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Kagome superconductors AV3Sb5 (A =K, Rb and Cs) have attracted much recent attention due to the
coexistence of multiple exotic orders. Among them, the charge density wave (CDW) order has been
shown tohost variousunconventional behaviors.Here,we investigate theCDWorder bya combination
of both bulk and surface doping methods. While element substitutions in bulk doping change both
carriers and the crystal lattice, the surfacedopingprimarily tunes the carrier concentration. As such, our
results reveal a two-dimensional phasediagramof theCDWindopedCsV3Sb5. In the lightly bulkdoped
regime, the existenceofCDWorder is reversible by tuning the carrier concentration. But excessive bulk
doping permanently destroys the CDW, regardless of the carrier doping level. These results provide
insights to theoriginof theCDWfrombothelectronic andstructural degreesof freedom.Theyalsoopen
an avenue for manipulating the exotic CDW order in Kagome superconductors.

Kagome metals have attracted much attention due to the special lattice
structure and associated physical properties1–4. The ongoing interest is
further energized by Kagome superconductors AV3Sb5 (A = K, Rb and
Cs), in which many exotic phenomena have been observed5–50, ranging
from superconductivity5–9, charge density wave (CDW)5,6,10–19, nematic
order20,21, pair density wave22, topological states5,23,24 and the time-
reversal symmetry breaking state17,25–27. While the origins of these phe-
nomena remain unclear, it is interesting that most of them are closely
related to the CDW state5,6,10–19. In this regard, it is important to
understand the driving mechanism of the CDW. Two scenarios have
been primarily suggested15,29–36. The first is associated with the electronic
instability, presumably driven by Fermi surface nesting15,29–32, and the
second is related to the structural instability via electron-phonon
coupling15,32–36. In order to examine the origin, doping evolution of the
CDW has been experimentally investigated by chemical element
substitutions38–45. Nevertheless, both the carrier concentration and the
crystal lattice have been changed in this process. Surface doping has also
been performed by Cs surface deposition46. Comparing to the bulk ele-
ment substitutions, the surface doping primarily induces carriers
(electrons) to the surface layers of the samples46. Its application on a
pristine CsV3Sb5 compound has led to a monotonic suppression of the

CDW order46. Despite the continuous efforts, it remains challenging to
differentiate the roles played by electron and lattice degrees of
freedom38–46.

In this paper, we investigate the evolution of CDW order in
CsV3Sb5 via a combination of both bulk and surface doping. Angle-
resolved photoemission spectroscopy (ARPES) measurements,
which are sensitive to both dopingmethods51, have been carried out to
track the evolution of the CDW order in this material. First, Ti sub-
stitution of V is applied to the bulk crystal of CsV3Sb5, which induces
hole doping and modifies the V Kagome net simultaneously. Con-
tinuous Cs surface deposition is then carried out on the CsV3-xTixSb5
samples, which gradually induces electrons to compensate the holes
doped by the Ti substitution. It is interesting that the CDW order is
reversible as a function of carrier concentration in the lightly Ti
doped regime. This is evidenced by the CDW gap, which disappears
with Ti doping, but reappears with Cs surface deposition. However,
excessive Ti bulk doping permanently destroys the CDW order,
which becomes irreversible by tuning the carrier concentration.
These results reveal a two-dimensional phase diagram of the CDW
order in doped CsV3Sb5, and provide key insights to the associated
driving mechanism.
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Results
Evolution of CDW as a function of bulk and surface doping
Figure 1 shows the electronic structure of CsV3-xTixSb5 as a function of Ti
bulk doping (see Supplementary Note 1 and Supplementary Fig. 1 for the
sample characterization), measured at a low temperature (10 K). The
photoemissionmeasurements are carried out along Γ-K-M direction, where
the CDW gap is most clearly revealed in the pristine CsV3Sb5
compound32,47,48. In order to visualize the evolution of the gap, low energy
spectra around the van Hove singularity (vHs, marked by the red dotted
boxes in Fig. 1a–d) are symmetrized with respect to the Fermi level (EF)
(Fig. 1e–h). It is clear that the CDW gap decreases with Ti doping and
disappears at doping levels x ≥ 0.13 (Fig. 1g, h). This is quantified by the
corresponding energy distribution curves (EDCs) (Fig. 1i–p), where both
Fermi–Dirac divided and symmetrized EDCs reveal the same doping evo-
lution. Momentum dependence of the CDW gap is also examined on a Ti
doped sample (x = 0.03), which is largely consistent with that of the pristine
CsV3Sb5 compound, but with an overall smaller magnitude of the gap
(Fig. 1q–s).

