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Interstate Berry curvature of hinge state and its detection
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We demonstrate that the topological hinge state can possess a nontrivial interstate Berry curvature in the
non-Abelian formulation of the Berry curvature. It can be readily probed by the circular photogalvanic effect
(CPGE), with the light illuminating a specific hinge, and we refer to it as the hinge CPGE. As a concrete example,
we calculate the hinge CPGE in ferromagnetic MnBi2nTe3n+1, and find that the hinge CPGE peak structure
well reflects the interstate Berry curvature of hinge states and the optical sum rule captures the interstate Berry
curvature between the hinge state and the ground state. Thus, the hinge CPGE provides a promising route towards
the optical detection of a hinge-state geometrical structure.
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Recent years have witnessed a rapid development of
higher-order topological insulators [1–24]. Different from
first-order topological insulators, the higher-order topological
insulator is characterized by topologically protected states
that are at least two dimensions lower than their bulk states.
For example, a three-dimensional second-order topological
insulator can have topological conducting states localized on
the hinges but not on the surfaces [6–16]. Therefore, prob-
ing hinge states is indispensable for understanding such a
second-order topological insulator. By means of scanning
tunneling microscopy [25–28], angle-resolved photoemission
spectroscopy [29], and Josephson interference [25,30,31], the
local density of states is resolved in both real and momentum
space, suggesting the existence of hinge states. However, be-
sides the characteristic spectrum information, it is still unclear
whether the hinge state has any nontrivial geometrical struc-
ture and what are its consequences.

In this Letter, we demonstrate that a localized hinge state
can have a non-Abelian Berry curvature component, which we
refer to as the interstate Berry curvature. We then propose a
hinge circular photogalvanic effect (CPGE) as a perfect probe
of such an interstate Berry curvature of the hinge state. The
CPGE refers to the part of the photocurrent that switches
with the circular polarization of light [32], and is an efficient
method for capturing the Berry curvature of bulk and surface
states [33–44]. By additionally restricting the illuminating
area to an appropriate region that fully encapsulates the hinge
state spatially yet remains small compared to the sample size,
one obtains the hinge CPGE (see Fig. 1). The hinge CPGE
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involves the interstate Berry curvature of the hinge state in
a similar fashion with the CPGE and the corresponding sum
rule measures the interstate Berry curvature between the hinge
state and the ground state.

Using MnBi2nTe3n+1 as a concrete example, we numeri-
cally demonstrate the hinge CPGE and its detection of the
interstate Berry curvature of hinge states. Specifically, we find
that the photocurrent of hinge CPGE approaches a steady
value as the sample size increases. It also exhibits peak
structures due to the interstate Berry curvature of the hinge
state. Furthermore, the optical sum rule indeed well reflects
the interstate Berry curvature between the hinge state and
the ground state. These properties make the hinge CPGE
a promising candidate for detecting hinge-state geometrical
structures.

Interstate Berry curvature of hinge states. We start with the
Berry curvature in extended systems, which plays essential
and increasing roles in solid state physics. For example, in
the celebrated anomalous Hall effect, one encounters mo-
mentum space Berry curvature �n = ∇k × an(k), where n is
the band index, an(k) = 〈nk|i∂k|nk〉 is the intraband Berry
connection, and |nk〉 = e−ik·r|ψnk〉 is the periodic part of the
Bloch function. �n involves a single band index and is hence
Abelian. The origin of such Berry curvature is the restriction
of the position operator, r̃i = P̂nriP̂n with Pn = ∑

k |ψnk〉〈ψnk|
being the projection operator. The cross product of r̃ then
generates Abelian Berry curvature [45–47], �ab = −ir̃ × r̃ =∑

k �n(k)|ψnk〉〈ψnk|.
In optics, however, Abelian Berry curvature is not directly

measurable and needs to be extended. A good example is
the CPGE, where a photocurrent is induced by a circularly
polarized light, according to

dJi

dt
= βi j (ω)[iE(ω) × E∗(ω)] j, (1)

with E(ω) being the light electric field with frequency ω.
The response function involves a different form of the Berry
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FIG. 1. (a) The hinge CPGE and (b) the corresponding top view
of the hexagonal prism. In (a), the topological hinge states along
hinges A and B are in red and blue, respectively. The photocurrent
around hinge A with an illuminating area centered about the hinge is
illustrated. In (b), the illuminated region and the localized hinge state
are shown explicitly. It is required that Lh � LI � L.

