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Quantum anomalous Hall effect (QAHE) is a fundamental quantum transport phenomenon in con-
densed matter physics. Until now, the QAHE has only been experimentally realized for Cr/V-doped
(Bi, Sb)2Te3 but at an extremely low observational temperature, thereby limiting its potential appli-
cation in dissipationless quantum electronics. By employing first-principles calculations, we study the
electronic structures of graphene co-doped with 5d transition metal and boron atoms based on a com-
pensated n–p co-doping scheme. Our findings are as follows: i) The electrostatic attraction between
the n- and p-type dopants effectively enhances the adsorption of metal adatoms and suppresses their
undesirable clustering. ii) Hf-B and Os-B co-doped graphene systems can establish long-range ferro-
magnetic order and open larger nontrivial band gaps because of the stronger spin-orbit coupling with
the non-vanishing Berry curvatures to host the high-temperature QAHE. iii) The calculated Rashba
splitting energies in Re–B and Pt–B co-doped graphene systems can reach up to 158 and 85 meV, re-
spectively, which are several orders of magnitude higher than the reported intrinsic spin-orbit coupling
strength.
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1 Introduction

Significant discoveries related to the quantum anomalous
Hall effect (QAHE), which is a new quantum state of
matter in condensed matter physics, have been reported
in recent years. The QAHE exhibits quantized Hall con-
ductance in the absence of an external field, which arises
from strong spin-orbit coupling (SOC) combined with
breaking of the time-reversal symmetry owing to intrin-
sic magnetization [1–4]. It is a topologically nontrivial
phase characterized by a finite Chern number and chiral
edge states within the bulk band gap. The chiral edge
states are robust against backscattering and are promis-
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ing for application to devices that require low power con-
sumption.

To date, the QAHE has been theorized to occur in
systems such as Mn-doped HgTe quantum wells [5],
thin-film topological insulators (TIs) [6], silicene [7–10],
half-hydrogenated Bi honeycomb monolayers [11], and
graphene-based systems [12–16]. Graphene and TIs are
candidate materials for engineering the QAHE because
of their unique linear Dirac dispersion [17–19] and the
existence of mature technologies for growing samples.
TIs are superior to graphene because they have stronger
SOC, thereby narrowing the search for suitable materi-
als for realizing the QAHE. Magnetism can be effectively
induced in TIs by doping them with magnetic atoms
[6, 20–23]. The QAHE was first observed experimentally
in Cr- and V-doped thin films at extremely low tem-
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peratures [24–27]. Recently, the QAHE at temperatures
above 50 K via n–p co-doping in Sb2Te3 using vanadium–
iodine has been theoretically proposed [28], which has
inspired significant experimental advances in exploiting
high-temperature QAHE [29].

Graphene has become a promising candidate material
for achieving the QAHE because of its extraordinary
electrical property, unique honeycomb lattice, and rel-
atively mature technologies for sample growth [17, 19].
However, pristine graphene possesses a very small non-
trivial band gap because of its extremely weak intrinsic
SOC [30, 31]. Therefore, various measures such as hydro-
gen deposition [32] have been proposed to enhance the
extrinsic SOC in graphene. In particular, periodic ad-
sorption of transition metal (TM) atoms has been theo-
retically suggested as an effective way to enhance SOC in
graphene [12, 33]; however, its experimental realization
is currently very difficult. A subsequent study observed
that random adsorption of TM atoms can eliminate the
intervalley scattering associated with periodic adsorption
[34]. However, the adsorption energies of metal atoms
on graphene are usually very low and metal atoms tend
to form clusters even at low temperatures [35, 36], in-
dicating that the long-range ferromagnetic (FM) order
may not survive as expected although some elements,
such as Bi cluster-decorated graphene, exhibit enhanced
SOC [37]. Thus, it is important to explore new strategies
to solve the aforementioned problems. Recently, it was
confirmed that n–p co-doping is effective for enhancing
the adsorption of TM atoms on graphene, leading to FM
graphene [38–41]. Furthermore, the n–p co-dopants can
help preserve the Dirac nature of the charge carriers.

