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Abstract—Sequence data plays an important role in data
analysis applications, such as sequence classification. One
important aspect of sequence data analysis is to obtain the
labeled sequence data and use a machine learning model to
predict the sequence structures. Conditional Random Fields
(CRF) is such a machine learning method which is popular
used in sequential data analysis. This is because that CRF
can effectively capture the data correlations in context with
abundant training data. However, in real applications, the
labeled training data is usually difficult to be collected. In order
to reduce the requirement of the amount of the labeled training
data, a novel model is proposed named Conditional Random
Fields with Co-training (Co-CRF). The Co-CRF model can
work well even on the reduced labeled training data. Empirical
results show that Co-CRF can produce a more accurate
analysis than the traditional CRF, especially with very limited
training data.
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I. INTRODUCTION

In applications, the correlations and patterns among the

statistical data are often difficult to be mined in cross-section

scenarios. Comparatively, the correlations extracted from se-

quences are more informative. Thus, sequence data are much

useful in data presentations, and actually they (especially the

time-series data) have been widely observed and collected.

Therefore, sequence data plays an important role in data

analysis applications, such as sequence classification.

In order to analyze the sequence data, some traditional

probabilistic models are proposed, such as Hidden Markov
models (HMMs) [9] and Maximum Entropy Model [4].

Whereas these models always treat atomic elements in

sequence as processing units. This strategy may lose some

information about the correlations among data in context.

These models entrapped themselves in the Label Biased

Problem [6], which drives them to be biased towards states

with few successor states. And even worse, these generative

models must make very strict independence assumptions on

the observations.

The drawbacks of the strict independence assumptions

motivate to looking for conditional models. To this end,

Conditional Random Fields (CRF) [5, 6, 10, 12] is proposed

to construct a discriminative conditional models. It is often

applied in pattern recognition and machine learning, where

it is treated as a structured prediction [11] tool. Under
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a discriminative framework, CRF constructs a conditional

model from paired observation and label sequences, rather

than a joint probability in generative models. This structure

reduces the modeling time, since it avoids enumerating all

possible observation sequences. As the ordinary classifiers

predict a label for a single sample ignoring the neighbor

samples, taking context information into account is benefi-

cial to improving the accuracy of the CRF. Therefore, it is

often used for labeling or parsing of sequence data, such

as natural language text or biological sequences, etc. In this

paper, the CRF serves as a classifier to label the elements in

sequence. The CRF offers several advantages in building

probabilistic models to analyze sequences, including the

ability to relax strong independence assumptions which are

often assumed in traditional methods. Furthermore, the CRF

treats the data collected in a period of time as a processing

unit. This prevents the CRF from losing information about

correlations among data.

In real applications, abundant labeled data is required

to build a sequence analytical model (e.g. CRF) precisely.

Whereas, the training data is generally difficult to be collect-

ed. Thus Co-training [1, 7] is introduced into the framework

for training a good CRF classifier with limited amount

of training data. Co-training is a kind of semi-supervised

learning method. It is applied in this work to reduce the

impact of limited training data. Co-training assumed that

features can be split into two sets. And each sub-feature set is

sufficient to train a good classifier independently. Therefore

the two sets are demanded to be independent. However, it

is impossible to obtain the completely independent feature

sets. We relax the independent assumption in applications.

So the splitting method is focus on weakening the linear

independence between the sub-feature sets. Finally, the

empirical results show that our solution is good enough to

address the linear correlation in sequence processing.

Based on the theoretical support presented above, Con-
ditional Random Fields with Co-training (Co-CRF) is pro-

posed to the framework which combines the CRF with Co-

training structure. In this way we overcomes many tradition-

al problems while classify a processing unit. Specifically, the

Co-training structure first splits up the attributes of the data

so as to construct two separate CRF classifiers. Then the two

classifiers select the most confident samples for the other

one’s training process. This interactive procedure reduces

the required amount of labeled training data. Thus, given the
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same training data, the Co-CRF could improve the accuracy

of the model effectively.
This paper is organized as follows. Section II illustrates

the principle of CRF. Section III presents the proposed

framework of Co-CRF. The experimental results are showed

in section IV and conclusions are made in section V.

II. CONDITIONAL RANDOM FIELDS

A. Definition
CRF is an undirected graphical model that encodes a con-

ditional probability distribution using a given set of features.

In what follows, X is a input sequence to be labeled, and

Y is a sequence of random variables corresponding to label

sequences. Y is assumed to range over a finite label alphabet

Y . The random variables X and Y are jointly distributed,

but in a discriminative framework we construct a conditional

model p(Y |X) from paired observation and label sequences.

