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Enhanced robustness of zero-line modes in
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We systematically studied the influence of magnetic field on zero-line modes (ZLMs) in graphene and
demonstrated the physical origin of their enhanced robustness by employing nonequilibrium Green’s
functions and the Landauer–Büttiker formula. We found that a perpendicular magnetic field can sep-
arate the wavefunctions of the counter-propagating kink states into opposite directions. Specifically,
the separation vanishes at the charge neutrality point and increases as the Fermi level deviates from
the charge neutrality point and can reach a magnitude comparable to the wavefunction spread at a
moderate field strength. Such spatial separation of oppositely propagating ZLMs effectively suppresses
backscattering and is more significant under zigzag boundary condition than under armchair boundary
condition. Moreover, the presence of magnetic field enlarges the bulk gap and suppresses the bound
states, thereby further reducing the scattering. These mechanisms effectively increase the mean free
paths of the ZLMs to approximately 1 µm in the presence of a disorder.
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Recently, topologically nontrivial phases have attracted
much attention because of their theoretical novelty and
the potential applications in dissipationless electronics of
their robust edge states, which are topologically protected
from backscattering [1–6]. For the quantum Hall effect
and the quantum anomalous Hall effect, the edge states
are chiral with oppositely propagating edge states dis-
tributed at two boundaries of the sample. The spatial sep-
aration of counter-propagating states strongly suppresses
backscattering against any type of impurity [7–10]. For
the quantum spin Hall effect, the edge states are spin-
helical and only robust against elastic backscattering from
nonmagnetic impurities because of the topological protec-
tion by the time-reversal invariance [11]. Although these
edge states are robust, their presence requires a flawless
boundary and manipulating them experimentally is diffi-
cult. Although these edge states are robust and have been
realized in experiments, their practical application is diffi-
cult because of the requirement of strong magnetic field for
quantum Hall effect or the introduction of both spin-orbit
coupling and ferromagnetism for quantum anomalous Hall
effect.

Different from the above symmetry-protected edge
states, for the quantum valley Hall effect, although there
is no rigorous bulk-edge correspondence, zero-line modes
(ZLMs), also known as kink states, appear along the

interface between regions with different valley topolo-
gies [3]. These helical ZLMs are protected by their large
momentum separation, and short-range disorders can in-
duce backscattering. However, because of the large wave-
function expansion, these modes are still quite robust
against disorders and exhibit zero bending resistance [12].
More importantly, these one-dimensional ZLMs are highly
tunable. By applying spatially varying electric field to a
chiral stacking bilayer graphene (BLG) system, one can
construct a single zero line, crossing double zero lines,
and even zero line networks, exhibiting promising poten-
tial for applications in low-energy-consumption electron-
ics [13–15]. Recently, a single zero and crossing double
zero lines have been realized experimentally in BLG sys-
tems through careful gate alignment [16, 17] and in sam-
ples with stacking line defects [16, 18].

Inspired by the experimental results that suggest strong
enhancement of the robustness of ZLMs by magnetic field,
herein, we investigate the transport properties of ZLMs in
gated BLG systems under perpendicular magnetic field
to reveal the underlying physical origin. By varying the
strength of the magnetic field, we systematically study
the evolution of the electronic structure and the ZLMs
wavefunctions. We find that the presence of magnetic field
enlarges the bulk band gap and preserves the ZLMs. How-
ever, the wavefunctions of counter- propagating ZLMs en-
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coding with different valleys are pushed apart. The spa-
tial separation increases with the magnetic-field strength.
Moreover, at a given magnetic- field strength, spatial sep-
aration exhibits strong dependence on the Fermi energy.
By decreasing the Fermi level from above the charge neu-
trality point, spatial separation decreases, vanishes at the
charge neutrality point, and then increases again while in
opposite direction as the Fermi level is decreased further.
The spatial separation of counter-propagating wavefunc-
tions strongly suppresses backscattering and makes the
ZLMs more robust, as confirmed by our numerical cal-
culations of conductances in the presence of a disorder.
These results suggest that the presence of magnetic field
not only increases the robustness of ZLMs but also makes
it possible to tune the transport by varying the Fermi level
electrically.

