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Abstract

Collaborative filtering (CF), particularly matrix factorization
(MF) based methods, have been widely used in recommender
systems. The literature has reported that matrix factorization
methods often produce superior accuracy of rating predic-
tion in recommender systems. However, existing matrix fac-
torization methods rarely consider confidence of the rating
prediction and thus cannot support advanced recommenda-
tion tasks. In this paper, we propose a Confidence-aware Ma-
trix Factorization (CMF) framework to simultaneously opti-
mize the accuracy of rating prediction and measure the pre-
diction confidence in the model. Specifically, we introduce
variance parameters for both users and items in the matrix
factorization process. Then, prediction interval can be com-
puted to measure confidence for each predicted rating. These
confidence quantities can be used to enhance the quality of
recommendation results based on Confidence-aware Ranking
(CR). We also develop two effective implementations of our
framework to compute the confidence-aware matrix factor-
ization for large-scale data. Finally, extensive experiments on
three real-world datasets demonstrate the effectiveness of our
framework from multiple perspectives.

1 Introduction

As one of the most successful data mining tasks, recom-
mender systems have been prevailing for decades (Lu et
al. 2015; Zhao et al. 2016; Liu et al. 2011). Massive re-
search efforts have been made into two general approaches:
content-based models and collaborative filtering (CF) meth-
ods. Due to the superior performance for rating prediction
that can support the recommendation tasks, collaborative
filtering(CF) methods, especially matrix factorization (MF)
based CF, have been widely applied in web-based services
like Google, Netflix and Amazon (Dror et al. 2012).

By projecting users and items into latent factor space,
most of MF methods pay more attention to the accuracy of
rating prediction (Koren, Bell, and Volinsky 2009). How-
ever, these existing accuracy-oriented MF methods can-
not always meet the expectation of end-users. For exam-
ple, users do not necessarily prefer the items with higher
predicted ratings (Shani and Gunawardana 2011). Actually,
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Figure 1: An example of predicted ratings with confidence.

plenty of useful information in addition to predicted rating is
still largely underexploited in recommender systems. Partic-
ularly, confidence of rating prediction, defined as the recom-
mender system’s trust in its prediction (Shani and Gunawar-
dana 2011), bears important information that can be used
to improve the recommendations. In practice, a user often
has several alternatives in the recommendation results with
different confidences. The confidence weighs in the user’s
decision significantly when the rating itself is not sufficient
to make conclusive decisions.

One of the most common measuring methods of confi-
dence is prediction interval (Shani and Gunawardana 2011).
It is the interval around the predicted value where the
true value lies with a predefined confidence level, e.g.
95% (Hahn and Meeker 2011). A smaller prediction inter-
val means a higher confidence of the prediction. As shown
in Figure 1, we can observe the predicted ratings and the
related prediction intervals of a user on four movies. The
ratings of movie a and b are identical while the confidence
of b’s rating is higher, which means the user prefers b to a
more possibly. However, traditional methods cannot decide
which of a and b is more preferred without consideration of
confidence. Similarly, the confidence of c’s rating is much
lower than that of b though ¢’s rating is slightly higher. The
user dose not necessarily choose ¢ over b. Thus an ideal rec-
ommendation should be the item with both high rating and
high confidence such as the movie d.

There are some pilot efforts on utilizing confidence in rec-
ommender systems. McLaughlin and Herlocker (2004) pro-
posed to artificially set probability distribution of different



grades to quantify the rating confidence. Mazurowski (2013)
proposed to assemble ratings and empirically find confi-
dence interval endpoints. However, there are several limita-
tions in the existing works. First, previous works tend to use
heuristic rules, instead of principled models, to quantify con-
fidence in the rating prediction. Hence, the performance or
reliability of the confidence measures can hardly be guaran-
teed. Second, previous works focus on measuring the rating
confidence from user perspective, rather than jointly mod-
eling confidence for both users and items. Third, previous
works often quantify the rating confidence in a way inde-
pendent of the rating prediction. This is not optimal since
the confidence of ratings could also be helpful to improve
the accuracy of rating prediction.