Formally, we define G = (V,E) to be an undirected graph

such that there is a node v ∈ V corresponding to each of the

random variables representing an element Yv of Y . If each

random variable Yv obeys the Markov property with respect

to the graph: p(Yv|X,Yw, w �= v) = p(Yv|X,Yw, w ∼ v),
where w ∼ v means that w and v are neighbors in G. Then

(Y,X) is a conditional random field [6].
Simple chain or line is extensively used as G in the CRF

model: G = (V = 1, 2, ...,m,E = (i, i+ 1)). And we

will pay great attention to sequences X = (X1, X2, ..., Xn)
and Y = (Y1, Y2, ..., Yn) in this paper. The graph structure

represented above is much important to structured prediction

task. It avoids the information losing caused by learning just

a per-word classifier. The linear conditional random field

could be represented as a log-linear model:

p(y|x;w) = 1

Z(x,w)
exp

∑
j

wjFj(x, y). (1)

We assume that each feature-function Fj is actually a sum

along the sequence, for i = 1 to |Y|:
Fj(x, y) =

∑
i

fj(yi−1, yi, x, i). (2)

This means that the up-level feature-function Fj is computed

based on the low-level feature-functions fi, and the low-

level feature-function can depend on the whole processing

unit, the current label, the previous label, and the current

position i within the processing unit(Figure 1). And CRF

uses an observation-dependent normalization factor which

is accumulated as:

Z(x,w) =
∑
y′

exp
∑
j

wjFj(x, y
′). (3)

The main task of training a CRF is to find the weight

vector w that gives the best possible prediction

y∗ = argmax
y

p(y|x;w) (4)

for each training example x.

Figure 1. Feature-Function Fi in a chain-structured CRF. An black circle
indicates that the variable is still unknown. Yi is assigned by all the values
in Y .

B. Parameter Estimation for CRF

The essence of the CRF is finding the parameters of a s-

tatistical model that maximize the conditional log-likelihood
(CLL) of the training data by maximum-likelihood estima-
tion (MLE). Gradient-descent method is much close to our

proposal to maximize the CLL.

The stochastic gradient descent parameters are updated

based on single training sample. Therefore, we evaluate the

partial derivative of Equation 1 on a single training sample

with respect to each wj . First the log-likelihood is given by

L(w) =
∑
s

[log
1

Z(x,w)
+
∑
j

wjFj(x, y)] (5)

The s in the equation indicates different samples. This

function is concave [3], guaranteeing convergence to the

global maximum.

Making partial derivative of the log-likelihood with re-

spect to parameter wj gives

∂L(w)

∂wj
=

∑
s

[Fj(x, y)−
∑
y′

Fj(x, y
′)p(y′|x;w)]. (6)

And it could be written as

∂L(w)
∂wj

= Ey∼p̃(x,y)[Fj(x, y)]−
∑
s

Ey′∼p(y′|x;w)[Fj(x, y
′)].

where p̃(x, y) is the empirical distribution of training data

and Ey′∼p(y′|x;w)[·] denotes expectation with respect to

distribution p. So the partial derivation could be seen as

the value of feature-function j for the true training label y,

minus the mathematical expectation of the feature-function

for all possible label y.

At the global maximum the sum of the gradients for each

training sample in the entire training set T is zero, so we

have ∑
(x,y)∈T

Fj(x, y) =
∑
(x,·)

Ey∼p(y|x;w)[Fj(x, y)]. (7)

The left side above is the sum value of feature-function j
on the entire training set T . The right side is the total value

of feature-function j predicted by the model.
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Figure 2. Conditional independent assumption on feature split. With this
assumption the high confident data points in C1 view, represented by circled
labels, will be randomly scattered in C2 view. This is advantageous if they
are to be used to teach the classifier in C2 view.

The parameters are updated based on the improved iter-
ative scaling (IIS) algorithm [8]. And it can be represented

as:

wj := wj + α(Fj(x, y)− Ey′∼p(y′|x;w)[Fj(x, y
′)]) (8)

for each sample. And α in the equation is a learning rate

parameter.

III. CONDITIONAL RANDOM FIELDS WITH

CO-TRAINING FRAMEWORK

The previous section presents how to train a CRF classifier

for sequence data. The accuracy of the CRF classifier is in

proportion to the scale of training data set. Unfortunately the

labeled training data are limited in real applications. To solve

the contradiction between the accuracy and the training data,

a semi-supervised learning framework named Co-training is

introduced to the model.

