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We theoretically investigate the conductance fluctuation of two-terminal device in Sierpinski carpets.
We find that, for the circular orthogonal ensemble (COE), the conductance fluctuation does not display
a universal feature; but for circular unitary ensemble (CUE) without time-reversal symmetry or circular
symplectic ensemble (CSE) without spin-rotational symmetry, the conductance fluctuation can reach
an identical universal value of 0.74 ± 0.01(e2/h). We further find that the conductance distributions
around the critical disorder strength for both CUE and CSE systems share the similar distribution
forms. Our findings provide a better understanding of the electronic transport properties of the regular
fractal structure.
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1 Introduction

Universal conductance fluctuation (UCF) is one of the
striking features in mesoscopic electronic transport [1–3].
It is a quantum interference effect that occurs in sys-
tems with sample size being less than the phase coher-
ence length. And the UCF amplitude only depends on
the dimensionality and system symmetries [4–6]. Accord-
ing to random matrix theory [7], there are usually three
ensembles due to different symmetries: (i) Circular or-
thogonal ensemble (COE), where both time-reversal and
spin-rotation symmetries are preserved; (ii) Circular uni-
tary ensemble (CUE), where the time-reversal symmetry
is broken but the spin-rotation symmetry ia preserved;
(iii) Circular symplectic ensemble (CSE), where the time-
reversal symmetry is preserved but the spin-rotational
symmetry is broken. These three ensembles can be in-
dexed by β = 1, 2, 4, corresponding respectively to COE,
CUE and CSE. For quantum dot, quasi-one dimensional,
and two dimensional systems, the UCF at the diffusive
regimes are respectively rms(G) = cd/

√
β(e2/h), where

cd = 0.70, 0.73, 0.86 [4–7].
So far, there have been tremendous focus on the UCF

for the integer dimensions [8–22]. However, there is very
limited study on the UCF in fractal dimension [23], which
is also named as Hausdorff dimension measuring the di-
mensionality of self-similar structures [24]. As the simplest
models of regular fractal structure, Sierpinski gasket and
carpet have attracted numerous attentions. The related
research mainly focused on the electronic transport prop-
erties [25–34], and the topological properties in Sierpinski

lattices [35]. For example, Schwalm et al. investigated the
conductance distribution in the presence of random bond
disorder via length scaling theory and described the curves
by two parameters that are independent of the model
system [29]; spin-related transport study of fractal con-
ductors proposed a spin filter based on Sierpinski carpet
[32, 33]; and the nonzero Chern number in Sierpinski car-
pet under external magnetic field [35] demonstrates the
extraordinary electronic properties in fractal dimension.
In addition to the previous theoretical proposals, the real-
istic experimental realization of Sierpinski triangle fractals
either by molecular self-assembling or by atomic manip-
ulation [36, 37] arises some interesting questions: Does
there exist a UCF in fractal dimension? How does the
symmetry affect the conductance fluctuation?

Fractals are self-similarity patterns and can be iterated
infinitely. According to the characteristics of fractal, it can
be classified into different types, e.g., exact/quasi/statis-
tical/qualitative self-similar patterns. As a representative
exact self-similar fractal, we choose Sierpinski carpet to
address the above questions. We provide a systematic in-
vestigation on the electronic transport properties of Sier-
pinski carpets in the presence of disorders. Unlike integral
dimensions, we find that the Sierpinski carpets do not have
a UCF at the COE situation; when the time-reversal sym-
metry or the spin-rotational symmetry is broken, we show
that UCF can be reached at the CUE or CSE system, i.e.,
rms(G)=0.74±0.01(e2/h); and the corresponding conduc-
tance distributions in the diffusive region for both CUE
and CSE systems obey nearly the same distribution, i.e.,
normal distribution at the small conductance region but
log-normal distribution at the large conductance region.
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2 Model system

In our numerical calculations, the tight-binding model
Hamiltonian of square lattice system can be expressed as
[38]:

