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In two-dimensional antiferromagnets, we find that the mixed Berry curvature can be attributed as the
geometrical origin of the nonreciprocal directional dichroism (NDD), which refers to the difference in light
absorption between opposite propagation directions. This Berry curvature is closely related to the uniaxial
strain in accordance with the symmetry constraint, leading to a highly tunable NDD, whose sign and
strength can be tuned via strain direction. We choose the lattice model of MnBi2Te4 as a concrete example.
The coupling between mixed Berry curvature and strain also suggests the magnetic quadrupole of the Bloch
wave packet as the macroscopic order parameter probed by the NDD in two dimensions, which is distinct
from the multiferroic order P ×M or the spin toroidal and quadrupole order within a unit cell in previous
studies. Our work paves the way for the Berry-curvature engineering for optical nonreciprocity in two-
dimensional antiferromagnets.
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Antiferromagnetism in two dimensions has attracted
growing interest in recent years [1–8]. Benefiting from both
the ultrafast dynamics and absence of stray fields from
antiferromagnetism [5], and remarkable tunability in
two-dimensional van der Waals structures [9–12], two-
dimensional antiferromagnets can play an essential role in
designing next-generation spintronic devices [5–8]. Their
connection with topological and geometrical physics is also
recognized [13–20]. This naturally integrates spintronics
with topological protection as well as a distinct tuning
scheme via Berry-curvature engineering. One fundamental
and timely question to answer in this regard is how the
geometrical quantity (e.g., Berry curvature) is intertwined
with various degrees of freedom, such as charge, spin, and
lattice. One example is the layer Hall effect in the anti-
ferromagnetic MnBi2Te4 system due to locking of Berry
curvature with different layers [20]. Hereinbelow, we
investigate the coupling between Berry curvature and
uniaxial strain through the nonreciprocal directional dichro-
ism (NDD).
NDD refers to the difference in optical absorption

between counterpropagating lights with linear polarization
[21–37]. It originates from the dynamical magnetoelectric
coupling [26–33] and has a deep connection with both the
order parameter and geometrical property of Bloch elec-
trons. Per symmetry consideration, NDD requires the
breaking of time-reversal symmetry (T ) and inversion
symmetry (I), and is insensitive to the combined TI

symmetry. In three dimensions, such symmetry require-
ments are generally associated with two types of order
parameters, i.e., the multiferroic order P ×M [25–33] (P is
the electrical polarization and M the magnetization) and
antiferromagnetism [34–37]. To be precise, in the latter
case, the local spin arrangement within a unit cell should
possess a spin toroidal order t ∝

P
n rn × sn or a symmetric

spin quadrupole order qsij∝
P

n½rnisnjþrnjsni−2
3
δijrn ·sn�

[38], where rn and sn label the position and spin at lattice
site n, respectively. Such secondary order parameters then
couple with the propagation direction of light, leading to
the NDD. On the microscopic level, based on the band
theory analysis in three dimensions, the geometrical origin
of NDD is the quantum metric dipole of the Bloch state
[22], which brings unique peak structures.
In this Letter, we generalize the microscopic theory of

NDD to two-dimensional antiferromagnets. We identify the
Berry curvature in the mixed parameter space ðk; B̃Þ as the
geometrical origin, instead of the quantummetric dipole for
the three-dimensional counterpart. More importantly, in the
lattice model of MnBi2Te4, we find that the Berry curvature
exhibits hot regions near the Γ point, whose shape is closely
tied to the uniaxial strain. Therefore, the strength and sign
of the NDD can be manipulated by the strain direction.
The coupling between Berry curvature and uniaxial

strain also reveals a distinct mechanism for the NDD.
With strain, P ×M always vanishes due to the combined
TI symmetry; the spin toroidal order t is also zero, and the
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quadrupole order qsij remains unchanged. Therefore, none
of them are responsible for the NDD, which strongly
depends on the strain. We then identify the magnetic
quadrupole Qij of the wave packet as the macroscopic
order parameter behind the NDD, whose microscopic
expression contains the mixed Berry curvature as well.
Utilizing the close relation between mixed Berry curvature
and strain, we find that the NDD depends linearly on Qij.
Therefore, the NDD can probe two-dimensional antiferro-
magnetism via Qij.
Geometrical origin of NDD in two dimensions.—We first

sketch the microscopic theory of NDD in two dimensions.
Without loss of generality, we assume that a light, linearly
polarized along the x direction and propagating along the z
direction, is normally incident on a bilayer antiferromagnet.
The multilayer case can be obtained straightforwardly [39].
The general form of the light-induced current can then be
expressed as