Next, Cs surface doping is gradually carried out on the CsV3-xTixSb5
(x = 0.13) sample at a fixed low temperature (10 K). As illustrated in Fig. 1
(also shown in Fig. 2a, e, f), the CDW gap is completely suppressed by Ti
doping in this sample. Upon Cs surface doping, a slight downward shift of
the V bands is observed (Fig. 2a–d, for example, see the band top near K
point, marked by the black triangles). Most strikingly, a spectral weight
suppression starts to appear nearEF, indicating the possible reappearance of
an energy gap. This behavior is quantitatively revealed by the EDCs around
the vHs region, where an energy gap gradually forms at EF as a function of
the Cs surface doping (Fig. 2e–l). In order to examine whether the gap
opening is associatedwith the reappearance of theCDWorder or createdby
extrinsic effects (e.g., a possible localization effect induced by disorders), the
Cs surface doping is repeated on theCsV3-xTixSb5 (x = 0.13) sample, but at a
much higher temperature (100 K). Different from the behavior at low

temperature, now the system remains gapless after the Cs surface doping
(Fig. 2m–r). Nevertheless, the energy gap starts to appear on the band near
the vHs (with V d-orbitals) when the temperature is cooled down to ~40 K
(Fig. 2o, p). This gap becomes more evident at a lower temperature of 10 K
(Fig. 2o, p). On the contrary, the band around the Γ point (with the Sb P-
orbital) remains gapless at all temperatures (Fig. 2q, r). The above tem-
perature and momentum (orbital) dependent behaviors of the gap are
highly consistent with those of the CDW gap, demonstrating the reap-
pearance of the CDW order in this system.

In order to further understand the evolution of the CDW order, the
surface Cs doping is carried out on another CsV3-xTixSb5 sample, but
with a higher bulk doping level (x = 0.39) at 10 K. Apparently, the CDW
order is completely suppressed in this sample before the Cs surface
doping, evidenced by the absence of the CDW gap (Fig. 3a, e, i, j). Upon
the Cs doping, an overall downward shift of the V bands is observed as
before (Fig. 3a–d).We note that excessive Cs doping has been applied on
this sample (Fig. 3c, d) to ensure that the holes induced by the higher
level of Ti substitution are sufficiently compensated and a similar total
carrier concentration is achieved as before. This is evidenced by similar
positions of the energy features on the band structure of the two samples
after Cs deposition (e.g., compare the band top between Γ and K in
Figs. 2c, d, n and 3c, d, marked by the black triangles). However, distinct
from the earlier case, no evidence of gap opening is observed on
the CsV3-xTixSb5 (x = 0.39) sample with Cs surface doping. This gapless
state remains robust, regardless of the electron doping level induced by
the Cs surface deposition (Fig. 3e–p).

Two-dimensional phase diagram of the CDW order
The above bulk and surface doping dependent measurements
(Fig. 4a–c) reveal a two-dimensional phase diagram of the CDW in
doped CsV3Sb5 (Fig. 4d). First, the CDW order is monotonically
suppressed as a function of the Ti bulk doping, and the CDW gap
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Fig. 1 | Electronic structure of CsV3-xTixSb5 as a function of the Ti substitution
level, measured at 10 K. a–d Photoelectron intensity plot of the band structure
along the Γ-K-M direction on CsV3-xTixSb5 samples with x = 0 (a), 0.08 (b), 0.13 (c)
and 0.39 (d). e–h symmetrized low energy spectrum near the vHs region in (a–d).
i–pEDCs in the red dotted boxes in (a–d). The EDCs are divided by the Fermi–Dirac

function (i, k,m,o) and symmetrizedwith respect toEF (j, l,n,p), respectively. EDCs
at the Fermi momenta are highlighted in blue. The EDC peaks are marked by
triangles and circles. q Schematic Fermi Surface of CsV3-xTixSb5 (x = 0.03). r, sEDCs
at representative momentum points. The momentum locations of the points are
shown in (q).
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Fig. 2 | Evolution of the electronic structure with Cs surface doping on the
CsV3-xTixSb5 (x= 0.13) sample. a–d Photoelectron intensity plot of the band
structure along the Γ-K-M direction as a function of Cs surface doping at 10 K.
e–lEDCs in the red dotted boxes in (a–d). The EDCs are divided by the Fermi–Dirac
function (e, g, i, k) and symmetrized with respect to EF (f, h, j, l), respectively. EDCs
at the Fermi momenta are highlighted in blue.m, n Photoelectron intensity plot of
the band structure along the Γ-K-M direction before (m) and after (n) Cs surface

deposition at 100 K. The red arrows mark the Fermi momenta. o, p Temperature
dependence of the EDC at the Fermi momentum near the vHs. To reveal the gap
opening, the EDC is divided by the Fermi–Dirac function (o) and symmetrized with
respect to EF (p), respectively. q, r Same as (o, p), but measured at the Fermi
momentum near Γ. The black triangles in (c, d, n) mark the band top between Γ
and K.
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Fig. 3 | Evolution of the electronic structure with Cs surface doping on the
CsV3-xTixSb5 (x= 0.39) sample. a–d Photoelectron intensity plot of the band
structure along the Γ-K-M direction as a function of Cs surface doping at 10 K. The
black triangles in (c, d) mark the band top between Γ and K. e–h Symmetrized low

energy spectrum near the vHs region in (a–d). i–p EDCs in the red dotted boxes in
(a–d). The EDCs are divided by the Fermi–Dirac function (i, k, m, o) and sym-
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highlighted in blue.