H = −t
∑
⟨ij⟩,α

c†iαcjαe−i2πϕij +
∑

i∈B,α

ϵ0c
†
iαciα

+itSO
∑

⟨ij⟩,αγ

êz·(σαγ×dij)c
†
iαcjγ +

∑
i,α

ϵic
†
iαciα,

where c†iα (ciα) is the electron creation (annihilation) op-
erator with spin α at site i, and t is the hopping en-
ergy between nearest neighbor sites. The effect of exter-
nal magnetic field is considered by a Peierls phase factor
ϕij =

∫
A · dl/ϕ0 in the first term, where A = (−By, 0, 0)

is vector potential with Landau gauge and ϕ0 = h/e is
the quantum of flux. The second term describes the re-
moved region of Sierpinski carpet with a large on-site po-
tential ϵ0 = 107t, which has been elaborately tested for
the convergence of conductance. The third term represents
Rashba spin–orbit coupling with coupling strength tSO, σ
are the Pauli matrices and dij stands for the unit vector
pointing from site j to site i. The last term corresponds
to the Anderson type disorder with ϵi being uniformly
distributed within the range of [−W/2,W/2], where W
characterizes the disorder strength.

In our consideration, the two-terminal electronic trans-
port was evaluated by employing the Landauer–Büttiker
formula [39] to calculate the conductance G, i.e., G =
(2e2/h)Tr(ΓLG

rΓRG
a). Here Gr,a are the retarded and

advanced Green’s functions of the central disordered re-
gion, and ΓL,R are the line-width functions coupling left
and right terminals to the central region, respectively. In
the presence of finite disorder strength, the conductance
fluctuation can be obtained by rms(G)≡

√
⟨G2⟩ − ⟨G⟩2,

where ⟨. . . ⟩ represents the ensemble average over differ-
ent disordered samples at the same strength W . In our
calculation, t is set to be the unit of energy E, disorder
strength W and spin–orbit coupling strength tSO; and the
magnetic field is measured by magnetic flux ϕ/ϕ0.

3 Fractal structures and density of states

Figure 1(a) displays the system configurations of Sierpin-
ski carpet at different iteration steps. For example, “R2”
indicates the system configuration after the second iter-
ation step [see the middle panel of Fig. 1(a)]. The white
parts are set to be empty. Due to the nature of fractal,
the structure can be infinitely iterated and the empty re-
gions would become more and more intensive. Figure 1(b)
displays density of states as a function of Fermi energy E
in the presence of a series of magnetic flux ϕ. For pristine
square lattice (i.e., in black line, R0), Landau level split-
ting gradually appears along with the increase of magnetic
flux ϕ. Meanwhile, the interval of Landau level becomes

Fig. 1 (a) Configurations of the Sierpinski carpet with dif-
ferent iteration steps (e.g., R2 means two iteration step). The
white regions are empty regions. (b) Electronic density of
states for different iteration steps as a function of Fermi en-
ergy E for different magnetic flux ϕ. The system size is set to
be L = 54a, where a is lattice constant. Ri (i = 0, 1, 2, . . .) in-
dicates different iteration steps, where R0 is for pristine square
lattice and Ri (i > 0) is for Sierpinski carpet.

increasing with the increase of ϕ, agreeing well with the
theoretical expectations. Compared with that in pristine
square lattice system, the density of states of Sierpinski
carpet decreases for the whole range of energy. And the
more iteration steps of the Sierpinski carpet, the smaller
of density of states. At the first iteration step (i.e., the R1

case where the structure is similar to square lattice except
for an empty region in the center), the density of states
exhibits the similar characteristic as that of the pristine
square lattice. However, one can see that the density of
states for structures with larger iteration steps are much
more robust against weak magnetic field, implying that
stronger magnetic field is required to split their energy
levels. This means that the special structure of Sierpinski
carpet results in distinct electronic properties. Due to the
symmetric feature of density of states about the Fermi en-
ergy, we choose a series of E/t within the range of 0 to 4
in our numerical calculation.