The quantum valley Hall effect can be realized in AB-
stacked bilayer graphene by applying perpendicular elec-
tric field. When opposite electric fields are applied in
neighboring regions, as illustrated in Fig. 1(a), where
downward (upward) electric field is applied in the region
on the left (right), as denoted by the blue arrows. In
the presence of an Anderson-type disorder, the π-orbital
tight-binding Hamiltonian of this system can be expressed
as

H = −t
∑
⟨i,j⟩

(c†i cj + H.c.)− t⊥
∑

⟨i∈T,j∈B⟩

(c†i cj + H.c.)

+
∑
i∈T

Uic
†
i ci −

∑
i∈B

Uic
†
i ci +

∑
i

ϵic
†
i ci, (1)

where c†i (ci) is the electron creation (annihilation) op-

Fig. 1 (a) Schematic of a dual-split-gated bilayer graphene
(BLG) device. The blue arrows show the direction of the elec-
tric field. The green and red arrows correspond to modes that
carry valley indexes K and K′, respectively. (b, c) Electronic
structure of the junction in the device shown in (a) with zigzag
boundary (b) and with armchair boundary (c); the voltages in
the adjoining regions are the opposite.

erator on site i. The first and second terms represent
the intralayer and interlayer nearest-neighbor hopping, re-
spectively, with hopping amplitudes of t = 2.6 eV and
t⊥ = 0.34 eV. The third and fourth terms indicate the site
energies at the top and bottom layers, respectively. In the
part on the left (right), the on-site energy Ui is constant
at +U (−U). In the interface region of width w, we use a
cosinusoidal potential profile to connect the on-site ener-
gies of the two sides. The last term represents the on-site
Anderson disorder, with ϵi being distributed randomly in
the energy interval of [−W/2,W/2], where W measures
the disorder strength. In our calculations, we set the sys-
tem width to d = 127.8 nm and the interface region width
to w = 85.2 nm for both boundary condition. Note that
we neglect the spin degree of freedom because the QVHE
only involves the orbital degree of freedom of an electron.

In the presence of a perpendicular magnetic field B =
∇ ×A, the tight-binding Hamiltonian model is modified
by introducing the Peierls phase in the hopping terms as
follows:

tij → tije−i e
ℏ
∫
A·dl, (2)

where
∫
A · dl is the integral of the vector potential from

site j to site i. In our calculations, we adopt the Landau
gauge of A = −Byex for the perpendicular magnetic field
B = Bez. This gauge preserves the translation symmetry
in the x direction, meaning that we can still study the
electronic structure along the ZL direction.

With this π-band tight-binding Hamiltonian, we further
study the ZLM transport properties using a two-terminal
Landauer–Büttiker formalism based on the Green’s func-
tion technique [19]

GRL =
2e2

h
Tr[ΓRG

rΓLG
a], (3)

where Gr(a) is the retarded (advanced) Green’s function
of the central scattering region. ΓR(L) ≡ i[Σr

R(L) − Σa
R(L)]

is the line width function, which describes the coupling
between the right (left) lead and the central scattering
region. Σr(a) is the retarded (advanced) self-energy of the
half-infinite leads calculated using the variant transfer ma-
trix method [20]. In our calculations, we set the Fermi
level to be in the band gap. In the presence of a disorder,
each data point is obtained by averaging the results of 30
samples with different disorder configurations.

In the absence of a disorder, the system exhibits trans-
lation symmetry along the zero line direction, allowing
us to obtain the electronic structure of the system by di-
rectly diagonalizing the tight-binding Hamiltonian. When
the applied electric fields in the left and right regions are
opposite to each other [as shown in Fig. 1(a)], counter-
propagating topological ZLMs appear in the interface re-
gion of width w (as indicated by the red and green arrows).
With a layer potential difference of 2U = 0.04 eV, we cal-
culate the band structure in the absence of a magnetic
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field. The results are shown in Figs. 1(b) and (c) wherein
gapless ZLMs (marked in green) appear in valleys K and
K′ for ribbon with zigzag boundary and Γ point for ribbon
with armchair boundary. Apart from the ZLMs, there are
also some edge states (marked in gray) inside the band gap
for zigzag boundary condition, which are localized at the
sample boundaries. In contrast, when the electric fields in
the left and right sides point in the same direction, the
gapless ZLMs disappear.