https://doi.org/10.1038/s41535-024-00635-5 Article

npj Quantum Materials |            (2024) 9:23 3



disappears at the doping level of x = 0.13. Then, continuous surface
doping at the fixed Ti doping level (x = 0.13) leads to the reappearance
of the CDW gap. However, the Cs surface doping shows little effect on
the sample with a higher Ti doping level of x = 0.39. The sample
remains gapless, regardless of the surface doping level.

Discussion
Finally, we discuss the implications of such an experimental phase
diagram. First, the Ti bulk doping changes both the carrier con-
centration and the lattice of thematerial. On one hand, the substitution
of V atoms by Ti atoms effectively induces holes into the Kagome layer.
On the other hand, the new Ti atoms would inevitably modify the
original V Kagome net and affect the lattice vibration. The totality of
these effects results in the suppression of the CDW order. Second, the
Cs surface doping primarily induces electrons to the sample. In pristine
CsV3Sb5, a suppression of CDW with Cs surface doping has been
reported46, where the surface induced electrons may shift the carrier
concentration away from the optimal doping. On the other hand, the
electrons induced by Cs surface deposition would compensate the
holes doped by Ti substitution in the CsV3-xTixSb5 compound. The
reappearance of the CDW order in the lightly Ti doped regime
(x = 0.13) demonstrates that the carrier concentration is important for
the CDW. It also provides a tuning knob tomanipulate the CDWorder.
However, the suppression of CDW order becomes irreversible by
surface doping in the heavily bulk doped regime (x = 0.39), which
indicates that the carrier concentration is not the only controlling
parameter of the CDW. In order to better understand the role of lattice,
we have calculated the total energy profiles of CsV3-xTixSb5

15,52,53 at the
Ti doping levels of x = 0 (pristine CsV3Sb5, Fig. 4e), x = 0.125 (Fig. 4f)
and x = 0.375 (Fig. 4g) (see Supplementary Note 2 for the details of the
calculation), which are very close to the doping levels of the samples
measured in the experiments. It is clear that the Kagome structure is
unstable in the pristine compound, in which the Inverse Star of David
(ISD) structure has the lowest total energy15 (see Supplementary Fig. 2
for the schematics of Kagome, Star of David and Inverse Star of David
structures). This lattice instability persists to the Ti doping level of

x = 0.125 (Fig. 4f), but disappears at x = 0.375 (Fig. 4g). These results,
when combined with the experimental observations, point to a unified
understanding of the two-dimensional phase diagram. The coexistence
of lattice instability and appropriate amount of carrier concentration is
needed to establish the CDW order in the CsV3Sb5 system. In this
regard, the lattice instability naturally provides a tendency towards the
CDW transition, and the carrier concentration serves as a tuning knob
to change the magnitude (and possibly correlation length) of the CDW
order. When the lattice instability persists (for example, in a finite Ti
doping range around x = 0.13), the CDW order is reversible by tuning
the carrier concentration. In addition, the change of carrier con-
centration may also affect the electronic correlation in the material
system (for example, via screening effect). In this sense, our observa-
tions can also reconcile the earlier reports that multiple unconven-
tional properties in the CDW state are associated with electronic
correlation20,22,25–27, but the electronic instability itself is insufficient to
drive the CDW phase transition34,35,49,54.

In summary, by utilizing high-resolution ARPES measurements, we
have revealed a two-dimensional phase diagram of the CDW in CsV3Sb5 as
a function of both Ti bulk substitution and Cs surface deposition. The
distinct evolutions in this phase diagram reveal the roles played by both
electrons and lattice. These observations provide key insights to understand
the driving mechanism of the CDW order in Kagome metals.

Methods
Sample growth
Single crystals ofCsV3−xTixSb5were grownby self-fluxgrowthmethod.The
details of the crystal growth and characterizations are described in the
Supplementary Note 1.

ARPES measurements
The samples were cleaved in situ with a base pressure of better than
5 × 10−11 Torr. ARPES measurements were carried out at our lab-based
ARPES system using 21.2 eV photons with a total energy resolution of
~3meV. The Fermi level was obtained bymeasuring the polycrystalline Au
in electrical contact with the samples.
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Data availability
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the Supplementary Information.
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