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Abstract. Silicene takes precedence over graphene due to its buckling type structure and strong spin
orbit coupling. Motivated by these properties, we study the silicene bilayer in the presence of applied
perpendicular electric field and intrinsic spin orbit coupling to probe as quantum spin/valley Hall effect.
Using analytical approach, we calculate the spin Chern-number of bilayer silicene and then compare it with
monolayer silicene. We reveal that bilayer silicene hosts double spin Chern-number as compared to single
layer silicene and therefore accordingly has twice as many edge states in contrast to single layer silicene.
In addition, we investigate the combined effect of intrinsic spin orbit coupling and the external electric
field, we find that bilayer silicene, likewise single layer silicene, goes through a phase transitions from a
quantum spin Hall state to a quantum valley Hall state when the strength of the applied electric field
exceeds the intrinsic spin orbit coupling strength. We believe that the results and outcomes obtained for
bilayer silicene are experimentally more accessible as compared to bilayer graphene, because of strong SO
coupling in bilayer silicene.

1 Introduction

Silicene has a honeycomb-structure, where the atoms of
silicon are arranged in a buckled type manner [1,2]. The
low energy physics of silicene has a close resemblance with
the two dimensional (2D) massless Dirac spectrum [3] and
therefore reasonably, the dynamics of electrons in silicene
can be described by 2D massless Dirac equation instead
of Schrodinger equation. It has been reported that silicene
and its ribbons can be realized experimentally [4–6] by
synthesis on metal surfaces. Silicene has many rich physi-
cal aspects in contrast to graphene because of its buckling
type structure and strong intrinsic spin orbit (ISO) cou-
pling and hence an intensive attention has been given to
this new material, both experimentally and theoretically
[1,4,6–14]. The energy spectrum of silicene can be gapped
and controlled through the application of an external elec-
tric field [15,16] because of its buckling type structure, in
this sense, it is considered to be a useful candidate for
electronic devices. Unlike graphene, where the ISO inter-
action is weak, the quantum spin Hall effect (QSHE) can
be observed experimentally in silicene because of having
strong SOI [7]. More attention has been focused on this
new topological phase QSHE from 2005 till now [17–24]
because some new properties are believed to be extracted
from it which could be useful for technological usage. In
QSH state, materials exhibit insulating behavior in the
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bulk and display conducting spin channels at the edges.
These conducting edge channels are engineered in such a
way that perturbations and impurities which respect TR
symmetry cannot affect these channels because backscat-
tering is prohibited [21,25–27] due to TR symmetry. The
strong SO interaction in the materials has a key role to
observe this new state of matter experimentally. Materials
having the strong essence of SO interaction are supposed
to play a vital role in the technological development of
spintronics devices [17,28]. Another important state, anal-
ogous to QSH state, is the quantum valley Hall (QVH)
effect [29–31], this phase originates as a result of inver-
sion asymmetry in the system. The essential condition for
Z2 topological phases is the preservation of TR symme-
try in the system, in contrast, the key concept to have
QVH effect is the absence of coupling between two val-
leys. The edge states in the QVH effect have valley-helical
nature and are stable against perturbations and impu-
rities that are smooth in nature. Unlike Z2 topological
insulators, QVH states do not demand the strong spin
orbit interaction to survive, its only requires the breaking
of inversion symmetry in the system which can be done
through the application of perpendicular electric field or
substrate. The QVH effect could be useful to boost up
the technology related to valleytronics. The band gap in
topological insulator systems can be controlled through
the application of electric field and in this sense electric
filed can be considered one of the efficient agent to derive
a band insulator into the topological insulator. Such class
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of topological insulators which is driven by the electric
field are currently of great interest because of its potential
device applications and fundamental physics [32–34].