curvature [32]

βi j = −πe3

h̄V

∑
k,n,m

fnm�vi,nm
(
�m

n

)
jδ(h̄ω − ωmn), (2)

where ωmn = εm − εn with εm being the band energy, fnm =
f (εnk ) − f (εmk ) with f (εnk ) being the Fermi-Dirac distribu-
tion, �vi,nm = 〈n|v̂i|n〉 − 〈m|v̂i|m〉 with v̂i = 1

h̄
∂Ĥ
∂ki

being the
velocity operator, and �m

n = −i〈nk|i∂|mk〉 × 〈mk|i∂|nk〉 is
the geometrical factor.

Interestingly, �m
n is the difference between non-Abelian

and Abelian Berry curvature. To see this, we define the
projection operator onto a pair of bands n and m, P̂ =∑

k(|ψnk〉〈ψnk| + |ψmk〉〈ψmk|). At each k point, one read-
ily obtains a 2 × 2 non-Abelian Berry curvature, �na =
− i

2 ê�ε�i j[P̂riP̂, P̂r j P̂]. The geometrical factor can then be
expressed as �m

n = 〈ψnk|�na − �ab|ψnk〉. The appearance of
�m

n in optical phenomena such as the CPGE relies on two
facts: First, the optical transition always relates two bands;
second, �m

n is proportional to the oscillator strength of
electron-circular-light coupling [48]. Given these features, we
thus refer to �m

n as interband Berry curvature. It is invariant
under the U (1) gauge transformation of the eigenstate. We
comment that besides interstate Berry curvature, one can also
define the interstate quantum metric tensor, which is also
essential in nonlinear optical phenomena [49].

The above interband Berry curvature can be readily gener-
alized to be between a pair of states, including localized states.
Here, we will focus on hinge states in three-dimensional
second-order topological insulators. The generalization to
other types of localized states (such as corner states) is
straightforward. For this purpose, we consider a state pair
formed by a hinge state and |ψm〉 and define P̂ = |ψh〉〈ψh| +
|ψm〉〈ψm|. Using similar arguments as in periodic crystals, we
have [46]

�m
h = −i〈ψh|[P̂xP̂, P̂yP̂]|ψh〉

= −i〈ψh|x|ψm〉〈ψm|y|ψh〉 − (x ↔ y). (3)

For localized states, interstate Berry curvature can be quite
different from interband Berry curvature. For the latter, one

can show that
∑

m �m
n = �n. In contrast, the localized hinge

state does not have an Abelian Berry curvature. Assume
the hinge state is localized in the x-O-y plane and define
the projection operator as P̂h = |ψh〉〈ψh|, with |ψh〉 labeling
the hinge state. Since |ψh〉 is well localized, 〈ψh|x|ψh〉 and
〈ψh|y|ψh〉 are well defined. Then it is straightforward to prove
that [P̂hxP̂h, P̂hyP̂h] = 0 identically. As a result, for interstate
Berry curvature, we have

∑
m �m

h = 0. The interband Berry
curvature usually appears in the study of bulk and surface
states while its interstate counterpart will affect the response
of the hinge state as discussed later [33–44].

Such interstate Berry curvature can be further generalized
by expanding a single partner state to be a collection of states.
This generalization is particularly useful in optics, as the
optical sum rule generally relates to a continuum of states.
To perform such a generalization, we use the ground-state
projection operator,

P̂G =
∑

m∈occ

|ψm〉〈ψm|, (4)

where occ stands for the collection of occupied states. By
replacing the partner state projection |ψm〉〈ψm| with P̂G in
Eq. (3), we obtain

�G
h = −i

∑
m∈occ

[〈ψh|x|ψm〉〈ψm|y|ψh〉] − (x ↔ y). (5)

This is the interstate Berry curvature between the hinge state
and the ground state of the topological material. We comment
that since [x, y] = 0 identically, the Berry curvature between
the hinge state and occupied states differs by a sign from that
between the hinge state and unoccupied states. Such Berry
curvature �G

h is a consequence of higher-order band topology
[47].