In the following discussion, we focus on the case of op-
posite electric fields in the two sides of the interface. For
both zigzag boundary and armchair boundary condition,
there are four ZLMs inside the band gap (as denoted by
A, B, C, and D in Figs. 1(b) and (c) with Fermi energy
EF = 0.004 eV. Figure 2(a) shows a magnified view of the
band structure in valley K of junction with zigzag bound-
ary. The wavefunctions of A and D, which are located
in valleys K and K′, respectively, are shown in Fig. 2(e),
where we find that the wavefunctions from both valleys co-
incide with each other. In the presence of a magnetic field,
the band structure is modified as shown in Figs. 2(b)–(d).
From these figures, we find that the presence of a mag-
netic field enhances the bulk band gap and lifts the bulk
bands away from the ZLMs plotted in red. As the band
gap increases, the ZLM wavefunctions narrow, as shown
in Figs. 2(f)–(h). Moreover, we find that the presence of

Fig. 2 Band structure of the BLG line junction with zigzag
boundary at different magnetic fields B = 0 (a), 3 (b), 6 (c),
and 9 T (d). The device length is d = 127.8 nm, the junction
width is w = 85.2 nm, and the layer potential difference is
2U = 40 meV. The formation of the Landau levels lifts the
bound states away from the energy range of the kink states
(red). (e–h) Corresponding wavefunction distributions of the
kink states in valleys K and K′ [modes A and D, respectively,
labeled in Fig. 1 (b)], showing increasing separation as B in-
creases.

Fig. 3 Band structure of the BLG line junction with arm-
chair boundary at different magnetic fields B = 0 (a), 3 (b),
6 (c), and 9 T (d). The sizes of device and on-site potential
are the same as in Figs. 2. Corresponding wavefunction dis-
tributions of the kink states around Γ point [modes A and D,
respectively, labeled in Fig. 1(c)], showing increasing separa-
tion as B increases.

magnetic field drives the ZLM wavefunction in valley K
upward and that in valley K′ downward, thereby reduc-
ing the overlap between counter-propagating states. The
situation for armchair boundary condition is similar to
zigzag edge. Figure 3(a) shows a magnified view of the
band structure in Γ point. The variation of wavefunctions
of A and D located near Γ point as shown in Figs. 3(e)–(h).
We can see that the magnetic field have the same effect
for both zigzag and armchair edges, but the spatial sepa-
ration of oppositely propagating ZLMs is more significant
in zigzag boundary condition than in armchair boundary
condition.

Furthermore, in the presence of magnetic field, the
wavefunction distribution can be tuned by varying the
Fermi energy electrically, as shown in Figs. 4(a)–(d) and
Figs. 5(a)–(d). In these figures, the magnetic field is set
to 9 T. By increasing the Fermi energy from EF = 0 eV
to EF = 0.015 eV, we find that the ZLM wavefunction
in valley K (K′) moves upward (downward) and the ZLM
wavefunction in Γ point also moves the same way. At
the charge neutrality point of Ef = 0, the wavefunctions
almost coincide with each other.

In brief, the presence of magnetic field not only sepa-
rates the ZLMs and bulk states by a larger band gap but
also spatially separates the counter-propagating ZLMs.
Both effects can effectively suppress the backscattering
of the ZLMs. Thus, the presence of magnetic field is ex-
pected to strongly enhance the robustness of the ZLMs.
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Fig. 4 (a–d) Corresponding wavefunction distributions of
the kink states in valleys K and K′ (modes A and D, respec-
tively, labeled in Fig. 1(c)) at different Fermi energies EF = 0
(a), 0.005 (b), 0.010 (c), and 0.015 eV (d) but the same mag-
netic field strength B = 9 T. (e, f) Average conductance vs.
device length under different parameter strengths. In (e), the
Fermi level is EF = 0.01 eV, there is no magnetic field, and
the disorder strength is varied as W = 0, 0.2, 0.4, and 0.6 eV.
The band gap is set as 2U = 0.04 eV. In (f), the Fermi level is
EF = 0.006 eV, the magnetic field strength is varied as B = 0,
3, 6, and 9 T, and the disorder strength is W = 0.6 eV. In
(g), the magnetic field strength is B = 9 T, the Fermi level is
varied as EF = 0, 5, 10, and 15 meV, and the disorder strength
is W = 0.06 eV. Each point is an average of 30 samples with
different disorder configurations.