JxðωÞ ¼ σxxðωÞExðωÞ þ σxxzðωÞqzExðωÞ; ð1Þ

with ω and qz being the frequency and wave vector of the
light, respectively. σxxðωÞ is the usual optical conductivity,
and σxxzðωÞ corresponds to NDD, as the resulting current
flips sign with the flipping of the light propagation
direction, i.e., qz. In three dimensions, σxxzðωÞ can be
evaluated by considering the energy and momentum trans-
fer during the optical transition. However, the momentum
transfer cannot be directly implemented in two dimensions
due to the loss of the translational symmetry along the
thickness direction.
Following the treatment in Ref. [40], we note that the

coupling between the electron in the bilayer antiferromag-
net and the light vector potential Ax ¼ A0eiðqzz−ωtÞ (z ¼ �d
for the top and bottom layers) can be put in the form Ĥ0 ¼
−Ĵx · A0e−iωt − 2myBy [39], where Ĵx ¼ −ev̂x is the cur-
rent operator, By ¼ iqzA0e−iωt is the magnetic field sensed
by the bilayer antiferromagnet, and m̂y ¼ ðd=2ÞðĴ1x − Ĵ2xÞ
is the magnetic moment operator with 2d, Ĵ1x, and Ĵ2x
being the thickness, and the current operator in the top and
bottom layers, respectively. This coupling is given to the
first order in both A0 and qz.
Based on the above light-electron interaction, we adopt

the linear response theory to derive σxxzðωÞ. It contains two
contributions: the current in response to By and the
magnetization in response to Ex. To be compact, we
introduce an auxiliary constant magnetic field B̃y along
the y direction, such that the Hamiltonian without light
irradiation reads Ĥ ¼ Ĥ0 − 2myB̃y, which recovers the
original unperturbed Hamiltonian Ĥ0 in the limit of
B̃y → 0. σxxzðωÞ can then read as [39]

σxxzðωÞ¼
2ie
ℏω

X
mn

Z
dk

ð2πÞ2
fmnε

2
mn

εmnþℏωþ iη
Ωnm

kx;B̃y
jB̃y→0; ð2Þ

where fmn ¼ fm − fn with fn being the Fermi distribution
function for band n, εmn ¼ εm − εn with εn being the
energy dispersion for band n, and η → 0þ. Ωnm

kx;B̃y
is the

Berry curvature in the mixed space ðk; B̃Þ for a pair of
bands n, m:

Ωnm
kx;B̃y

¼ 2Im
�hmkj∂kx jnkihnkj∂B̃y

jmki�; ð3Þ

where jnki is the periodic part of the Bloch state in band n
for the Hamiltonian Ĥ. Equation (2) can be straightfor-
wardly generalized to multilayer systems that are amenable
for first-principles calculations [39].
In Eq. (2), the key geometrical quantity is the mixed

Berry curvature. To further illuminate its physical and
geometrical meaning, several comments are in order. First,
we emphasize that Ωnm

kx;B̃y
is defined for a pair of bands

instead of the usual Berry curvature for a single band. This
is a characteristic feature in optics as the optical transition
always involves a pair of bands. Ωnm

kx;B̃y
thus characterizes

the geometrical feature of such an optical transition. The
relation betweenΩnm

kx;B̃y
and NDD can be further illuminated

by considering the oscillator strength of the optical tran-
sition [53]

fn→mðqzÞ ¼
2me

eℏωmn
jhmkjĴx þ 2iqzm̂yjnkij2: ð4Þ

We then find that [39]