Hinge CPGE. Strikingly, such interstate Berry curvature
can be readily probed using a variant of the CPGE. The
difficulty of optically probing the edge state is the isolation
of its contribution from the bulk contribution. This can be
realized by using different symmetry constraints on the edge
and bulk, as proposed in Refs. [50,51]. Here, we propose
another method by fine tuning the illuminating area. Without
loss of generality, we consider a sample that is finite in the
xy plane and periodic along the z direction. We then assume
a circularly polarized light propagating along the z direction
with an illuminating region labeled by I . To probe the hinge
state, we further require that the characteristic length scale for
the hinge state (Lh), illuminating area (LI ), and the sample (L)
satisfies Lh � LI � L, as shown in Fig. 1. They do not need to
be compared with the length scale along the zth direction. We
focus on the induced photocurrent along the zth direction and
in the same region I (different from the in-plane photocurrent
in the study of the surface state [39,50]). The corresponding
response coefficient reads [47]

βh
zz(ω) = − e3

2h̄

∫
dkz

a∈I∑
n,m

fnm[〈n|(v̂z )a|n〉 − 〈m|(v̂z )a|m〉]

× (
�m

n

)I
δ(h̄ω − ωmn), (6)

where (v̂z )a = {v̂z, P̂a}/2 projects the velocity on site a, and
P̂a is the projection operator with the property

∑
a P̂a = 1. The
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TABLE I. The scaling properties of various factors in βzz due to different optical excitation processes.

Processes h ↔ h h ↔ s h ↔ b s ↔ s s ↔ b b ↔ b
∑

a∈I (�vz )a O(1) O(1) O(1) O(LI/L) O(LI/L) O(L2
I /L2)

�m
n O(1) O(1/L) O(1/L2) O(L2

I /L2) O(L2
I /L3) O(L4

I /L4)
Multiplicity O(1) O(L) O(L2) O(L) O(L2) O(L2)
βh

zz O(1) O(1) O(1) O(L3
I /L2) O(L3

I /L2) O(L6
I /L4)

geometric factor is given by
(
�m

n

)I = 〈n|i[x̃I , ỹI ]|n〉, (7)

where r̃I
i = P̂P̂I riP̂I P̂ with P̂I = ∑

a∈I P̂a projects onto the il-
luminating region. It differs from interstate Berry curvature
as an additional spatial projection due to a restricted illumi-
nation area is needed. We refer to such a photocurrent with a
restricted illuminating area over one hinge as the hinge CPGE.

Due to the length-scale requirement, βh
zz is a thermo-

dynamic property of the sample that only involves the
hinge-state properties. To prove this, we first note that there
are three sets of bands in the sample: a bulk band, surface
band, and hinge band. An incident light with an arbitrary
frequency can generally excite electrons within these bands,
i.e., there are nine different types of contributions. However,
different contributions scale differently with the sample size
according to the localized nature of different states. Take the
hinge-to-surface or surface-to-hinge process (h ↔ s) as an
example. For site a at the hinge, 〈a|n〉 ∼ O(1) if |n〉 belongs
to the hinge states, while 〈a|n〉 ∼ O(1/

√
L) if |n〉 belongs to

the surface states. The resulting velocity factor in Eq. (6) sat-
isfies 〈n|(vz )a|n〉 ∼ O(1) for hinge states while 〈n|(vz )a|n〉 ∼
O(1/L) for surface states. By using similar arguments, we find
that the scaling behavior of the geometrical factor (�m

n )I ∼
O(1/L).

Besides the obvious velocity and geometrical factor, the
summation over n and m brings additional multiplicity. With
increasing sample size, the number of hinge and surface states
scale as O(1) and O(L), respectively. Therefore, the summa-
tion over the hinge-surface band pair adds an O(L) factor.
Putting all these factors together, we find that the h ↔ s pro-
cess scales as O(1) in the thermodynamic limit, i.e., it survives
and behaves as a thermodynamic property of the sample.