To demonstrate the influence of the magnetic field, Fermi
energy, and disorder, we also study the ZLM conductivity
for junctions of different lengths. We begin by studying
the case which is in the absence of a magnetic field, as
shown in Fig. 4(e) and Fig. 5(e), where we find a quantized
conductance that is independent of the junction length in
the absence of a disorder. As the disorder strength is in-
creased, the conductance decreases with an increase in the
system length. For a disorder strength of W = 0.6 eV, the
conductance decreases to a value of 1 e2/h for a junction
length of 1 µm. At the same disorder strength, the conduc-
tance is increased by applying magnetic field, as shown in
Fig. 4(f) and Fig. 5(f). In the presence of a magnetic field
of 9 T, the conductance of the 1 µm junction is increased
by a factor of three for junction with zigzag boundary.
But for junction with armchair boundary, the increase in
conductance is not as strong as in zigzag boundary con-
dition. This can be understood by comparing Figs. 2(e)
and (f) and Figs. 3(e) and (f), the separation of corre-
sponding wavefunction distributions of the kink states for

Fig. 5 (a–d) Corresponding wavefunction distributions of
the kink states around Γ point (modes A and D, respectively,
labeled in Fig. 1(c)) with the same parameters as in Figs. 4(a)–
(d). (e–g) Average conductance vs. device length under the
parameter strengths same as in Figs. 4(e)–(g).

zigzag boundary condition is larger than that for arm-
chair boundary condition under the same magnetic field
strength. The enhancement of the conductivity by the
magnetic field becomes increasingly obvious as the Fermi
energy deviates from the charge neutrality point, as shown
in Fig. 4(g) and Fig. 5(g), under a magnetic field of 9 T.
In this figure, we find that at the charge neutrality point
of EF = 0, even under magnetic field of 9 T, the conduc-
tance decreases to approximately 1 e2/h. As the Fermi en-
ergy is gradually increased for both boundary condition,
the influence of the disorder on the conductivity becomes
weaker. For zigzag boundary condition, a quantized con-
ductance of a sample as long as 1 µm can be realized when
the Fermi energy reaches 0.015 eV; for armchair bound-
ary condition reaching the same Fermi energy, the con-
ductance of the 1 µm junction is increased by a factor of
three.

Nevertheless, the influence of the magnetic field be-
comes reduces as the band gap increases. In Figs. 6(a)–
(d) and Figs. 7(a)–(d), we plot the band structure for
differing layer potential difference U with the same mag-
netic field strength and Fermi level. We find that the
band gap increases with the layer potential difference.
The ZLM wavefunctions are also shown in Figs. 6(e)–(h)
and Figs. 7(e)–(h). We find that the spatial separation
becomes considerably increases with decrease of the band
gap for both boundary condition. This is because increas-
ing the layer potential difference enhances the electron
confinement, and the wavefunctions are restricted to the
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Fig. 6 (a–d) Band structures of the BLG line junction with
zigzag boundary calculated with 2U = 40 (a), 100 (b), 160
(c), and 220 meV (d), a magnetic field strength of B = 6 T,
and a Fermi level of EF = 12 meV. Increasing U increases the
energy range in which only the kink states (marked in red)
exist. (e–h) Corresponding wavefunction distributions of the
kink states in valleys K and K′ [modes A and D, respectively,
labeled in Fig. 1(c)], showing increasing separation as the layer
potential difference U is decreased.

Fig. 7 (a–d) Band structures of the BLG line junction with
armchair boundary calculated with the same parameter as in
Fig. 6. Increasing U increases the energy range in which only
the kink states (marked in red) exist. (e–h) Corresponding
wavefunction distributions of the kink states around Γ point,
showing increasing separation as the layer potential difference
U is decreased.

interface between the left and right regions, meaning that
there is no room for the wavefunctions to move.

In summary, we systematically studied the effect of
magnetic field on the ZLM transport properties at differ-
ent band gaps and Fermi energies, also for different bound-
ary condition. We found that the presence of magnetic
field not only enlarges the band gap, separating the ZLMs
from the bulk states by a larger energy gap, but also spa-
tially separates the wavefunction distributions of counter-
propagating ZLMs. Furthermore, we found that decreas-
ing the layer potential difference increases wavefunction
separation. Both effects strongly enhance the robustness
of ZLMs against a disorder. By calculating the ballistic
length of the ZLMs under different disorder strengths,
we numerically confirmed that the presence of magnetic
field can effectively enlarge the ballistic length. More-
over, we found that the spatial separation of the counter-
propagating ZLMs depends strongly on the Fermi energy.
Under moderate magnetic field, increasing the Fermi en-
ergy from the charge neutrality point of EF = 0 increases
the distance between counter-propagating ZLMs. Such an
effect makes the ZLM transport property highly tunable
by magnetic field. These findings provide a new strategy
for enhancing the robustness of ZLMs.
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