Co-training splits the features of a sequence into two sets

to train two separate CRF classifiers. And the two sub-

feature sets are demanded to be conditional independent

(Figure 2). More specifically, the splitting method is trying

to weaken the linear independence between the sub-feature

sets. Prim algorithm [2] is applied in the splitting procedure.

We define G′ = (V ′, E′) to be an undirected complete graph

such that there is a node v′ ∈ V ′ corresponding to each of

the features. The correlation coefficient among the features

is the main linear correlation statistic. So it is regarded as

the weight of each edges (E′). The splitting algorithm is

introduced in Algorithm 1.

The two sub-feature sets conditional independently clas-

sify the sequence data, and each sub-feature set is sufficient

to train a good classifier. So two separate CRF classifiers

are trained on the two sub-feature sets respectively. And

generally the training data are labeled teacher signals given

by users. Then each CRF classifier tries to classify the

unlabeled test data, and a few of the most confident samples

are selected to ‘teach’ the other CRF classifier. Each CRF

classifier is retrained with the new training samples given

by the other CRF classifier, and the process repeats until k

Algorithm 1 The Splitting Method

Input: Weighted undirected complete graph with vertices

V ′ and edges E′

Output: W and U represent the two sub-feature sets.

Find the minimal weight in E′ to identify the two initial

node{u,w};
Initialize: W = {w}, Ew = {}, U = {u}, Eu = {};
while W

⋃
U <> V ′ do

Choose an edge (w, x) with maximal weight such that

w is in W and x is not in W
⋃
U ;

Add x to W , and (w, x) to Ew;

Choose an edge (u, x) with maximal weight such that

u is in U and x is not in W
⋃
U ;

Add x to U , and (u, x) to Eu;

end while

iterations. The pseudo code of this algorithm is provided in

Algorithm 2.

Algorithm 2 The Co-training Algorithm

Given:

1. Two sets L1&L2 of labeled training examples;

2. A set U of unlabeled test examples;

3. Two separated feature sets F1&F2;

Initialize the iteration parameter k, pool size u and leap

size v;

for i = 1 to k do
Create a temporary pool by randomly choosing u
examples from U ;

Use L1 to train CRF classifier C1 using F1 features;

Use L2 to train CRF classifier C2 using F2 features;

Run C1 to label u examples and select v examples it

feels most confident V1;

Run C2 to label u examples and select v examples it

feels most confident V2;

Add V1 examples to L2;

Add V2 examples to L1;

Return the remaining examples back to U ;

end for

Co-training assumes that each sub-feature set of the

sequence data is sufficient to train a CRF classifier, so that

the most confident samples selected by CRF classifier are

credible to ‘teach’ the other CRF classifier. And the as-

sumption that the sub-features are conditionally independent

makes the selected data points are idd samples for the other

CRF classifier. So the iteration procedure is beneficial to

achieve a high accuracy with limited labeled training data.

The Conditional Random Field with Co-training Framework

is demonstrated in Figure 3.
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Table I
Comparison between the proposed method and the baseline systems(Mean: the average accuracy in the classification process. Std: standard deviation of

the average accuracy, which characterize the stability of the classification process). The best result in each column is indicated in boldface

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Total

Mean
HMM 63.91 64.49 70.43 42.11 25.82 49.81 45.10 45.37 79.12 56.32 54.25

CRF 88.45 45.40 72.48 51.25 58.89 58.87 87.88 83.97 48.41 68.72 66.63
Co-CRF 86.97 72.40 82.00 60.29 63.42 71.83 83.99 69.04 70.45 85.43 74.28

Std
HMM 21.46 9.83 17.66 8.29 6.28 4.06 8.75 10.78 8.48 7.76 10.34

CRF 6.90 9.76 3.72 5.45 9.88 10.68 6.78 3.99 9.11 12.35 2.40
Co-CRF 2.99 3.33 3.81 7.30 12.60 7.36 4.45 4.95 4.55 3.53 1.27

Figure 3. The Conditional Random Field with Co-training Framework.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

All the experiments are performed on the EMG physical

action data set derived from UC Irvine machine learning

repository∗ which consists of 4 separate subsets. And each

subset includes 10 normal and 10 aggressive physical ac-

tions that measure the human activity, and we regard the

different actions data as different classes to be classified.

The overall number of features is 8, which corresponds to 8

input sequences one for a muscle channel. Each sequences

contains 10000 samples.

We present three experiments to test the performance of

the proposed method. First, we make comparisons between

the proposed method and other baselines, arbitrarily choos-

ing a set of fixed setting parameters including the number

of co-training iterations k and the leap size v. We then

test the trade-off between the co-training parameters(k &

v) by fixing the total amount of unlabeled data, i.e., k*v
sentences. In the last experiment, we test the impact of the

iteration parameter k by fixing v to find the stable point

of the iteration. Due to the randomness in our co-training

algorithm, Every experiment repeats 10 times to report the

average results.