4 Conductance fluctuations in systems with
different symmetries

4.1 Absence of universal conductance fluctuation in COE
symmetry

First, we investigate the average conductance ⟨G⟩ and
the fluctuation rms(G) in the Sierpinski carpet with COE
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symmetry (β = 1). Figures 2(a)–(c) display the average
conductance as a function of the disorder strength W at
different energies by evaluating over 3000 samples at each
point. In the absence of disorder, i.e., W/t = 0, one can
find that ⟨G⟩ decays rapidly as the iteration step increases,
e.g., at E/t = 0.2, the average conductance was decreased
to be about 10% from ∼ 63 e2/h to ∼ 6.3 e2/h as the iter-
ation step varies from R1 to R3. This can be attributed to
the strong electron back-scattering from the boundaries
of the empty regions. In the presence of disorders (i.e.,
W/t > 0), the average conductance ⟨G⟩ decreases along
with the increase of the disorder strength. Figures 2(d)–(f)
describe the conductance fluctuation rms(G) as a function
of disorder strength W . As disorder strength W increases,
the conductance fluctuation rms(G) first increases to its
maximal plateau, and then gradually decreases. If disorder
strength W is strong enough, all electrons in the system
would be completely localized to reach the Anderson insu-
lating state, and thus the corresponding conductance fluc-
tuation rms(G) becomes zero. One can find that the peaks
of conductance fluctuation that reached its maximum are
energy dependent at fixed iteration step, e.g., at R1 [see
Fig. 2(d)], the peak of conductance fluctuation drops from
1.07 e2/h to 0.93 e2/h as the Fermi energy increases from
0.2 t to 3.2 t. Moreover, the dashed orange line in the
figures represents the peak of conductance fluctuation at
(R1, E/t = 1.4). From this dashed orange line, we can find
that the peak tends to decrease as the iteration step in-
creases, e.g., at E/t = 1.4, the peaks corresponding to R1,
R2, and R3 are 1.00 e2/h, 0.95 e2/h, and 0.88 e2/h, respec-
tively. From above discussion, we can find that the peaks

Fig. 2 (a–c) Average conductance ⟨G⟩ and (d–f) its fluctu-
ation rms(G) as a function of disorder strength W at different
Fermi energies in the case of β = 1. The iteration step in the
three columns is respective R1, R2, and R3. The system size is
L = 54a, where a is lattice constant. The Fermi energies are
chosen as E/t = 0.2, 0.8, 1.4, 2.0, 2.6, and 3.2, respectively.
Over 3000 samples are collected for each point.

of conductance fluctuation are dependent on the iteration
step and Fermi energy. Therefore, the conductance fluctu-
ation in the COE (β = 1) symmetry of Sierpinski carpet
does not exhibit a universal feature.

4.2 Universal conductance fluctuation in CUE symmetry

Then, we turn to study the conductance fluctuation of
CUE system that breaks time-reversal symmetry (i.e.,
β = 2). Figures 3(a)–(c) display the average conductance
as a function of disorder strength W . In the absence of
disorder (i.e., W/t = 0), the conductance G at differ-
ent Fermi energies decreases as iteration step increases.
And at fixed magntic flux and Fermi energy, the aver-
age conductance also decreases as the disorder strength
W increases, similar to that in the COE system. But at
the same system parameters, the average conductance in
CUE system is smaller than that in COE system due
to the enhancement of localized states induced by ex-
ternal magnetic field. At fixed iteration step, e.g., R1

[see the lines with (ϕ,E) of (0.012, 1.4), (0.024, 1.4), and
(0.048, 1.4) in Fig. 3(a)], the average conductance quickly
decreases as the magnetic flux increases for weak disorder
strength W . When the disorder strength W exceeds cer-
tain critical value, such a dependence weakens and results
in an saturation of average conductance. Figures 3(d)–
(f) display the conductance fluctuation rms(G) as a func-
tion of disorder strength W . As illustrated by the dashed
orange line, there exists a maximum of rms(G) around
0.78±0.01(e2/h) for different system configurations, mag-
netic fluxes, or Fermi energies, suggesting a universal fea-
ture of conductance fluctuation [40]. Moreover, the critical

