit coupling shows a strong dependence on the spin
polarization, which disappears when the polarization lies
in-plane constrained by symmetry. Our work provides a
way to distinguish these two types of Chern insulators for
realistic materials.

Y. R. and Z. Q. acknowledge the financial support from
NNSFC (No. 11974327), Fundamental Research Funds for
the Central Universities, and Anhui Initiative in Quantum

FIG. 4. (a),(b) Electronic band structure and orbital magneti-
zation in the presence of spontaneous chiral current and ferro-
magnetism. (b) Orbital magnetization vs chemical potential. The
green shaded region shows the band gap. Unit of magnetization:
et=ð2πÞ2ℏ. (c),(d) Band structure and orbital magnetization in the
presence of Kane-Mele type spin-orbit coupling and ferromag-
netism. (d) Orbital magnetization vs azimuthal angle θ that
characterizes the spin orientation as illustrated in the inset.
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