Using similar arguments, we systematically studied the
scaling behavior of the remaining processes. Details are given
in the Supplemental Material [47] and the result is summa-
rized in Table I. It is readily found that in the thermodynamic
limit, only the contributions involving the hinge state (e.g.,
h ↔ h, h ↔ s, and h ↔ b) survive while all the others vanish.
The response function can then be put in compact form as

βh
zz(ω) = − e3

2h̄

∫
dkz

n∈H∑
m

fnm(vz )n�
m
n Gnm, (8)

where H represents the set of hinge bands near the illuminated
hinge, and Gnm = δ(h̄ω − ωmn) − δ(h̄ω + ωmn) accounts for
the energy conservation. The geometrical factor �m

n no longer
involves the real-space projection: It reduces to interstate
Berry curvature for the hinge state introduced previously.
Similar to the discussion of Eq. (2), we expect �m

n to appear in
the response of the hinge state to circular light. Equation (8)

explicitly shows that the hinge CPGE can probe the interstate
Berry curvature of hinge states.

The interstate Berry curvature �m
n between the hinge state

and the ground state can be further extracted using the optical
sum rule. To show this, we sum the response function over
frequency and define

h =
∫ +∞

0
βh

zz(ω)dω. (9)

At finite temperature, the result reads [47]

h = − e3

2h̄

∫
dkz

∑
n∈H

(vz )n�
G
n (1 − 2 fn), (10)

where fn is the Fermi function at finite temperature. The sum
rule in Eq. (10) then involves the interstate Berry curvature
between the hinge state and the ground state.

Demonstration in MnBi2nTe3n+1. As a concrete example,
we now demonstrate the interstate Berry curvature and hinge
CPGE in MnBi2nTe3n+1. We focus on the ferromagnetic state
of MnBi2nTe3n+1, which is predicted to be a three-dimensional
second-order topological insulator [13]. In the absence of
magnetization, the point group of MnBi2nTe3n+1 is D3d with
the following generators: the spatial inversion I , threefold
rotation around z axis C3z, and twofold rotation around x
axis C2x. When magnetization is introduced, I and C3z are
preserved but C2x is replaced by C2xT . The inversion sym-
metry forbids the bulk CPGE. For each surface, the inversion
symmetry is absent but MxT symmetry remains, forbidding
the net photocurrent on the surface. Each hinge further breaks
MxT and preserves only C2xT symmetry, hence permitting
the hinge CPGE. The lattice structure, symmetry operations,
and the model Hamiltonian are included in the Supplemental
Material [47].

To calculate the hinge CPGE, we consider a hexagonal
prism geometry that is periodic in the z direction. The side
length is set as L = 16a0 with a0 representing the lattice
constant. The corresponding energy spectrum is shown in
Fig. 2(a). We find gapless hinge states between the gapped
surface states.

We first calculate the injection current at the hinge as well
as over the surface and bulk with the whole sample illumi-
nated [47]. We find that it is nonzero at the hinge but vanishes
in the bulk and surface βzz, consistent with the symmetry
analysis. The βzz has the same form of Eq. (6), but changes
the summation of the atomic site a to the desired region. The
nontrivial injection current at the hinge with the light energy
below the surface band gap signifies the existence of a hinge
state. To illustrate such an injection current, we plot βzz(ω) at a
lattice site a with h̄ω/t = 0.24 in Fig. 2(b). One immediately
finds that βzz is highly localized around the six hinges, with
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FIG. 2. (a) The band structure of MnBi2nTe3n+1 with size L =
16a0. The hinge, surface, and bulk states are in red, cyan, and
blue, respectively. (b) The distribution of βzz(ω, a) in the xy plane
at h̄ω/t = 0.24. (c) The hinge CPGE coefficient, the joint density
of states, and average interstate Berry curvature as a function of
frequency. β0 = π 3e3/h2. (d) The hinge to hinge and hinge to surface
contribution to βh

zz as a function of sample size with h̄ω/t = 0.15.
The illuminating region is illustrated in yellow in (b).

an alternating pattern due to the D3d point group of the whole
sample.