fn→mðqzÞ − fn→mð−qzÞ ¼ 8qzmeωmnΩnm
kx;B̃y

jB̃y→0: ð5Þ

Therefore, a nonzero mixed Berry curvature necessarily
makes the electron respond differently for counterpropa-
gating lights.
Second, Ωnm

kx;B̃y
can be viewed as the interband Berry

curvature [54]. By summing over band index m, we obtain
Ωn

kx;B̃y
¼ P

m Ωnm
kx;B̃y

. Here, Ωn
kx;B̃y

is the familiar Berry

curvature in a parameter space ðk; B̃Þ for a single band
n, and it can be expressed using the Berry connection:
Ωn

kx;B̃y
¼ ∂kxA

n
B̃y

− ∂B̃y
An
kx
with An

ξ ¼ hnkji∂ξjnki being the

Berry connection for band n and ξ ¼ kx or B̃y. It should be
noted that Ωnm

kx;B̃y
coincides with the familiar Berry curva-

ture if the system only consists of two bands. The total
mixed Berry curvature for the ground state is an intrinsic
bulk property of Bloch bands and can be obtained from the
optical sum rule. We get that [39]

Z
∞

0

Re½σxxzðωÞ�
ω

dω¼−4πeℏ
X
n∈occ

Z
dk

ð2πÞ2Ω
n
kx;B̃y

jB̃y→0; ð6Þ

where “occ” means occupied band indices.
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Third, in experiments the NDD is generally probed
by measuring the difference in the transmitted light with
the same incident power but opposite propagation
directions. The resulting NDD coefficient is usually de-
fined as χ¼�½jEoutðqzÞj2−jEoutð−qzÞj2�=

��jEoutðqzÞj2þ
jEoutð−qzÞj2

�
=2
��
. By using electrodynamic theory, one

can obtain [39]

χ ¼ −2μ0ωRe½σxxzðωÞ�; ð7Þ

where μ0 is the vacuum permeability. Equation (7) directly
relates NDD to the higher-order optical conductivity
σxxzðωÞ and therefore indicates the mixed Berry curvature
as its microscopic origin.
Strain-tunable NDD in the lattice model of bilayer

MnBi2Te4.—To reflect the geometrical features of NDD,
we take a generic lattice model [13,41] with magnetic point
group 3̄0m0 as a concrete example [the structure is shown in
Fig. 1(a)]. It can represent bilayer antiferromagnets such as
MnBi2Te4 [42]. Although both T and I symmetries are
broken, which fulfills the spatial temporal symmetry
requirement of NDD, the appearance of C2x symmetry
ðx → x; y → −y; z → −zÞ forbids σxxzðωÞ and hence a
NDD, based on Eq. (1). This is also confirmed from our
calculation. By applying an in-plane uniaxial strain [39],
the C2x symmetry is generally broken, and the NDD then

emerges. In Fig. 1(b), we plot the NDD signal per unit
thickness (black curve) defined as λ ¼ ðχ=2dÞ, with the
strain being applied along the direction making a θs ¼ π=4
angle with the x axis. We find that λ has two peaks at
ℏω ¼ 3M1 and 8.5M1, respectively. Here, M1 is a para-
meter of the lattice model [39].
Optical signals are generally related to the joint density

of states (JDOS), which is defined as

JDOS ¼ Im
X
m≠n

Z
dk

ð2πÞ2
fmn

εmn − ℏω − iη
; ð8Þ

which represents the number of the initial and final states in
the optical transition. By comparing the JDOS (red curve)
and λ in Fig. 1(b), we show that the peak at ℏω ¼ 8.5M1 is
indeed due to the JDOS.
The first peak at ℏω ¼ 3M1 is of pure geometrical origin.