To address these challenges, in this paper, we present a
comprehensive framework focusing on modeling confidence
information in MF methods. Specifically, we propose a gen-
eral Confidence-aware Matrix Factorization (CMF) frame-
work to optimize accuracy of rating prediction and measure
the prediction confidence simultaneously. Based on the gen-
eral MF framework, we use complete distribution to infer
the rating and confidence structure. First, variance param-
eters of users and items are introduced for measuring con-
fidence of rating prediction via prediction interval. In this
way, influence of users and items on rating variances are
both taken into account. Second, we estimate the latent fac-
tors for rating prediction and confidence measurement in a
unified framework. Specifically, we propose two implemen-
tations, i.e., Confidence-aware Probabilistic Matrix Factor-
ization and Confidence-aware Bayesian Probabilistic Ma-
trix Factorization, with gradient descent and Bayesian infer-
ence, respectively. Thus the joint modeling process also im-
proves the accuracy of rating prediction. Third, by combin-
ing confidence and accuracy of rating prediction, we provide
a Confidence-aware Ranking (CR) method to produce top-
K recommendations. Finally, extensive experiments on real-
world datasets validate the effectiveness of our approach
with respect to multiple evaluation metrics.

2 Related Work

Related work can be grouped into two categories. The first
category includes the work on matrix factorization models
used in recommender systems. The second category covers
pilot studies on confidence-aware recommender systems.
Matrix Factorization Models. In the last decade, ma-
trix factorization (MF) has become one of the most popu-
lar collaborative filtering (CF) methods due to its superior
accuracy and efficiency. The general idea of MF is to use a
small amount of latent factors to estimate observed ratings.
As one classic MF model, Probabilistic Matrix Factoriza-
tion (PMF) (Mnih and Salakhutdinov 2008) factorized the
rating matrix into two factor matrices representing user and
item latent features, respectively. Usually, both ratings and
latent factors were assumed to follow Gaussian distributions.
Many other matrix factorization methods could be viewed as
variants of PMF. For example, Bayesian Probabilistic Ma-
trix Factorization (BPMF) (Salakhutdinov and Mnih 2008)
made further efforts by imposing Gaussian-Wishart priors
over the latent factors and using Markov chain Monte Carlo
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for parameter inference; Sparse Covariance Matrix Factor-
ization (SCMF) (Shi et al. 2013) adopted a sparse covariance
prior to reflect the semantics more appropriately and to pre-
vent overfitting; Sparse Probabilistic Matrix Factorization
(SPMF) (Jing, Wang, and Yang 2015) utilized a Laplacian
distribution to solve the sparsity and long-tail problem.

However, conventional MF models focused on accuracy
optimization neglecting plenty of other information. In con-
trast, we propose a general framework for MF methods
which can combine the optimization of accuracy and the es-
timation of confidence.

Confidence-aware Recommender Systems. Confidence
has been mentioned in recommender systems for a long
time. For example, Herlocker, Konstan, and Riedl (2000),
Swearingen and Sinha (2001) studied the phenomenon of
confidence in recommender systems and argued that con-
fidence scores benefit users in many cases. Shani and Gu-
nawardana (2011) listed confidence as an important evalua-
tion metric and emphasized the requirement for confidence
estimates when facing similar performance on other metrics.

For measuring confidence in recommendation results, tra-
ditional methods usually relied on heuristic rules instead of
principled models. For example, McNee et al. (2003) used
the amount of ratings as a confidence metric for each item;
McLaughlin and Herlocker (2004) mapped each rating to a
predefined difference distribution so that confidence values
were available for making recommendations; Hernando et
al. (2013), Zhang, Guo, and Chen (2016) defined the con-
fidence estimate using some key features for describing the
uncertainty of predictions. For comparison, there are also
some works about heteroscedasticity offering more princi-
pled solution in the literature. E.g., Shrestha and Solomatine
(2006), Le, Smola, and Canu (2005) introduced how to gen-
erate prediction uncertainty in Logistic Regression by mod-
ifying the form of variance in the model.

