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ABSTRACT: Graphene is a promising material for designing next-generation
electronic and valleytronic devices, which often demand the opening of a
bandgap in the otherwise gapless pristine graphene. To date, several
conceptually different mechanisms have been extensively exploited to induce
bandgaps in graphene, including spin−orbit coupling and inversion symmetry
breaking for monolayer graphene, and quantum confinement for graphene
nanoribbons (GNRs). Here, we present a multiscale study of the competing
gap opening mechanisms in a graphene overlayer and GNRs proximity-coupled
to topological insulators (TIs). We obtain sizable graphene bandgaps even
without inversion symmetry breaking and identify the Kekule ́ lattice distortions
caused by the TI substrates to be the dominant gap opening mechanism.
Furthermore, Kekule ́ distorted armchair GNRs display intriguing non-
monotonous gap dependence on the nanoribbon width, resulting from the
coexistence of quantum confinement, edge passivation, and Kekule ́ distortions.
The present study offers viable new approaches for tunable bandgap engineering in graphene and GNRs.
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Graphene is a representative two-dimensional (2D)
material consisting of a monolayer of carbon atoms

arranged on a honeycomb lattice. The unique sublattice
symmetry of such a 2D hexagonal system leads to a particular
gapless Dirac cone structure at the corners of the
corresponding Brillouin zone (BZ).1 Associated with its novel
electronic properties, graphene has been exploited as an ideal
platform for observation of many intriguing phenomena, such
as Klein tunneling,2 ballistic transport,3 and different types of
Hall effects.4−10 Many of these pioneering studies invoked the
opening of a band gap in graphene, which leads to the
emergence of a variety of topologically nontrivial states. Once
realized, such exotic quantum states in graphene may have
important applications in spintronics and valleytronics.
Several conceptually different mechanisms have been

exploited to open a band gap in graphene. The first is to use
diluted heavy adatoms or proper substrates to enhance the
spin−orbit coupling (SOC), which in turn can open a gap in

graphene.11−14 The second relies on the breaking of the
sublattice symmetry on a substrate of proper symmetry such as
SiC or h-BN.15−18 The third is to induce inequivalent hopping
rates between the sublattice sites, leading to intervalley
scattering of the Dirac electrons,19 for example, via Kekule ́
distortions in the graphene lattice.20−22 Finally, for graphene in
reduced geometry such as graphene nanoribbons (GNRs),
quantum size effects can result in tunable band gaps as a
function of the ribbon width.23−29

Here, we present a systematic study of the electronic
properties of monolayer graphene and graphene nanoribbons
on three-dimensional (3D) topological insulators (TIs), which,
strikingly, allow us to explore the delicate competitions of most
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of the gap opening mechanisms outlined above. We first use
first-principles calculations to reveal that a graphene overlayer
exhibits stronger proximity-induced Rashba SOC splits and a
larger band gap in its band structure on Sb2Te3 than on Bi2Te3,
even though the latter TI inherently possesses stronger SOC.
The underlying reason is attributed to the smaller lattice
mismatch between graphene and Sb2Te3, leading to a closer
graphene/TI interface spacing and correspondingly stronger
Kekule ́ distortions on the graphene honeycomb lattice. We also
identify that the opened gaps of about 18 and 5 meV for
graphene on Sb2Te3 and Bi2Te3 are primarily due to the Kekule ́
lattice distortions caused by the TI substrates, rather than the
prevailing belief of proximity-enhanced SOC effects.30,31 The 5
meV gap for the latter system is an upper limit, for reasons to
be elaborated later. Next, we develop a generic tight-binding
(TB) description to investigate the competing gap opening
mechanisms of such Kekule ́ distorted graphene monolayer and
graphene nanoribbons (KGNRs). For Kekule ́ distorted
graphene, the band gap scales linearly with the strength of
the distortion. In contrast, the band gaps of armchair KGNRs
may display intriguing nonmonotonous scaling behaviors with
respect to the ribbon width, resulting from the coexistence of
quantum confinement, edge passivation, and Kekule ́ distor-
tions. The present study helps to clarify on some existing
misperceptions surrounding gap opening mechanisms of
graphene on TI substrates, and the central results effectively
enrich possible approaches toward inducing tunable band gaps
in graphene and graphene nanoribbons.
First-principles calculations within DFT were performed