In this article, by using first-principles calculations
in the realm of density functional theory, we propose
a versatile approach for achieving the QAHE based on
a compensated n–p co-doping scheme. This method was
initially introduced to achieve p doping in ZnO [42, 43]
and to narrow the band gap of TiO2 [44, 45]; more re-
cently, it was proposed in the context of diluted magnetic
semiconductors [38, 39, 41, 46, 47], which can also signifi-
cantly enhance the adsorption of TM atoms on graphene.
Furthermore, the successful fabrication of B-substituted
graphene also inspired our proposal [48]. In addition, ow-
ing to their strong atomic SOC, heavy 5d TMs might
cause larger QAHE gaps in related systems. Therefore,
we study the electronic and topological behaviors of 5d
TM–B co-doped graphene systematically by utilizing n–
p co-doping. First, we determine that the electrostatic
attraction between the n- and p-type dopants effectively
enhances the adsorption of the metal adatoms and sup-
presses their undesirable clustering. The results reveal
that the magnetic coupling of all 5d TM–B pairs shows
a Ruderman–Kittel–Kasuya–Yosida type spatial fluctua-
tion, with only Hf and Os being able to form long-range

FM order. When SOC is considered, Hf–B and Os–B co-
doping can both open up a global band gap to facilitate
the QAHE with non-vanishing Berry curvatures. Subse-
quently, we calculated the Rashba splitting energies in
Re–B and Pt–B co-doped graphene systems as approxi-
mately 158 and 85 meV, respectively, which are several
orders of magnitude larger than the reported intrinsic
SOC strength.

2 Computational methods

The calculations were performed using the projector
augmented-wave formalism of density functional theory
[49] as implemented in the Vienna ab initio simulation
package (VASP) [50, 53, 54]. For exchange correlation,
we used the Perdew–Burke–Ernzerhof [55, 56] functional.
The graphene sheet was modeled (i) with a 4× 4 super-
cell with a 20 Å vacuum in the vertical direction for the
adsorption calculations and (ii) with a 7 × 7 supercell
with a 20 Å vacuum to estimate the magnetic interac-
tion between two TM–B pairs. We used the optimized
lattice constant of graphene a0 = 2.46 Å, which is consis-
tent with the experimental value, in all our calculations.
When optimizing the geometry, the positions of all atoms
were allowed to relax and the atomic structures were op-
timized fully until the Hellmann–Feynman forces on each
ion were less than 0.02 eV/Å. The plane-wave energy cut-
off was set as 500 eV with an energy precision of 10−4 eV.
For the 4 × 4 (resp. 7 × 7) supercell, the Brillouin zone
was sampled using a 15× 15 (resp. 5× 5) Γ-centered k-
point grid. The Gaussian smearing method was used with
a smearing width of 0.1 eV. The adsorption energies of
the 5d TM adatoms on the B-substituted graphene sheet
were estimated using

Ead = Etot − Eatom − Egra+B,

where Etot, Eatom, and Egra+B are the energies of the 5d
TM–B co-doped graphene system, an isolated TM atom,
and B-substituted graphene, respectively.

3 Results and discussion

We begin by studying the adsorption of a single 5d TM
adatom on the graphene monolayer. We consider three
highly symmetric adsorption sites, namely a carbon-
atom top site, a carbon–carbon bridge site, and a hollow
site. From Table 1, we observe that two stable adsorption
sites (data in parentheses in Table 1) are obtained for
Hf, Ta, W, and Re, whereas only one adsorption site is
obtained for Os, Ir, and Pt. In the case of an Au adatom
on graphene, three stable adsorption sites (one bridge,
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Table 1 Magnetic moments (M) of TM atoms (TM = Hf,
Ta, W, Re, Os, Ir, Pt, and Au) adsorbed on B-substituted
(pristine) graphene at three possible adsorption sites. A
blank entry indicates that the corresponding configuration
is unstable.

Atom Site Move M(µB)

bridge no (yes) 0.56
Hf hollow no (no) 2.71 (3.11)

top no (no) 0.37 (1.50)
bridge no (yes) 2.00

Ta hollow no (no) 3.82 (3.68)
top yes (no) (2.99)

bridge yes (yes)
W hollow no (no) 3.29 (2.31)

top yes (no) (5.79)
bridge yes (yes)

Re hollow no (no) 0.00 (0.89)
top no (no)

bridge yes (yes)
Os hollow no (no) 1.00 (1.97)

top no (yes) 3.00
bridge yes (no) (0.95)

Ir hollow no (yes) 1.72
top no (yes) 1.93

bridge no (no) 0.00 (0.00)
Pt hollow yes (yes)

top yes (yes)
bridge yes (no) (0.86)

Au hollow yes (no) (0.84)
top no (no) 0.00 (0.85)

one hollow, and one top) are obtained. Regarding the
magnetic properties of a 5d TM adatom on pristine
graphene, no magnetic moment appears in the case of
Pt-adsorbed graphene. However, owing to the various ad-
sorption configurations, various magnetic moments are
obtained with the other 5d TM adatoms adsorbed on
graphene. These differing configurations and magnetic
moments reflect the differing charge transfer when these
5d TM adatoms are adsorbed onto graphene at different
sites. Our results also show that the hollow site is the
most favored adsorption site except for Pt and Ir, for
which the bridge site is preferred. This finding is consis-
tent with the findings of previous theoretical studies [15].
Our calculations also show that the largest adsorption
energy among the various 5d TM adatoms (namely that
for Ta) is less than 2 eV on pristine graphene. This rela-
tively weak binding between graphene and each of these
5d TM adatoms, in addition to the small diffusion bar-
rier, results in fast adatom migration and clustering. We
show that co-doping with B is effective for suppressing