Clearly, traditional methods could not provide a princi-
pled approach to measure and utilize the confidence in rec-
ommendation results. Moreover, it should be noted that all
these solutions merely focused on users’ influence on the
rating confidence while ignoring items’ influence. In this
paper, we present a comprehensive framework that can op-
timize accuracy of rating prediction and estimate the pre-
diction confidence, where influences of users and items on
rating confidence are both taken into account.

3 Confidence-aware Matrix Factorization

As we have indicated before, traditional MF methods mainly
focus on accuracy, which is insufficient for recommenda-
tions. In this section, we first propose the framework to
capture accuracy and confidence simultaneously. Then we
specifically introduce how to obtain confidence of ratings
from CMF. At last, one of the applications of confidence,
i.e., Confidence-aware Ranking, are proposed.

Framework Definition

MF methods usually use two latent feature matrices U &€
RP*N and V' € RP*Mto represent the potential influence
on ratings from both users and items, assuming that each



rating is independent distributed with different means and
the same variance. Suppose there are M items and N users.
The rating of user ¢ for item j is denoted by R;;. Let U;
and V; respectively represent user-specific and item-specific
latent feature vectors for user ¢ and item j. And the rating
data R € RV*M s supposed to obey a certain distribution
‘P. Thus we could model the probability form via:
Rij ~ P(Ri|U Vi, a™h), (M
where P(x|u, «~ 1) denotes a certain distribution with mean
1 and precision «e. Here we use precision instead of variance
to facilitate the derivation of mathematical expressions.
Furthermore, the prior distributions P over U and V could
be given by:

U; ~ P(U;]0, ' 1),
Vi ~ P(V;]0, a5, 1).

@
3)

Specially, if we suppose that the conditional distribution
‘P and prior distribution P all follow Gaussian distribution,
it is transformed to classical PMF model. In PMF, maximiz-
ing the logposterior here can be replaced by minimizing the
sum-of squares error function with quadratic regularization
terms (Mnih and Salakhutdinov 2008). And then we can find
a local minimum of the objective function by performing de-
scent methods.

However, all variances of ratings are viewed as the same
value, i.e., =1 in Equation (1). It is quite inconsistent with
the common sense since distinguishable rating perturbation
appears everywhere in the real world. For example, capri-
cious users tend to give an extremely high or low rating due
to any aspect of the item while cautious users could obtain
a relatively objective rating based on comprehensive evalua-
tion. In addition, variance information is not a simple adden-
dum but an important component in the modeling process
since prediction accuracy and uncertainty are complemen-
tary to each other.

Therefore, it is meaningful to impose variance effects
on ratings of different items by different users both for re-
flecting the underlying influence of variance properly and
for obtaining confidence-aware models. Thus, we propose
an integrated framework to solve this problem by model-
ing confidence via variance information. To achieve this, the
confidence-aware distributions can be employed which si-
multaneously consider the role of users and items. In accor-
dance with the key idea of MF methods, we set 7, and Y,

respectively as the variance parameters of user ¢ and item j.
Thus the final variance expression 0% = (F (Yo, » Yy, )-a)t
is a combination of the two parts where F' is the combina-
tion function. In this case, the overall likelihood term can be
given by:

P(R|U’V3a7’YU7’YV) =
N M

[T [PV (P, ) - 00 D)™
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where I;; is the indicator variable. It is equal to 1 if movie j
has been rated by user ¢ and equal to O otherwise. « is a con-
stant which does not depend on the parameters. v, € RY
and v, € RM are the variance parameter vectors respec-
tively for users and items.

In this way, we integrate variance information into the
model itself. And variance would be controlled automati-
cally in training process.