using the Vienna ab initio simulation package.33,34 The
generalized gradient approximation of Perdew−Burke−Ernzer-
hof type functional was employed to treat the exchange-
correlation potential of electrons.35 Projected augmented wave
potentials were employed to represent the ions. The spin−orbit
coupling effects were treated by using scalar-relativistic
eigenfunctions as the basis set, and van der Waals interactions
were included using the DFT-D3 method.36 A cutoff energy of
500 eV was used to expand the wave functions and potentials in
the plane-wave basis. An 11 × 11 × 1 Monkhorst mesh was
used in k-space to sample the Brillouin zone,37 and a 15 Å thick
vacuum layer was introduced to avoid possible effects between
image supercells.
The heterostructures consisting of a graphene monolayer on

the (111) surface of Sb2Te3 or Bi2Te3 are shown in in Figure
1a. Here, we model the TIs with three quintuple layers (QLs)
to avoid significant interactions between the two types of
topological surface states.38,39 As shown in Table 1, the in-plane
lattice constant of Sb2Te3 is about 4.25 Å, giving a lattice
mismatch of about 0.47% between the substrate and a perfectly
commensurate √3 × √3 graphene superlattice. The super-
lattice constant is about 4.27 Å, while the carbon−carbon bond
length is 1.422 Å.28 Given the extremely small lattice mismatch,
it is natural to expect that in the graphene/Sb2Te3
heterostructure, the carbon atoms will be compressed to follow
the periodicity of the TI substrate,30 mimicking the physically
realistic situation of a sufficiently large graphene overlayer on
the TI. Furthermore, we focus on a physically realistic case
where the crystallographic axes of graphene and Sb2Te3 are
perfectly aligned. For the graphene/Bi2Te3 system, the lattice
mismatch of ∼2.58% is too large for the overlayer to grow
epitaxially with mutually matching lattices,40,41 but for
comparison purposes and realistic computational concerns we
stretch the graphene lattice to also match that of the TI

substrate. In doing so, the graphene−TI coupling is somewhat
overestimated, irrespective of the nature of the coupling (e.g.,
SOC or Kekule)́; therefore, the opened gap can only be viewed
as an upper limit.
With the hexagonal nature of the in-plane lattice structures of

the TI substrates, the interaction between the graphene
overlayer and the TIs leads to Kekule ́ distortions in the
honeycomb lattice of graphene as illustrated in Figure 1b. The
equilibrium interfacial distances between the graphene over-
layer and the TI substrates listed in Table 1 are calculated with
the inclusion of the van der Waals-type interaction. By
comparing the results for the two types of TI substrates, we
find that a smaller lattice mismatch results in a closer interfacial
coupling and potentially stronger Kekule ́ distortions.
Figure 2 shows the band structures of the graphene/TI

heterostructures obtained by the density functional theory
(DFT) calculations with the Fermi level set to be zero. For
both systems, the graphene bands near the Γ-point display
Rashba-type splits, arising from the proximity coupling between
the graphene and substrates.42 As shown in Figure 2c,d, the
Rashba splitting around the Γ-point is much larger on Sb2Te3
than on Bi2Te3. More significantly, a sizable overall band gap of
∼18 meV is present for the graphene/Sb2Te3 system, while the
much smaller band gap of ∼5 meV for graphene on Bi2Te3 still

Figure 1. Lattice structures of graphene/TI heterostructures. (a,b)
Illustrations of the graphene/TI heterostructures from (a) the side
view and (b) the top view. In (b), the dashed rhombus indicates the 1
× 1 unit cell of pristine graphene, while the larger rhombus
encompassing the systems indicates the √3 × √3 unit cell of the
graphene/TI heterostructures. (c) BZ of pristine graphene (green)
and folded BZ of Kekule ́ graphene as distorted by the TI substrates
(red).