Recently, the bilayer of silicene has been proposed
experimentally [35] and a considerable attention has been
paid to it [35–40]. Unlike the bilayer graphene where the
two layers are connected through weak Van der Waals
interactions, the two silicene sheets in bilayer silicene are
attached through covalent-bonds to each other [41]. Our
aim in this current manuscript is to analyze the topologi-
cal future of bilayer silicene in the presence of ISO coupling
and applied vertical electric field, using the two levels
Hamiltonian approach. Likewise, the monolayer silicene
which goes through a phase transition from a semimetallic
to QSH state [15,16,31] when ISO coupling is introduced,
in the similar fashion, the bilayer silence also goes through
a phase transition from metallic to a weak topological
QSH state (also called quasi-topological state [37]). In
addition, the band gap can be controlled by applying an
electric field. Moreover, bilayer silicene goes through a
phase transition from QSH state to a QVH state, when
the strength of electric field exceeds the ISO coupling
strength. Unlike the silicene monolayer, there is a proba-
bility of backscattering between the channels on a given
edge moving in opposite directions with opposite spins,
because unlike the monolayer silicene where edge state
branches cross each other at the time reversal invariant
momenta (TRIM), the edge state branches in bilayer sil-
icene cross each other at the momenta which are not time
reversal invariant. i.e. there is a crossing away from valley
points and therefore the edge states in bilayer silicene are
not protected by TR symmetry (Kramers theorem) [42].
Thus indeed, the edge states in bilayer silicene are not
robust against perturbation that preserves TR symmetry
and hence in this sense bilayer silicene belongs to the class
of weak topological insulators. Weak topological insulators
have an even number of Kramers pairs on a given edge
and even smooth perturbations that respect TR symmetry
(e.g. spin mixing perturbations) can destroy their gapless
edge states [43]. In contrast, strong topological insulators
have an odd number of Kramers pairs on a given edge
and hence when one applies a perturbation that respects
TR symmetry, at least one pair of gapless edge states
will not be affected by this perturbation. Mathematically,
strong and weak topological insulators are classified by Z2

topological invariant [42].
This manuscript is ordered as follow. In Section 2,

we model the two bands Hamiltonian of bilayer silicene
interms of three dimensional unit vector and calculate
the spin-Chern/valley-Chern number. In Section 3, we
encounter the possible effects due to trigonal warping on
the quantum spin Hall effect. In Section 4, we model
the two bands Hamiltonian of bilayer silicene (forward
Bernal-stacking) in the presence of perpendicular electric
field and discuss the interplay between the vertical electric
field and ISO coupling strengths for the cases when Fermi
level lies (i) inside the band gap and (ii) inside the con-
duction/valence band. In Section 4, we consider bilayer
silicene (backward Bernal-stacking) and discuss the phase
transition between QSH and QVH states. In Section 5, we
summarize our results.

2 The model hamiltonian

The Bernal type stacking (AB stacking) of silicene bilayer
has been reported to be thermodynamically stable among
the possible arrangements [37]. In this type of stacking,
atoms A2 of the top layer lie upon the B1 atoms of the
bottom layer. Because of buckling nature, bilayer silicene
possesses an extra degree of freedom in the sense how
to stack the two silicene sheets, for instance forward and
backwards Bernal-stacking types, these types have been
discussed in detail in reference [37].

Irrespective of the type of stacking, the two-level effec-
tive Hamiltonian of bilayer silicene (Bernal stacking) in
the basis {ϕηA1sz

,ϕηB2sz
}, can be written [37] as

Hηsz (p) = Ha +Hb +Hc, (1)

where

Ha = −v
2
F

t⊥

(
0 K2

−
K2

+ 0

)
, (2)

Hb = −v
2
F

t2⊥
ηszαso

(
K−K+ 0

0 −K+K−

)
, (3)

Hc = −ηszαsoσz, (4)

where K+ (K−) = px + ipy(px − ipy), vF [=(
√

3/2)at =

5×105 m/s] is the Fermi-velocity, a [=3.86 Å] is the lattice-
constant of monolayer silicene, t(t⊥) describes the nearest
neighbor intra layer (strong inter layer) coupling between
Aj − Bj for j = 1, 2 (B1 − A2), {σi, i = 0, 1, 2, 3} rep-
resents the Pauli matrices in the A1/B2 space, sz[=±1]
(η[= ±1]) is the real spin (valley) index, αso is the strength
of ISO interaction, p = p[cosφp, sinφp] is the momentum
and φp = tan−1 (py/px) . In this model the spin sz is a
good quantum-number.