A. Comparing with Baseline Systems

Table I shows the performance comparison of the pro-

posed method and the baseline systems. Note that all the

∗http://archive.ics.uci.edu/ml/datasets/EMG+Physical+Action+Data+Set

results shown in Table I are performed in different classifiers

with a fixed number of labeled training data. And in the

experiment 1000 labeled sequence elements are used to

classify a unlabeled data set with 80000 sequence elements.

It is necessary to announce that the Co-training parameters

we used in the experiment are k=20 and v=20.
The empirical result shows that the Co-CRF outperforms

the baseline systems with an accuracy of 74.28%. And the

lowest standard deviation of the average accuracy presents

that the Co-CRF performs a more stable result compared

with the baseline systems. Theoretically, HMM ought to

be the worst method in accuracy. However, HMM performs

better than CRF and Co-CRF in a few of classes. Because

HMM is affected by the Label Bias Problem, which makes

it works instability. It is obvious that the standard deviations

of CRF and Co-CRF are remarkable. So we summarize that

overcoming the Label Bias Problem helps CRF classifier

make a better decision. Furthermore, Co-training helps CRF

to get a higher accuracy of the classification. Above all, the

Co-CRF outperforms the baseline systems while the labeled

training data is limited.

B. Trade-off between Co-training Parameters
The features of the data set are required to be split up in

the Co-training algorithm. So the separate CRF classifiers

of the Co-training system cannot be as good as the CRF

classifier with all features, if there is no iteration step in

the Co-training process. But the Co-training parameters can

also make a great improvement to the accuracy of the CRF

classification. This experiment is designed to test the trade-

off between the iteration parameter k and the leap size v.

The number of the unlabeled training data is fixed. And 400

unlabeled sentences (4000 unlabeled samples) are treated

as the training data in the experiment. The unlabeled data

is used to both test and train the CRF classifiers in the

iteration process, while the number of the unlabeled data

is still equal to k*v. Fig 4 shows the results. We see that

when k = 20 and v = 20, the system’s performance reaches

a peak accuracy of 74.28%. In addition, accuracy increases

5.5% from k = 2 to k = 10, which suggests that our co-

training algorithm needs at least 8-10 iterations to achieve

satisfactory results. And we can give a summary that Co-

CRF always offers a stable result of classification after a
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Figure 4. Trade-off between co-training parameters k and v with fixed
amount of data

few numbers of iterations. And the detailed influence of the

iteration parameter (k) is introduced in the next subsection.

C. Influence of the Iteration Parameter

In this experiment we try to measure the influence of

the iteration parameter k in different leap size v. Several v
values are fixed in the experiment. And we vary the number

of iterations k to keep a record of the accuracy at each

iteration. It is shown in Fig 5 that the accuracy of the Co-

training grows with the increase of the iteration parameter

k. However it is not a good option to increase k value

extremely to get a high accuracy. Because the cost of system

runtime grows exponentially as we increase the parameter

k. In order to facilitate the time complexity comparison,

we assume the time complexity of a training process with

N samples to be O(N). Note that the time consumed in

testing or the other part of the experiment is ignored in time

complexity comparison. For a separate CRF classifier, the

training samples is increased by the iteration. The overall

number of samples to train a CRF classifier is Nk + k2v
2 .

But there are two CRF classifiers to be trained in the Co-

training structure. So we need to train 2Nk + k2v samples

in the experiment. Finally, we get the time complexity to

be O(2Nk + k2v). It is obvious that the proposed method

cannot offer a high accuracy if the iteration parameter k is

not big enough. Whereas, it is time consuming to increase

k value. Thus, there’s a tradeoff between effectiveness and

efficiency.

V. CONCLUSIONS

In this paper, we proposed a novel semi-supervised learn-

ing framework, Co-CRF, for high performance sequence data

classification. The Co-CRF performs a structured prediction

with taking the context into account. And it splits up the

features into independent views, and adopts the proposed

CRF strategy to select informative and representative feed-

back samples. Finally, the experimental results show that

our Co-CRF method makes a considerable improvement

compared with baseline algorithms. In this work, we focus

on the co-training solutions for the classification problem
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Figure 5. Performance varying the number of iterations k with fixed leap
size v={4,8,16}
with Conditional Random Fields, and worth noting that the

similar idea can be generally applied to other tasks (e.g.

cluster) and models (e.g. HMM).
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