Table 1. Structural Parameters of the Graphene/TI
Heterostructuresa

TI a (Å) c (Å) d (Å) mismatch (%) |λ| (meV)

Bi2Te3 4.38 30.49 3.87 2.58 2.5
Sb2Te3 4.25 30.35 3.59 0.47 8.0

aLattice constants a and c of the TIs were taken from ref 47. The
interfacial distances d between graphene and the TI substrates were
calculated through structurally optimization. The strengths of the
Kekule ́ distortions |λ| are extracted by fitting the first-principle data
within the tight-binding model described by eq 2.
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serves as an upper limit as a result of the artificially matched
lattices, which, as noted earlier, could overestimate the Kekule ́
distortions. Qualitatively, the stronger Rashba SOC splits and
the larger gap in the band structure of graphene/Sb2Te3 can
both be attributed to the closer interfacial coupling in this
system.
As for the dominant gap opening mechanism in these

heterostructures, it is tempting to identify the proximity-
enhanced SOC effects in graphene to be responsible, as
proposed recently in closely related studies of graphene/TI
systems.30,31 However, our closer analysis of the SOC effects
clearly rules out this possibility. As shown in Figure 2e,f, we find
comparable energy gaps in the two types of heterostructures
when the spin−orbit interactions are completely suppressed,
given by ∼16 and ∼5 meV, respectively. On the outer side,
from Figure 1b, we note that the on-site energies of carbon
atoms at the two sublattice sites remain degenerate when
graphene overlayer is on either of the two types of TI
substrates; therefore, the gap opening can not be attributed to
breaking of the sublattice symmetry either. Furthermore, the
potential effect of electron−phonon coupling is absent in the
present study and is therefore unable to account the gap
opening as observed.32

On the basis of the above analyses, the only remaining likely
gap opening mechanism in these systems is due to the Kekule ́
distortions of the gaphene lattice by the TI substrates. A Kekule ́
distorted graphene is characterized by two types of inequivalent
hopping rates between the carbon atoms. As illustrated in

Figure 1b, such hopping differences stem from the presence or
absence of an additional hopping channel between two
neighboring carbon atoms, mediated by the availability of a
topmost Te atom layer. Qualitatively, the mechanism of Kekule ́
distortion-induced band gap opening in graphene can be well
understood from Figure 1c, where the √3 × √3 superlattice
folds K and K′ valleys of pristine graphene unit cell to the Γ-
point in the heterostructure and the Kekule ́ distortion couples
the two valleys, lifting the degeneracy, thus giving rise to the
band gaps as obtained from the detailed computational
studies.19

To gain more insights into the underlying physics involved
and also reveal the generic trends in such systems, we develop a
TB model to describe the Kekule ́ distorted graphene in
connection with the DFT results, which enable us to
quantitatively extract the strengths of the Kekule ́ distortions.
This approach also allows us to readily explore the novel
electronic and transport properties of KGNRs. The distorted
lattice structure is shown in Figure 3a, where every independent

hexagonal carbon circle of graphene encompasses a Te atom,
which dominates the contribution to the Kekule ́ distortions,
giving rise to two different hopping rates. The Kekule ́ distorted
graphene can be described by the Hamiltonian

∑ ∑= + + ′ +
=

†
+

=

†H t a a t a a( H.c.) ( H.c.)
i

i i
i

i j0
1

3

3
1

6

(1)

where t = 2.7 eV is the nearest-neighbor hopping energy of
pristine graphene,43 t′ is an effective hopping energy modified
by the substrates, ai

† is the Fermionic creation operator acting
on site i, and j = i + 1 is the next site of i along the clockwise
direction shown in Figure 3a, with the periodic boundary
constraint of period 6. For the special case t = t′, Hamiltonian
(1) restores the TB description of pristine graphene. By
expanding the operator in the momentum space as

= ∑ ·a a ik Rexp( )i N i k ik
1

,
0

, where N0 is the normalization

parameter, k runs over the first BZ, we obtain the band
structure of the Kekule ́ distorted graphene with a opened gap at
the Γ-point. By performing block diagonalization around the
BZ center, we further extract a 4 × 4 low-energy effective
Hamiltonian as

Figure 2. Band structures of graphene/Bi2Te3 (left panels) and
graphene/Sb2Te3 (right panels). The zoomed-in portions in (a,b) are
given in (c,d), respectively. The states marked in red represent the
contributions from the carbon atoms. (e,f) The corresponding band
structures of the two types of graphene/TI heterostructures, obtained
without SOC.