The band structure for both valleys takes the form

Eη,szn (p) = n

√(
v2F p

2

t⊥

)2

+

(
−ηszαso +

ηszαsov2F p
2

t⊥

)2

= nλ (p), (5)

where

λ (p) =
[(
v2F p

2/t⊥
)2

+
(
−ηszαso + ηszαsov

2
F p

2/t⊥
)2]1/2

,

(6)
and n[=±1] is the band index. It is quite visible from the
above dispersion that the system becomes gaped when
ISO interaction is taken into account. In addition, there
exist spin degeneracy in the system which shows that the
system is symmetric with respect to TR and space inver-
sion symmetry. In order to look at, what kind of nature
this insulator has; we calculate the spin Chern parity or
winding number for the said system.
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The Hamiltonian (1) can be set interms of 3D unit-

vector N̂(p) as

Hηsz (p) = λ (p)
[
N̂x(p)σx + N̂y(p)σy + N̂z(p)σz

]
, (7)

where the three-component unit-vector is defined as

N̂(p) =
[
−δ(p) cos (2φp) ,−ηδ(p) sin (2φp) , N̂z(p)

]
, (8)

where

δ(p) = [1− N̂2
z(p)]

1/2, (9)

and

N̂z(p) =
(
−ηszαso + ηszαsov

2
F p

2/t1
)
/λ (p). (10)

The winding number interms of the unit-vector for the
two band Hamiltonian (1) is documented [44] as

C (η, sz) =1/4π

∫
dpxdpyF (p), (11)

where

F (p) ≡
[(
∂pN̂(p)× ∂N̂(p)

)
· N̂(p)

]
. (12)

Physically, this number represent, how many times the
3D unit-vector N̂(p) wind the whole unit sphere upon
scanning the entire first B.Z. This number have a direct
connection with the topology in the band structure and
can possess different values for different band structures.
The F (p) is a well-known quantity known as Berry
curvature which is analogous to the magnetic field in
electrodynamics and can be calculated as

F (p) = ξI + ξII + ξIII , (13)

with

ξI = −2η

p
cos2 2φpδ(p)∂pN̂z(p), (14)

ξII = −2η

p
sin2 2φδ(p)∂pN̂z(p), (15)

and

ξIII = −2η

p
N̂2
z(p)∂pN̂z(p), (16)

where we have used

∂pxN̂x(p) = −2 sin (3φp) δ(p)β1 − p cos (2φp) ∂pδ(p)β2,

∂py N̂x(p) = 2 sin (φp) δ(p)β2 − p cos (2φp) ∂pδ(p)β1,

∂pxN̂y(p) = 2η cos (2φp) δ(p)β1 − ηp sin (2φp) ∂pδ(p)β2,

∂py N̂y(p) = −2η cos (2φp) δ(p)β2 − ηp sin (2φp) ∂pδ(p)β1,

∂pxN̂z(p) = ∂pN̂z(p).pβ2, and ∂py N̂z(p) = ∂pN̂z(p).pβ1,
∂pxφp = −β1, ∂pyφp = −β2, ∂px = pβ2∂p,

∂py = pβ1∂p, β1(2) = py(x)/p
2,

now, we substitute equation (13) into equation (11)

C (η, sz) =
−η
2π

∞∫
0

2π∫
0

pdpdφ
1

p
∂pN̂z(p), (17)

C (η, sz) = ηN̂z(0) = −sz. (18)

The total Chern-number can be calculated as

C=
∑
η=±1

∑
sz=±1

(C (η, sz)) = 0. (19)

This ensures the TR symmetry in the system, additionally,
there is no electric current flowing. Another interest-
ing result can also be seen that the Chern-number gets
quantized when the contribution from both valleys are
considered, which justify the statement that each filled
band cannot have a fractional value of the Chern-number
[45].