Based on Eq. (2), both the number of states and the mixed
Berry curvature contribute to NDD. We can then isolate the
latter by considering the averaged Berry curvature in the
optical transition defined as λ=JDOS, as shown in Fig. 1(b)
(blue curve). It shows the same two peaks with opposite
relative peak strength compared to λ, clearly showing the
essential role of the mixed Berry curvature at the first peak.
To further understand the large peak in λ=JDOS around

ℏω ¼ 3M1, we plot the distribution of the Berry curvature

FIG. 1. Strain-tunable NDD in bilayer MnBi2Te4. (a) The lattice structure. (b) λ [λ ¼ ðχ=2dÞ], joint density of states (JDOS), and
λ=JDOS with a strain angle θs ¼ π=4. (c),(d) The mixed Berry curvature Ωnm

kx;B̃y
near the Γ point with θs ¼ π=4 and 3π=4, respectively,

where n takes the highest valence band,m takes the lowest conductance band, and the unit is −de=ℏ. The dashed curve shows the equal
energy contour for the optical transition with different photon energy (in units ofM1). (e) The geometrical peak of λ as a function of θs,
fitted to the function α1 sinð2θsÞ. (f) A schematic plot of the strain-tunable NDD device setup. Pink and yellow arrows represent
interlayer antiferromagnetic order, and the incident and transmitted light, respectively.
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near the Γ point in Fig. 1(c). The background Berry
curvature at zero strain is subtracted as it does not
contribute to the NDD signal. We find that the Berry
curvature has a hot spot area inside ℏω ¼ 3M1. Together
with the increasing weight factor ε2mn in Eq. (2), the peak is
then shifted toward the blue side around 3M1.
Remarkably, the distribution of the mixed Berry curva-

ture is strongly tied to the strain direction. In Fig. 1(d), we
plot the Berry curvature distribution with the strain direc-
tion θs ¼ 3π=4. Comparing Figs. 1(c) and 1(d), we find that
the hot spot area of the Berry-curvature distribution
changes drastically. Moreover, we note that by a C2x
operation, the strain with θs ¼ π=4 changes to that with
θs ¼ 3π=4. The mixed Berry curvature Ωnm

kx;B̃y
flips sign

under C2x due to the B̃y derivative. As a result, by flipping
the distribution of the Berry curvature according to C2x in
Fig. 1(c) and interchanging the red and blue color, we
obtain Fig. 1(d).
Such a close relation between Berry curvature and strain

leads to a highly tunable NDD. Figure 1(e) plots the
geometrical peak of λ as a function of the strain angle.
One can see that both the amplitude and sign of the NDD
signal can be tuned by varying the strain direction. This is
in accordance with the C2x symmetry: The strain with θs ¼
θ0 is related to that with θs ¼ π − θ0, and the resulting
NDD signal is odd under C2x and hence changes sign. The
magnitude of the NDD has to change, since at θs ¼ 0 and
π=2, the C2x symmetry is restored and the NDD signal
vanishes. In fact, λ fits the function α1 sinð2θsÞ very well.
Since q × E ¼ ωB, the response coefficient σxxzðωÞ is a
component of a rank-two tensor βij with Ji ¼ βijBj and
σxxzðωÞ ¼ βxy=ω. The C2x symmetry forbids βxy without
strain. With strain, βij becomes nonzero and has the general
form of βij ¼ γijklSkl with Skl being the strain. γijkl is
hence a rank-four tensor, and the point-group symmetry
imposes the constraint γijkl ¼ detðRÞRi0iRj0jRk0kRl0lγi0j0k0l0
with Rij being the transformation matrix. By setting i ¼ x
and j ¼ y, one can find that only two components are
nonzero [39], i.e., γxyxy ¼ γxyyx. At fixed strain strength S0,
the response coefficient has the form

βxy ¼ β0S0 sinð2θsÞ; ð9Þ
where β0 ¼ γxyxy. This agrees well with the numerical
result as displayed in Fig. 1(e).
Based on the above analysis, one can design the device

setup for NDD in MnBi2Te4 as displayed in Fig. 1(f). By
varying the strain direction, one can then obtain the
favorable propagation direction of light. Moreover, we
reveal the dependence of the NDD signal λ on various
model parameters and estimate that λ can vary from 10 to
103 m−1 [39], which is well within the experimental
measurable range [25,27,30].
Magnetic quadrupole of wave packet.—The NDD