Figure 3. (a) Schematic of Kekule ́ distorted graphene lattice. (b,c)
Band structures of graphene on (b) Bi2Te3 and (c) Sb2Te3 with the
dots representing the first-principles data calculated without SOC and
lines (red) the TB fittings.
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= ν σ τ σ λσ τ+ +H k k( )x x z y y x xeff F (2)

where νF = 3ta/2 is the Fermi velocity, a is the carbon−carbon
distance, σx,y and τx,z are the Pauli matrices acting on the real-
space sublattices and momentum-space valleys, respectively,
and λ = t − t′ < 0 measures the strength of the Kekule ́
distortions. The corresponding energy spectra are given by

ν λϵ = ± | | +± k k( ) F
2 2 2 , indicating the emergence of a massive

single-particle energy gap due to the intervalley scattering.
Equation 2 also shows that the gap size scales linearly with the
strength of the Kekule ́ distortions. Furthermore, as shown in
Figure 3b,c, by fitting the band structures of Kekule ́ distorted
graphene shown in Figure 2e,f within the low-energy effective
model described by eq 2, we find the strength of Kekule ́
distortions in graphene on Bi2Te3 and Sb2Te3 to be λ ∼−2.5
and −8 meV, respectively.
Next we shift our attention to the KGNRs. As references,

earlier studies have shown that GNRs with different types of
edges exhibit different electronic properties.23−28 For zigzag
GNRs, there always exist metallic edge states on both sides of
the ribbon,45 unless the antiferromagnetic coupling between the
edge states is considered, which transforms the system into a
nonconducting state when the ribbon width is narrow
enough.44 However, for armchair GNRs the band gaps scale
monotonously with the widths as a consequence of the
quantum confinement and edge passivation.28,29 Here, our
detailed studies without considering spin polarization show that
the electronic properties of the zigzag KGNRs still possess
gapless edges states. In contrast, the electronic properties of
armchair KGNRs display rich features as a result of different
competing gap opening mechanisms, as detailed below.

As shown in Figure 4a, the armchair KGNRs are classified by
the number of dimer bonds N across the ribbon width. The
corresponding TB Hamiltonian is given as

∑ ∑

∑

= +

+ +

=

−

=

†
+

=

⊥ †

H t a a

t a a

( H.c.)

( H.c.)

n

N

i
n n i n i

n

N

n n n

r
1

1

1,2
, 1,

1
,1 ,2

(3)

where tn
∥ and tn

⊥ are the nearest-neighbor hopping rates within
and between the horizontal carbon atomic chains, respectively.
Because of hydrogen passivation of the edge atoms, the carbon
bonds at the edges are shorter by 3.3−3.5% compared to those
in the middle of the ribbon, leading to a δ = 12% increase in the
corresponding hopping integrals.46 In the present TB
description, the effect of edge passivation can be well
approximated by assuming t1,N