We then focus on the left hinge and calculate βh
zz corre-

sponding to the hinge CPGE by restricting the illuminating
area to be near that hinge. The frequency dependence is shown
in Fig. 2(c). When the light energy is below 0.08t , the electron
can be excited from one hinge state to another, while above
0.08t , the electron can be excited additionally to the surface
state. Since more electronic states are involved, one observes
a roughly synchronized trend of increase between the hinge
CPGE coefficient and the joint density of states, with the latter
defined as follows,

JDOS =
∑
m,n

∫
dkz

2π
fnmδ(h̄ω − ωmn). (11)

On top of the synchronized increase trend, the response
coefficient shows additional peak structures, which is the
manifestation of the interstate Berry curvature. Based on
Eq. (6), we can define O(ω) = ∑

n,m

∫ dkz

2π
fnm�m

n δ(h̄ω −
ωmn). It has a clear physical meaning: ω2O(ω) is just the
difference of the absorption rate between the left and right
circularly polarized lights [48,52]. Then, we get the average
interstate Berry curvature Oavg(ω) = O(ω)/JDOS(ω) and plot
it in Fig. 2(c). One immediately finds that peaks in βh

zz are
related to that of Oavg(ω), clearly demonstrating the essential
role of the interstate Berry curvature.

To clarify the scaling property of hinge CPGE, we choose
h̄ω/t = 0.15 and two transition processes contribute to the
injection current: h ↔ h and h ↔ s. In Fig. 2(d), we plot
these two contributions against the sample size. One observes

FIG. 3. (a) The hinge-state Berry curvature (in units of a2
0) and

∂/∂μ (in units of a2
0e3/h̄) as a function of kz. The sample size

is L = 16a0. The inset shows the Berry curvature at kz = −0.1 for
different sample sizes. Here, we represent ∂/∂μ as a function of kz

as each chemical potential corresponds to a unique lattice momentum
for the hinge state. (b) The relationship between the sum rule and the
hinge-state Berry curvature obtained by the least-squares fitting. The
parameters a and b are 0.37 and 0.01, respectively.

that the h ↔ h contribution gradually vanishes as the two
hinges are spatially separated in MnBi2nTe3n+1. In contrast,
the h ↔ s contribution reaches a steady value, irrelevant with
the sample size and consistent with the previous analysis.

Finally, to illustrate the relation between the optical sum
rule and the hinge-state Berry curvature, we compare the
interstate Berry curvature for the hinge state and the results
from the sum rule. At zero temperature, utilizing the proper-
ties of the δ function, we prove that they have the following
dependence [47]:

∂h

∂μ
= e3

h̄

∫
dkz

∑
n∈H

(vz )n�
G
n

∂ fn

∂μ

T →0���� e3

h̄

εn=μ∑
n∈H

sgn[(vz )n]�G
n (kF ). (12)

Therefore, the variation of the sum rule directly measures the
Berry curvature at the Fermi momentum, weighted by the sign
of the Fermi velocity. By changing the doping level, the hinge-
state Berry curvature then can be mapped across the Brillouin
zone. At finite temperature, the optical sum rule is smeared by
contributions at the energy range of kBT and hence the linear
dependence is compromised [47].

To numerically demonstrate such a linear dependence, in
Fig. 3(a) we calculate the optical sum rule and the interstate
Berry curvature. We find that the linear fitting agrees well
with the data. In addition, the constant term b approaches
zero, consistent with Eq. (12). Moreover, we note that due
to D3d symmetry, the contribution from the three hinges con-
nected by C3 symmetry is the same. Since we are calculating
the photocurrent along one hinge in Fig. 3, we should have
a = e3/(3h̄). This is consistent with the fitting value 0.37.
Therefore, the connection between the optical sum rule and
the interstate Berry curvature is well exemplified.

In summary, we have generalized the bulk Berry curva-
ture to the interstate Berry curvature for the hinge state, and
proposed the hinge CPGE as a prefect probe for it. Using
the ferromagnetic state of MnBi2nTe3n+1 as an example, we
demonstrate the unique properties of the hinge CPGE. Our
results demonstrate the important role of the Berry curvature
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of the hinge state and call for future studies to further explore
other geometrical quantities of the hinge state and their trans-
port and optical implications.
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