C↑=
∑
η=±1

(C (η, ↑) = −2, C↓=
∑
η=±1

(C (η, ↓) = 2. (20)

The spin Chern-number/Chern parity is a topological
index used to classify systems having spin-rotational
symmetry and can be defined in the following manner
[17,23,46,47],

Cs =
∑
iεocc

(
C(i)
↑ − C(i)

↓

2

)
, (21)

where the summation goes through over the occupied-
bands. Thus the spin Chern parity for our bilayer silicene
system is Cs[=(C↑ − C↓) /2] = −2, and the corresponding
spin Hall conductivity is

σsxy (spin)

[
= Cs

e2

h

]
= −2

e2

h
. (22)

From this, it is quite crystal that spin Chern-number of
bilayer silicene is double than that of a single layer sil-
icene and therefore have twice as many edge states as
that of single layer of silicene. The valley Chern number
is zero, which shows that there is no valley Hall effect in
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Table 1. Topological configuration of bilayer silicene with associated topological charges.

Flavours Vortex core Asymptotically large momentum C (η, sz) Topological structure

(K, ↑) N̂ = (0, 0,−1) N̂ = (− cos 2ϕ,− sin 2ϕ, 0) −1 Double-vortex meron

(K′, ↑) N̂ = (0, 0, 1) N̂ = (− cos 2ϕ, sin 2ϕ, 0) −1 Double-vortex meron

(K, ↓) N̂ = (0, 0, 1) N̂ = (− cos 2ϕ,− sin 2ϕ, 0) 1 Double-vortex anti-meron

(K′, ↓) N̂ = (0, 0,−1) N̂ = (− cos 2ϕ, sin 2ϕ, 0) 1 Double-vortex anti-meron

Fig. 1. Four branches of double-vortex merons. (a) Branch with valley K and ↑: the unit vector N̂(p) covers lower hemi sphere
and display double vortex meron like configuration with associated topological charge C (K, ↑) = −1. (b) Branch with valley K′

and ↑: N̂(p) covers upper hemisphere and display double-vortex meron like structure with C (K′, ↑) = −1. (c) Flavour with valley

K′ and ↓: the maping N̂(p) covers lower hemi sphere and display double-vortex anti-meron like configuration with associated

topological charge C (K′, ↓) = 1. (d) Flavour with valley K and ↓: N̂(p) covers upper hemisphere and display double-vortex
anti-meron like structure C (K, ↓) = 1.

the bilayer silicene system.

Cv=
∑
sz=±1

1

2
[C (K, sz)− C (K′, sz)] = 0. (23)

3 Topological structure

The topological structure of bilayer silicene can be seen by
mapping the 3D unit vector N̂(p) over the 3D unit sphere.
We observe that bilayer silicene displays double vortex
merons like configuration [see Fig. 1]. In contrast to single

layer silicene, the mapping N̂(p) covers the 3D unit sphere
twice, upon scanning the entire B.Z. In principle, here
we have four branches {(K, ↑), (K′, ↑), (K, ↓), (K′, ↓)}. The
topological structure of these branches is well explained
in Table 1.

see Table 1 at the top of this page.

It is interesting to note that although these topologi-
cal objects have twice the topological charge as that of a
meron (half of skyrmion), however, in fact, theses objects
are not skyrmions because of different nature at asymp-
totically large momentum and hence given the name as
double-vortex merons.

4 Trigonal warping effects

In order to encounter the possible effects due to trigonal
warping on the quantum spin Hall effect in bilayer silicene,
we incorporate the trigonal warping term in the Hamilto-
nian (1). By involving the trigonal effects the Hamiltonian
(1) takes the form

Hηsz = Ha +Hb +Hc +Hd, (24)

where the trigonal term is

Hd = ηv3

(
0 K+

K− 0

)
. (25)

Here v3 = (
√

3/2)at3/~ with t3 represent coupling
between B1 and A1 sites. By diagonalizing the above
Hamiltonian, we get

see equation (26) next page

In the limit v3 → 0, we recover the same situation
as without trigonal effects [Eq. (5)]. In the absence of
intrinsic SO coupling and this new (trigonal) term in
the Hamiltonian, the observed spectrum is quadratically
isotropic displaying circular Fermi lines around the valley
point’s K and K′, and when one switched on the intrinsic

https://epjb.epj.org/
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Eη,szn = n