Measuring Confidence. There are two most common
metrics of confidence (Shani and Gunawardana 2011). One
metric is the probability that the predicted value is indeed
true. It is less popular since it is inconvenient to give the
probability for a point in the continuous distribution. Thus
we adopt the other one: prediction interval, which is the in-
terval around the predicted value where the true value lies
with a predefined confidence level, e.g. 95% (Hahn and
Meeker 2011). Prediction interval, as one form of interval
estimation (Martin 2012; Gardner and Altman 1986), is usu-
ally used for estimating the value of next sample variable.
As a result, prediction interval is widely used for measur-
ing prediction uncertainty in machine learning (Shrestha and
Solomatine 2006; Kasiviswanathan et al. 2013; Guan et al.
2013).

Prediction interval can be easily generalized when the
complete information of target distribution is known. Tra-
ditional MF methods are incapable to generate individual-
ized intervals since the variances of ratings are viewed all
the same. Just the opposite, our framework is able to fill in
the missing part. Let us take the most common distribution,
i.e., Gaussian distribution, as an example to show how to
calculate a prediction interval for a future observation I2;;.
With the help of variance information, we could naturally
obtain the prediction interval for each rating as the form of:

P 1
[U;T‘/J —Z(g)*(F(’)/UN’ij) 'Oé) 2,

UzTVJ +Z(g) * (F(FVUi?’YVj)'a)7%L ®)

where Z(p) is the quantile in the standard Gaussian distri-
bution with confidence probability p.

Applications and Confidence-aware Ranking

Given the confidence information, many strategies can
be used for recommender systems to provide improve-
ments (McLaughlin and Herlocker 2004). E.g., we can de-
tect low confidence recommendations, produce more valu-
able recommendation lists, help users achieve their personal-
ized desired risk/benefit trade-off and so forth. Among them,
Confidence-aware Ranking (CR) we proposed is a combined
application of accuracy and confidence.

In recommender systems, many efforts have been made to
improve top-K ranking utilizing information besides ratings,
e.g. similarity, novelty, diversity, coverage and so forth (Hur-
ley and Zhang 2011; Ostuni et al. 2013; Guan et al. 2013;
Wu et al. 2016b). However, as regards ratings, traditional
methods are mostly based on just single values. With the
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Figure 2: Graphical models for CPMF and CBPMF.

help of CMF, we could try to obtain a good trade-off be-
tween mean and variance rather than only rank mean values.

Quite analogously, it is significant to balance the ben-
efit (usually measured by mean) and risk (usually mea-
sured by variance) for portfolios in finance (Shen, Wang,
and Ma 2014). And the Sharpe Ratio has become one of
the most referenced benefit/risk measures (Sharpe 1994;
Ledoit and Wolf 2008). We could also design the CR method
by introducing Sharpe Ratio to recommender systems:

. Rij—R
SharpeRatio = —2———= 0 ,
Tij

(6)

where ]:Eij = U!'V; is the mean of predicted rating and o;
is the standard deviation. Here Ry is a constant and repre-
sents the benchmark rating which means items below this
boundary may be unacceptable.

To be specific, CR includes two steps: 1) a candidate list
of more than K elements is generated by ranking mean of
the predicted rating; 2) the candidate list is rearranged by
ranking in the order of the defined value of Sharpe Ratio in
Equation (6). Thus we could easily obtain the Top-K rec-
ommendations according to the ranking. Financially, Sharpe
Ratio is usually utilized to determine the priority of products
in portfolios to balance risk and benefit. Quite similarly, we
adopt Sharpe Ratio to address the trade-off between accu-
racy and confidence.

4 CMF Implementation

WOur framework can be implemented with multiple MF
models. The focus of evaluation part is how our proposed
confidence-aware models outperform the original non-
confidence-aware methods. Thus, we decided to introduce
two cases of CMF implementation, namely Confidence-
aware Probabilistic Matrix Factorization (CPMF) and
Confidence-aware Bayesian Probabilistic Matrix Factoriza-
tion (CBPMF), due to PMF and BPMF’s superiority of per-
formance and popularity in recommender systems.