⊥ = (1 + δ)t. Because of the
Kekule ́ distortions, tn∥ = tn−1

⊥ = t for n = 3p, where p = 1, 2, 3, ...
is a positive integer, and tn

∥ = tn
⊥ = t′ for other values of n (1 < n

< N) . The corresponding band structures can be obtained by
diagonalizing Hr in the momentum space.
Similar to the cases of armchair GNRs, the band gaps of the

armchair KGNRs as a function of the ribbon width are well
separated into three different categories, given by Δ3p±1 and Δ3p

as illustrated in Figure 4b. In order to more clearly display the
behaviors of band gap variations, we adopt λ-values that are
enlarged from those obtained by fitting the band structures
shown in Figure 3b,c. However, the intriguing qualitative
features revealed should not rely explicitly on the magnitude of
λ (see the last paragraph in the Supporting Information). In the
present systems, Δ3p−1 undergoes a gap closing and reopening
process upon increasing the ribbon width. This intriguing
nonmonotonous scaling behavior is rooted in the delicate
competitions of three different gap opening mechanisms:
quantum confinement, edge passivation, and Kekule ́ distor-
tions. In contrast, Δ3p+1 and Δ3p still exhibit monotonous
behaviors, approaching a common saturated value of the band
gap given by 2|λ|. Qualitatively, the quantum confinement effect
can be characterized by ΔN ∼ W−1 with W as the ribbon width.
To study the influence of the Kekule ́ distortions on the scaling
behaviors of the band gaps, we also plot Δ3p±1 and Δ3p as
functions of both the ribbon width and strength of the Kekule ́
distortions. As shown in Figure 4c−e, Δ3p+1 and Δ3p still
increase monotonously with either decrease of the ribbon width
or increase of the distortion strength, while Δ3p−1 displays
distinctly nonmonotonous scaling behavior when λ ≠ 0. Near
the gap closing point, the electronic structures preserve linear
dispersions, as shown in Figure 4f for the armchair KGNR
system with λ = −0.2 eV and N = 8.
In order to make the competitions of different gap opening

mechanisms more transparent, we next solve analytically the
band gaps of the armchair KGNRs using a perturbation
approach. We focus on the narrow width cases in which the
Kekule ́ distortions are substantially weaker than the quantum
size effects. The distortions can then be treated perturbatively,
on equal footing as the edge passivation effect.28 The scaling
properties for the band gaps of the armchair KGNRs to the first
orders of both δ and λ are given as (see Supporting Information
for details)

Figure 4. Band gaps of armchair KGNRs (a) Schematic of an armchair
KGNR with width N = 12, whose edge atoms are passivated by
hydrogen atoms. (b) Band gap variations as functions of the ribbon
width with λ = −0.1 eV. (c−e) Band gap variations as functions of the
width and distortion strength for (c) N = 3p−1, (d) N = 3p, and (e) N
= 3p + 1. (f) Band structure of a specific system with λ = −0.2 eV and
N = 8.
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where Δ3p−1
0 = 0, πΔ = −+
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0 1
3 2

are band gaps of armchair

GNRs when δ, λ = 0.26−28 Here, fe,k;1,2(p) are defined as positive
functions for any values of p. With t = 2.7 eV and δ = 0.12,
these first-order band gaps are in good agreement with the
numerical results shown in Figure 4b−e. In particular, for N =
3p − 1, because λ < 0, the Kekule ́ distortions compete with the
edge effect, leading to the nonmonotonous scaling behavior of
Δ3p−1. For N = 3p and 3p + 1, the Kekule ́ effects just give
additional positive corrections to the band gaps.
In summary, we have systematically studied the electronic

properties of a graphene monolayer or graphene nanoribbons
proximity-coupled to topological insulators, revealing delicate
competitions of different gap opening mechanisms. For a
graphene monolayer, our first-principles studies have identified
the Kekule ́ distortions instead of the prevailing belief of
proximity-enhanced SOC effects to be responsible for opening
a band gap in graphene. We have also developed a generic
tight-binding description of the systems to exploit the
competing gap opening mechanisms of such a Kekule ́ distorted
graphene monolayer and graphene nanoribbons. For Kekule ́
distorted graphene, the band gap scales linearly with the
strength of the distortions. In contrast, the band gaps of
armchair KGNRs may display intriguing nonmonotonous
dependence on the nanoribbon width, resulting from the
delicate competitions of quantum confinement, edge passiva-
tion, and Kekule ́ distortions. These findings offer viable
alternative approaches toward inducing tunable band gaps in
graphene and graphene nanoribbons.
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