√(
v2F p

2

t⊥

)2

+ v23p
2 +

v2F ηv3p
3

t⊥
cos 3ϕ+

(
−ηszαso +

ηszαsov2F p
2

t⊥

)2

(26)

SO coupling alone, a gap is opened at both these val-
ley points. Now when this new term is introduced in the
Hamiltonian with zero intrinsic SO coupling, it stretches
the iso-energy lines in three different directions (as cleared
from the dispersion relation), that is the Dirac points K
and K′ split into three more Dirac points where conduc-
tion and valence band touch each other. One Dirac point
is at the centre (zero momentum) while the other three
lies at some finite momenta in the direction of φ. Now
when we also switched on the intrinsic SO coupling the
energy gap is opened at these four Dirac points with each
one contributing in such a way to make the spin Chern
number equal to the case with no trigonal effects.

The Hamiltonian (24) can be parametrized interms of

3D unit vector N̂(p) as

Hηsz =
∑

i=x,y,z

σiN̂i(p), (27)

where

N̂x(p) =ηv3p cosφp+(ηv3p3/t21) cos(3φp), (28)

N̂y(p) =− ηv3p sinφp + (v3p3/t21) sin(3φp), (29)

and

N̂z(p) =αSOηsz. (30)

Using equation (11), we get the same spin Chern-number
as in Section 2 i.e. Cs = −2. This shows that trigonal
effects, like graphene bilayer, do not affect the spin Chern-
number. In principle, all the newly designed Dirac points
due to trigonal warping, equally contribute in the spin
Chern number to make it quantify with a value equal to
the case with no trigonal effects.

5 Model Hamiltonian in the presence of
perpendicular electric field

In principle, there are two types of stacking in bilayer
silicene, one is called forward Bernal-stacking and other is
backward Bernal-stacking (for more details, see Ref. [37]).
We first consider the forward Bernal stacking case.

5.1 Forward Bernal-stacking (B2A2 −B1A1 type)

The two band Hamiltonian of bilayer silicene
(B2A2−B1A1 type stacking) in the presence of per-
pendicular electric field in the basis {ϕηA1sz

, ϕηB2sz
}, can

be modelled as [37]

Hηsz = Ha +Hb +Hc +HEZ
, (31)

Ha = −v
2
F

t⊥

(
0 K2

−
K2

+ 0

)
, (32)

where

Hb = −v
2
F

t2⊥
ηszαso

(
K−K+ 0

0 −K+K−

)
, (33)

Hc = −ηszαsoσz, (34)

HEZ
= ∆z1σz −

v2F
t2⊥

∆z2

(
K−K+ 0

0 −K+K−

)
. (35)

Here, ∆z1 ≡ (L− l)EZ and ∆z2 ≡ (L+ l)EZ , with l rep-
resents the separation between the two sublattice planes
as silicene has buckled type structure while L repre-
sents the interlayers separation. This Hamiltonian can be
diagonalized as

see equation (36) next page

where

ε (p) =
[(
v2F p

2/t⊥
)2

+ (∆z1 − ηszαso

−(v2F p
2/t2⊥)(∆z2 + ηszαso)

)2]1/2
, (37)

and n[=±1] is the band index with +1(−1) represents
conduction (valence) band.

We see that there is an interesting interplay exist
between the applied electric field and ISO coupling
strength which can be summarized as: (i) when one of both
αso and ∆z1 is non-zero, we have a gaped spectrum with
no spin splitting [see Fig. 2a]. (ii) When both are non-zero
such that αso > ∆z1 > 0, spin degeneracy lift in the sense
that spin-↑ (↓) bands moves downward (upward) due to
the inversion asymmetry and electric field is responsible
for this, the system stays as a topological insulator with
gapless edge states [see Fig. 2b]. (iii) The gap between
the spin-up bands gets decreases when the value of elec-
tric field increases and completely vanishes at the valley
points when both αso and ∆z1 become equal in magnitude
[see Fig. 2c]. (iv) When the value of electric field further
increases i.e., ∆z1 > αso > 0, the gap reopens correspond-
ing to a phase transition from a QSH state to QVH state
[see Fig. 2d]. One more thing that needs to be included
in the discussion is the energy gap between valence and
conduction band, the energy gap at the valley points is
∆g = 2(αso −∆z1). Our system remains gaped as long as
∆g 6= 0 and one can determine unambiguously the spin

https://epjb.epj.org/
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Eη,szn (p) = n

√(
v2F p

2

t1

)2

+

(
∆z1 − ηszαso −

v2F p
2

t2⊥
(∆z2 + ηszαso)

)2

= nε (p) (36)

Fig. 2. Band structure of bilayer silicene for different values of electric field and ISO coupling. Different values of ∆z1 and αso

are mentioned inside the plots.