these undesirable effects as follows.
As mentioned above, the relatively low adsorption en-

ergies of TM-doped graphene cannot prevent the fast
migration of adatoms and clustering with other adatoms
adsorbed on graphene. The 5d TM adatoms are n-type
dopants in graphene, whereas B adatoms (occupying the
same row as carbon in the periodic table with only one
less electron) are p-type dopants. Therefore, a 5d TM
adatom will be located close to a B adatom because of the
strong n–p electrostatic attraction between them. Previ-
ous studies have also shown that B co-doping is effective
for suppressing the present undesirable effects [38, 41].
To demonstrate this phenomenon, we calculated the ad-
sorption energies of the 5d TM adatoms from Hf to Au
after B co-doping. As shown in Fig. 1, the adsorption en-
ergies exhibit an enhancement of ∼1 eV compared with
those on pristine graphene, indicating a strong attrac-
tive interaction between TM and B. We observed that
most of the 5d TM adatoms yield the strongest binding
at the hollow site after co-doping except for Pt and Au,
for which the bridge and top sites are preferred, respec-
tively. Such strong attraction helps pin the TM adatoms
close to B, thereby preventing their migration and clus-
tering on graphene. Regarding the magnetic moment of
graphene co-doped with B and 5d TM adatoms, Table 1
indicates that no magnetic moment appears when using
Re, Pt, or Au. In fact, B co-doping results in more charge
transfer, and therefore, the magnetic moment is differ-
ent from that in the case of using only 5d TM adatoms.
Therefore, the abovementioned findings confirm that n–
p co-doping distributes 5d TM adatoms uniformly and
stably on B-substituted graphene.

The results presented thus far show that 5d-TM–
B co-doping enhances the stability of TM adatoms on
graphene significantly, thereby providing the essential
prerequisites for achieving enhanced SOC and realizing
the QAHE in graphene. Ferromagnetism is another cru-
cial requirement to realize the QAHE in n–p co-doped
graphene, and hence, we subsequently consider the mag-

Fig. 1 Adsorption energies of 5d TM adatoms on pristine
graphene (blue) and B-substituted graphene (green).
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Fig. 2 (a) A 7 × 7 graphene supercell. H0-H7 represent
the hollow sites for TM adsorption, A0 and B1-B8 represent
the B-substituted “A” site and “B” sites of carbon atoms in
graphene, respectively. (b) (c) Magnetic coupling between
two TM–B pairs vs. their separation. One pair is fixed at
H0A0 and the other one moves from H1B2 to H7B8, as illus-
trated in (a).

netic interaction between two TM–B pairs in a 7 × 7
graphene supercell. As shown in Fig. 2(a), one TM
adatom is fixed at H0 and paired with a B atom at A0.
The other TM adatom moves from H1 to H7, whereas
its partner B co-dopant remains at its nearest neighbor.
The magnetic interaction between the two TM–B pairs
at a given separation is evaluated by calculating the total
energy difference between the FM and the antiferromag-
netic (AFM) configurations of the two TM moments. We
observe that the first to fourth nearest-neighbor config-
urations are unstable owing to the surprisingly large at-
traction between the two 5d TM adatoms even though
their corresponding adsorption energies increase after
B co-doping. However, it remains possible to realize
long-range ferromagnetism because configurations with
larger separations between the two co-dopants appear.
As shown in Figs. 2(b) and (c), we also observe that both
Hf–B and Os–B co-doped graphene systems display FM
coupling at a sufficiently large TM-TM distance, indi-
cating the existence of long-range FM order in these two
systems. However, our calculations show the absence of
long-range FM order in the other types of 5d-TM–B co-
doped graphene systems. Therefore, the Hf–B and Os–B
co-doped graphene systems are the most promising can-
didates for achieving the QAHE.

The 5d-TM–B co-doping enhances the stability of TM
adatoms significantly, and the Hf–B and Os–B co-doped
graphene systems can realize long-range ferromagnetism.