Fig. 3 (a–c) Average conductance ⟨G⟩ and (d–f) its fluc-
tuation as a function of disorder strength W for different mag-
netic fluxes and energies in the case of β = 2. The system size
is L = 54a, where a is lattice constant. Over 3000 samples are
collected for each point. The dashed orange line indicates a
universal value existing around 0.78± 0.01(e2/h).
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disorder strength WC that reaches the maximum of con-
ductance fluctuation for different Fermi energies exists in
a tiny range, and decreases as the iteration step increases,
e.g., WC/t = 5.26, 4.74, 3.68 for R1, R2, and R3, respec-
tively. To confirm it is indeed a universal value, we further
study the conductance fluctuation rms(G) for even larger
system size. Figure 5(a) displays the maximum of con-
ductance fluctuation in a wide range of system size from
27a to 270a. Due to the finite-size effect, the maximum of
conductance fluctuation gradually decreases as the system
size increases, and reaches a convergence at larger system
size, i.e., the plateau is around 0.74 ± 0.01(e2/h) when
the system size is larger than 162a. Therefore, different
from COE system where the fluctuation does not mani-
fests a universal feature, there exists a universal conduc-
tance fluctuation 0.74 ± 0.01(e2/h) in CUE system with
time-reversal symmetry breaking.

4.3 Universal conductance fluctuations in CSE
symmetry

Next, we move to explore the conductance fluctuation of
systems with CSE symmetry (i.e., β = 4). Figures 4(a)–
(c) display the average conductance as a function of dis-
order strength W . One can find some universal features of
the variation of average conductance in COE, CUE, and
CSE systems, i.e., the average conductance decreases with
the increase of iteration steps, Fermi energies, or disor-
der strength. Moreover, the average conductance increases
as the spin–orbit coupling strength increases [see the
curves with (tSO, E) of (0.2, 1.7), (0.4, 1.7), and (0.6, 1.7)
in Figs. 4(b) or (c)]. Figures 4(d)–(f) display the conduc-
tance fluctuation rms(G) as a function of disorder strength

Fig. 4 (a–c) Average conductance ⟨G⟩ and (d–f) its fluc-
tuation as a function of disorder strength W for different tSO
and energies in the case of β = 4. The system size is L = 54a,
where a is lattice constant. Over 3000 samples are collected for
each point. The dashed orange line indicates a universal value
around 0.75± 0.01(e2/h).

W . The dashed orange line in these figures denotes the
maximum of rms(G) around 0.75±0.01(e2/h) at different
iteration steps, spin–orbit coupling strengths, and Fermi
energies. All these together indicate the presence of uni-
versal conductance fluctuation in the CSE system. In ad-
dition, the critical disorder strength WC at fixed tSO de-
creases as the iteration step increases (e.g., in the case of
tSO = 0.4 and E/t = 1.2, WC ≈ 5.26, 4.74, and 3.68 for
R1, R2, and R3 respectively). By further investigating the
maxima of conductance fluctuation in a wide range of sys-
tem size from 27a to 162a [see Fig. 5(b)], one can find that
the system size shows little influence on the conductance
fluctuation plateau, which is around 0.74 ± 0.01(e2/h).
Therefore, we conclude that there also exists a universal
conductance fluctuation in systems with CSE symmetry.
In addition, the difference of the size effect of UCF in CUE
and CSE indicates that time-reversal symmetry has sig-
nificant influence on electronic transport in a disordered
system with different size. A phenomenological picture of
band structure can be used to explain the difference. In
a magnetic field, electronic band will form Landau level
and this is a global influence on the band structure. The
number of Landau levels depend on the strength of mag-
netic field, as well as system size. On the contrary, bands
structure will open band gaps at the crossing points when
Rahsba spin–orbit coupling is considered and the system
size have little influence on the electronic band structure.
This is a local influence on the band structure. Therefore,
UCF in CUE decrease gradually to a saturation as the
increase of system size; while it seems unchanged in CSE.