Chern-number. The Hamiltonian (31) can be modelled

interms of 3D unit vector N̂(p) as

Hηsz (p) = ε (p)
[
N̂x(p)σx + N̂y(p)σy + N̂z(p)σz

]
, (38)

where the three-component unit N̂(p) vector is defined as

N̂(p) =
[
−δ(p) cos (2φp) ,−ηδ(p) sin (2φp) , N̂z(p)

]
, (39)

where

δ(p) = [1− N̂2
z(p)]

1/2, (40)

and

N̂z(p) =

[
∆z1 − ηszαso −

(
v2F p

2/t1
)

(∆z2 + ηszαso)
]

ε (p)
.

(41)
Repeating the same process as we did in Section 2, we get

C (η, sz) = ηN̂z (0) = ηsgn (∆z1 − ηszαso). (42)

Hence we find

C =
∑
η=±1

[C (η, ↑) + C (η, ↓)] = 0, (43)

Cs=
∑
η=±1

1

2
[C (η, ↑)− C (η, ↓)] = − [sgn (αso + ∆z1)

+sgn (αso −∆z1)],

(44)

Cv=
∑
sz=±1

1

2
[C (K, sz)− C (K′, sz)] = [sgn (αso + ∆z1)

−sgn (αso −∆z1)].

(45)

And the corresponding spin/valley Hall conductivities
is given as

σxy (spin) = Cs
e2

h
= −e

2

h
[sgn (αso + ∆z1)

+sgn (αso −∆z1)], (46)

σxy (valley) = Cv
e2

h
=
e2

h
[sgn (αso + ∆z1)

−sgn (αso −∆z1)]. (47)

It is quite evident from these equations that bilayer sil-
icene exhibits (i) QSH state with σsxy (spin) = −2e2/h and
σsxy (valley) = 0, for the case αso > ∆z1 > 0. (ii) QVH

state σsxy (spin) = 0 and σsxy (valley) = −2e2/h, for the

https://epjb.epj.org/
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case ∆z1 > αso > 0. Despite the fact that we have con-
sidered the Fermi-level inside the energy-gap between the
conduction and valence bands, still we have the conduc-
tivity in the system which is a clear justification of the
statement that system under consideration has gapless
edge states and these gapless states are responsible for
this finite conductivity.

Now taking into account a more realistic situation where
the Fermi-level lies in one of the band i.e., in conduction-
band or valance-band. So when the Fermi-level lies in the
conduction-band, we have

C (η, sz) =
−η
2π

pF∫
0

2π∫
0

pdpdφ
1

p
∂pN̂z(p), (48)

C (η, sz) = −η[[N̂z (pF )− N̂z (0)], (49)

= −η
[
sign (ηszαso −∆z1)− N̂z (pF )

]
, (50)

with

N̂z (pF ) =
∆z1 − ηszαso −

(
v2F p

2/t1
)

(∆z2 + ηszαso)

ε (pF )
.

(51)
The spin Chern number becomes

Cs = Π1 (pF )−Π2 (pF ), (52)

with

Π1 (pF ) =
−(αso + ∆z1) + κ1√

(v2F p
2
F /t

2
⊥)

2
+ (∆z1 + αso − κ1)2

, (53)

Π2 (pF ) =
αso −∆z1 + κ2√

(v2F p
2
F /t

2
⊥)

2
+ (∆z1 − αso − κ2)2

,

where

κ1 = (v2F p
2
F /t

2
1)(∆z2 − αso), (54)

and

κ2 = (v2F p
2
F /t

2
1)(∆z2 + αso). (55)