in two-dimensional antiferromagnets has a distinct

macroscopic origin. In three dimensions, previous experi-
ments have shown that NDD is a sensitive probe of the
multiferroic order P ×M or the antiferromagnetic order
with either a spin toroidal moment t or a spin magnetic
quadrupole moment qsij. However, none of them is respon-
sible for the NDD in bilayer MnBi2Te4 with strain. First,
the in-plane uniaxial strain does not break the combined TI
symmetry. Therefore, both P and M are vanishing, as well
as P ×M. Second, with strain, the lattice sites on different
layers move in the same way inside the layer with their
distance along the thickness direction unchanged. Since the
spin orders on different layers are antiparallel, one immedi-
ately finds that t and the off-diagonal elements of qsij are
zero, while the diagonal elements of qsij are nonzero but
unchanged. They cannot explain the sensitive dependence
of NDD on strain, as discussed previously.
Other than the spin toroidal moment and the spin

quadrupole moment due to the spin texture within a unit
cell, there is a different definition of the spin magnetic
quadrupole labeled as Qij [43], which is for the wave
packet of Bloch electrons. It is consistent with the TI
symmetry and is a secondary order parameter associated
with the antiferromagnetism as well. Its formal definition
reflects the free energy response with respect to a non-
uniform magnetic field and its microscopic expression is
written as [39]

Qij ¼
Z
BZ

dk
ð2πÞ2

X
n∈ occ

�
−
gμB
ℏ

X
n≠m

ReðAi
nms

j
mnÞ

þ ðεn − μÞΩn
ki;B̃j

	
; ð10Þ

where g is the gyromagnetic factor, μB is the Bohr mag-
neton, μ is the chemical potential,Anm ¼ hnkji∂kjmki is the
Berry connection, and smn ¼ hmkjŝjnki is the spin matrix
element.
Such a magnetic quadrupole can be analogous to the

orbital magnetization [54,55]. In Eq. (10), by changing
−gμBŝ=ℏ to the current operator −ev̂ in the first term and
Ωn

ki;B̃j
to −ðe=ℏÞΩn

ki;kj
in the second term, one can recover

the familiar expression for the orbital magnetization.
Similar to the orbital magnetic moment from the self-
rotation of the wave packet in the orbital magnetization, the
first term in Eq. (10) can be considered as the spin texture
within a wave packet. The second term in Eq. (10) is due to
the spin polarization on the boundary: There is a confining
potential V near the boundary, whose gradient ∇V yields an
electric field. Based on the magnetoelectric coupling, such
an electric field then generates a spin magnetization on the
boundary, corresponding to the center-of-mass spin mag-
netization of the wave packet and then leading to an
additional contribution to the magnetic quadrupole. This
physical picture is similar to the boundary current con-
tribution to the orbital magnetization.
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The mutual dependence ofQxy and σxxzðωÞ on the mixed
Berry curvature indicates that Qxy is the macroscopic order
parameter sensed by NDD. This can be further confirmed
by utilizing the close relation between mixed Berry
curvature and the strain. At zero strain, Qxy vanishes
identically, just as NDD. Figure 2(a) plots Qxy against
the strain angle. One finds that it exhibits a sinusoidal
profile similar to NDD in Fig. 1(e). By directly plotting the
NDD against Qxy at different strain angles as displayed in
Fig. 2(b), one can find that the NDD is indeed linearly
correlated to Qxy.
In summary, we show the mixed Berry curvature as the

geometrical origin of the NDD for two-dimensional anti-
ferromagnets. It is closely related to the uniaxial strain,
offering a highly tunable NDD. Such a close relation
between Berry curvature and strain also reveals the mag-
netic quadrupole of the wave packet as the macroscopic
order parameter for NDD in two dimensions, which is
distinct from the multiferroic order P ×M or the spin
toroidal and quadrupole order in three dimensions. Finally,
we emphasize that our numerical results based on the lattice
mode hold in a family of two-dimensional antiferromagnets
with the same magnetic point group, such as EuBi2Te4
[13], MnSb2Te4 [13], CrI3 [56], etc.
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