Subsequently, to verify whether the QAHE can be real-
ized in n–p co-doped graphene, we calculate the band
structures of Hf–B and Os–B co-doped graphene. First,
we examine Hf on graphene in a 4 × 4 supercell with
and without SOC. In Fig. 3, panels (a) and (b) show
the band structures of Hf-doped graphene without SOC,
wherein the unique linear dispersion of pure graphene is
preserved. In Fig. 3(c), a gap of ∼ 35.9 meV opens at the
Dirac point when SOC is activated, indicating that this
gap originates from the SOC related to the adsorption of
Hf adatom. The abovementioned results are consistent
with those of Zhang et al. [15], indicating that our com-
putational method is reliable. Subsequently, in Figs. 3(f)
and (j), we show the band structures of Hf–B and Os–
B co-doped graphene, respectively, without SOC. When
magnetization is included, the spin-up (resp. spin-down)
bands are shifted upward (resp. downward). When SOC
is also activated, band gaps open at the crossing points
between the spin-up and spin-down bands near the K
point, as shown in Figs. 3(g) and (k), with magnitudes
of 21.4 and 47.6 meV, respectively. Therefore, the QAHE
might be realized in Hf–B and Os–B co-doped graphene.
Notably, these opened QAHE band gaps are much larger
than those observed in our previous study, where they
were only approximately 10 meV in graphene systems
co-doped with 3d TMs and boron adatoms.

So far, we have shown that the combined effect of SOC
and FM exchange field can open up band gaps in Hf–B
and Os–B co-doped graphene. Subsequently, we inves-
tigate whether such band gaps can host the QAHE via
Berry curvature calculations using the expression [51, 52]

Ω(k) = −
∑
n

fn
∑
n′ ̸=n

2Im⟨ψnk|vx|ψn′k⟩⟨ψn′k|vy|ψnk⟩
(En′ − En)2

,

where n, En, and ψnk are the band index, eigen-
value, and eigenstate, respectively, of the n-th band.
vx,y=∂E/∂kx,y represents velocity operators in the x and
y directions within the film plane, and fn = 1 for all n
bands below the band gap. Figures 3(g) and (k) show
the distributions of Berry curvature along highly sym-
metric lines. Large negative peaks appear near the K
points and disappear elsewhere, demonstrating nonzero
Hall conductance. Therefore, our calculations confirm
that these gaps can host the QAHE at higher tempera-
tures owing to the strong SOC of 5d TMs.

We also present the band structures of the Re–B and
Pt–B co-doped graphene systems even though they have
no magnetism. The overall band structures of Re–B and
Pt–B co-doped graphene with and without SOC are
shown in Fig. 4. With SOC, there is no topologically non-
trivial band gap. However, Figs. 4(c) and (g) show the
existence of spin-orbit splitting. In contrast to Figs. 4(b)
and (f) without SOC, the SOC interaction breaks the
spin degeneracy of the bands of Re–B and Pt–B co-
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Fig. 3 Band structures of Hf, Hf–B, and Os–B/graphene systems: (a, e, i) no spin; (b, f, j) without SOC; (c, g, k)
with SOC. The red and blue lines denote the spin-up and spin-down bands, respectively. The green lines represent the Berry
curvature. (d, h, l) Magnified views of the red rectangle in (c), (g), and (k), respectively.

doped graphene. In Figs. 4(d) and (h), we show the
spin splitting ∆SO for the bands denoted as in Figs. 4(c)
and (g) along the highly symmetric line Γ-M-K-Γ. These
bands are directly relevant to the transport properties of
n–p co-doped graphene because their band energies are
close to the Fermi level. The maximum spin splitting
energies are approximately 158 and 85 meV in the Re–
B and Pt–B co-doped graphene, respectively, which are
much larger than the typical value for the Rashba spin
splitting energy in conventional III–V and II–VI semi-
conductor quantum wells (<30 meV) [53, 54] and are
comparable to the enhanced surface Rashba spin split-
ting energy (∼ 100 meV) in different graphene/substrate
systems [21, 22, 25]. Consequently, we conclude that
Re–B and Pt–B co-doped graphene would be useful for
designing new electronic materials. As for Ta–B, W–B,

I–B, and Au–B co-doped graphene systems, their band
structures either contain only trivial gaps or lack long-
range FM order, indicating that the QAHE cannot be
realized with them.

4 Conclusions

In summary, through calculations based on density func-
tional theory, we systematically studied the electronic
and spintronic properties of 5d TM–B co-doped graphene
based on a compensated n–p co-doping scheme. The elec-
trostatic attraction between the n- and p-type dopants
effectively enhanced the adsorption of the metal adatoms
and suppressed their undesirable clustering. The calcu-
lated Rashba splitting energies in the Re–B and Pt–B co-
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Fig. 4 Band structures of Re–B and Pt–B/graphene systems: (a, e) no spin; (b, f) without SOC; (c, g) with SOC. (d,
h) Absolute values of spin-orbit (SO) splitting (∆SO) of TB1-TB4 in (c) and (g), respectively.

doped graphene reached 158 and 85 meV, respectively,
which are several orders of magnitude larger than the re-
ported intrinsic SOC strength. Moreover, Hf–B and Os–
B co-doped graphene can support long-range FM and
host the QAHE with non-vanishing Berry curvatures.
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