And the corresponding spin conductivity then becomes

σFxy (spin) = [Π1 (pF )−Π2 (pF )]
e2

h
. (56)

In the same way, we get valley Chern number and its
related conductivity as

Cv = [Π1 (pF ) +Π2 (pF )], (57)

σFxy (valley) = [Π1 (pF ) +Π2 (pF )]
e2

h
. (58)

These expressions show that bilayer silicene goes
through a phase-transition from QSH to a QVH state in
a similar way as of the case where the Fermi-level lies
inside the gap. The same results are obtained, when the
Fermi-level lies inside valence-band because the system
under consideration has the electron–hole symmetry. The
spin/valley Hall conductivity is plotted in Figure 3 against
applied electric field for both the cases when Fermi-level
is in the (i) conduction or valence-band and (ii) energy
gap.

5.2 Backward Bernal-stacking (B2A2 −A1B1 and
A2B2 −B1A1 types)

The backward Bernal-stacking of the types B2A2 −A1B1

and A2B2−B1A1 are, in principle, identical [37]. The low
energy two bands Hamiltonian for the backward Bernal-
stacking takes the form [37]

Hηsz = Ha +Hb +Hc +HEZ
, (59)

where

Ha = −v
2
F

t⊥

(
0 K2

−
K2

+ 0

)
, (60)

Hb = −v
2
F

t2⊥
ηszαso

(
K−K+ 0

0 −K+K−

)
, (61)

Hc = −ηszαsoσz, (62)

HEZ
= ∆z3σz −∆z4

(
1 0
0 1

)
+
v2F
t2⊥

∆z4

(
K−K+ 0

0 K+K−

)
−v

2
F

t2⊥
∆z3

(
K−K+ 0

0 −K+K−

)
. (63)

Here, ∆z3 ≡ LEZ and ∆z4 ≡ lEZ . This Hamiltonian can
be diagonalized as

see equation (64) next page

where n[=±1] is the band index with +1(−1) represents
conduction (valence) band. The energy gap at the valley
points, in this case, is ∆g = 2αso − 2∆z3.

The Hamiltonian (59) can be parametrized interms of

3D unit vector N̂(p) as

Hηsz = ε(p)σ0 +
∑

i=x,y,z

σiN̂i(p), (65)
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Fig. 3. Quantum spin/valley Hall conductivities as a function of applied electric-field for a fixed value of ISO coupling (4 meV).

Eη,szn (p) =
∆z4v

2
F p

2

t21
+ n

√(
v2F p

2

t1

)2

+

(
∆z3 − ηszαso −

v2F p
2

t21
(∆z3 + ηszαso)

)2

(64)

where ε(p) = γ(p)∆z4 with γ(p) =
(
1 + ~2v2F p2/t2⊥

)
, and

N̂x(p)=− δ(p) cos (2φp) , (66)

N̂y(p)=− ηδ(p) sin (2φp) , (67)

N̂z(p)=∆z3 − ηszαso − (v2F p
2/t21)(∆z3 + ηszαso). (68)

Using equation (11), we find

σxy (spin) = Cs
e2

h
= −e

2

h
[sgn (αso + ∆z3)

+sgn (αso −∆z3)], (69)

σxy (valley) = Cv
e2

h
=
e2

h
[sgn (αso + ∆z3)

−sgn (αso −∆z3)]. (70)

The energy gap at the valley points, in this case, is ∆g =
2(αso −∆z3). When αso > ∆z3 > 0, bilayer silicene stays
as QSH state, show metallic behavior when αso = ∆z3 and
make transition into QVH state when ∆z3 > αso > 0.

6 Summary

In conclusion, bilayer silicene favour to be in QSH state
when ISO interaction is introduced, in addition, it makes
a transition from QSH state to a QVH state when the
strength of applied electric field exceeds the ISO cou-
pling strength. The spectrum of bilayer silicene shows
metallic behavior when the magnitude of the electric field
becomes equal to the ISO coupling strength. The results
in this paper show that spin splitting in bilayer silicene
systems can be controlled by the application of electric

field or gate-voltage. This aspect of bilayer silicene makes
its crucial for spintronics devices.
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