5 Conductance distributions in both CUE and
CSE

From above discussions, one can reach that the Sierpin-
ski carpet does not exhibit a universal feature of conduc-

Fig. 5 The size effect of UCF in the case of (a) β = 2 and
(b) β = 4. The data is collected from the size of 27a, 54a, 81a,
108a, 162a and 270a. The curve shows a convergence behavior.
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Fig. 6 Conductance distribution at the critical disorder
strength WC in CUE system (β = 2) for ϕ/ϕ0 = 0.012.
The Fermi energies in (a–c) and (d–f) are E/t = 0.5 and
E/t = 2.0, respectively. The first, second and third rows rep-
resent R1, R2, and R3, respectively. The system size is L = 54a,
where a is lattice constant. Over 30000 samples are collected.

tance fluctuations in COE system, but reaches a univer-
sal conductance fluctuation of 0.74 ± 0.01(e2/h) for both
CUE (time-reversal symmetry breaking) and CSE (spin-
rotation symmetry breaking) symmetries. To further re-
veal the physical mechanism of the universal conductance
fluctuations in Sierpinski carpet, we study the conduc-
tance distribution around the critical disorder strength
WC. Figure 6 displays the conductance distribution P (G)
near the critical disorder strength WC in CUE system
(β = 2). One can find that the general function of the
conductance distribution is independent of Fermi energies
or iteration steps, i.e., the left regime obeys the Gaus-
sian distribution function, while the right regime obeys
the log-normal distribution function. In the CSE systems,
we also find that the conductance near the critical dis-
order strength follows the same distribution function as
that in the case of CUE symmetry (see Fig. 7). There-
fore, one can conclude that in the Sierpinski carpet, both
CUE and CSE systems share the same universal conduc-
tance fluctuations and conductance distribution near the
critical disorder strength.

As displayed in Fig. 8, we further study the conduc-
tance distribution beyond the critical disorder strength
WC. In CUE system [see Figs. 8(a)–(c)], the conductance
distribution belongs to Gaussian function when disorder
strength W less than WC [see Fig. 8(a)], indicating the
system stays in the ballistic regime. While it follows the
log-normal distribution when disorder strength W is larger
than WC [see Fig. 8(c)], implying that the system enters
the localized regime [7, 14]. In particular, the conductance
distribution experiences a transition from Gaussian to log-
normal function around WC as mentioned above. In CSE
system [see Figs. 8(d)–(f)], the variation of conductance
distribution around the critical disorder strength WC be-

haves similar as that in CUE system. Therefore, from the
analysis of conductance distribution, we can conclude that
the universal conductance fluctuation in Sierpinski carpet
occurs in the crossover region between ballistic and An-
derson localization regime in both CUE and CSE systems.

6 Summary

In this work, we theoretically investigate the electronic
transport properties (e.g., conductance and its fluctua-
tion) of disordered two-terminal device in Sierpinski car-
pet for circular orthogonal, circular unitary, and circular
symplectic ensembles. Our results show that there exist
universal conductance fluctuations in both CUE and CSE

Fig. 7 Conductance distribution around the critical disorder
strength in the case of β = 4 for tSO = 0.4t. The Fermi energies
in (a–c) and (d–f) are E/t = 0.7 and E/t = 2.7, respectively.
The first, second and third rows represent R1, R2, and R3,
respectively. The system size is L = 54a, where a is lattice
constant. Over 30000 samples are collected for each point.

Fig. 8 Variation of conductance distribution in different dis-
order strengths W . (a) and (d) is for W < WC. (b) and (e)
is for W = WC. (c) and (f) for W > WC. (a)–(c) correspond
to β = 2. (d)–(f) correspond to β = 4.
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systems, while not in the COE system [41]. By further
studying the conductance distribution around the critical
disorder strength WC in CUE and CSE systems, we find
that both of systems share the same distribution func-
tion, which obeys Gaussian distribution when W < WC
or follows log-normal distribution when W > WC, in-
dicating that the universal conductance fluctuations in
both CUE and CSE systems occur in the crossover region
between ballistic and Anderson localized regimes. In in-
teger dimensions, the universal conductance fluctuations
in metal-insulator crossover regime have been studied by
Qiao et al. [14]. Compared to aforementioned study, uni-
versal conductance fluctuations in Sierpinski carpet have
different values, indicating the difference between the uni-
versal conductance fluctuations in fractal and integer di-
mensions. Our finding in Sierpinski carpet can be extended
to study other fractal structures that have different Haus-
dorff dimensions.
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