CPMF Model

The structure of CPMF is shown in Figure 2(a), where all
distributions are assumed to be Gaussian. We provide a gen-
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Figure 3: The PD.F of Gamma distribution with (a =
20,b = 20).

eral structure of combining variances. To be specific in this
paper, we choose an intuitive structure since it is able to ver-
ify the effect of confidence. We define the combination func-
tion F' in Equation (4) as the product of user-specific and
item-specific variance parameters. It follows that the overall
likelihood term is given by:

P(R|U7 Vaaa'va’Yv) =
N M T

HH[N(RileiTVj»(%ﬂVja)*l) RNG)
g

The CPMF has the advantage of simplicity yet the disad-
vantage of being sensitive to hyperparameters. When inap-
propriate hyperparameters are used, CPMF may not gener-
alize well due to the issue of overfitting. We can use cross-
validation procedures to detect overfitting and optimize the
hyperparameters, but the process is computationally expen-
sive for large datasets. An alternative approach is to intro-
duce Bayesian inference which can automatically control the
modeling complexity and improve the generalization power
of the model. Our confidence-aware Bayesian approach is
named by CBPMF as follows.

CBPMF Model

In order to characterize the rating distribution more appro-
priately, we introduce the variance parameters 7, and 7,
in CBPMF and place Gamma distribution with shape a and
rate b over them:

®)

U‘)a
. 9)

Tu, ~ F(’Yui ‘an 2 by,
Y, ~ T lay;» by;)

As shown in Figure 3, Gamma distribution is unimodal
when a > 1. Both chi-squared distribution and exponen-
tial distribution are special cases of Gamma distribution.
Gamma distribution is often used as the natural conju-
gate prior for Gaussian distribution with unknown preci-
sion (Salakhutdinov and Mnih 2008; Murphy 2007; Dia-
conis, Ylvisaker, and others 1979). The probability density
function of Gamma distribution is defined as:

/Ba xa—le—bx

I(z|a,b) = ()



The mean is given by a/b. Since our model degrades to
the traditional BPMF model when v, and Yy, both equal to

1, we set 1 as the initial mean value for Yo, and Yo -
J

Similarly to BPMF (Salakhutdinov and Mnih 2008), we
introduce Gaussian-Wishart priors for the factor hyperpa-
rameters U and V. First, the prior distributions over factors
are assumed to be Gaussian:

Ui ~ N(Uilpy, Agh),
‘/j NN(‘/]'“J’V7A\;1)7

(10)
an

where N (x|, 1) denotes Gaussian distribution with
mean p and precision o. Then we define factor hyperpa-
rameter Oy = {u,,, Ay} and Oy = {uy, Ay}, following
Gaussian-Wishart priors.

On the basis of Bayesian inferences, we can model the
posterior distribution over latent factors U and V as:

P(U,V|R,a,0u,0v,7v,,Vy) X

P(R|e, vy, vy ) P(U|OU)P(V|Ov). (12)

Figure 2(b) shows the graphical model of CBPMF. In
order to solve the model, we have recourse to approxi-
mate inference since the predicted distribution is analytically
intractable. Markov Chain Monte Carlo (MCMC) meth-
ods (Neal 1993) have been widely applied to solve approxi-
mation problems in large dimensional spaces (Andrieu et al.
2003). They aim at achieving a stationary distribution which
is equal to the posterior distributions in the model by con-
structing a Markov chain. Among them, Gibbs sampling al-
gorithm performs great as long as conditional distributions
can be easily sampled. On the other hand, Gibbs sampling
is highly simple for implementing. It successively samples
every variable from its distribution conditional on present
values of rest variables.

Parameter Estimation

In CPME, we could directly perform gradient descent algo-
rithms to optimize the latent factors in the model. Since this
procedure is quite standard, we omit the details due to the
space limit. In the remainder, we will focus on the parame-
ter estimation and inference in CBPMF.

We use Gibbs sampling procedure to compute CBPMF.
Given our model specification, it is easy to sample parame-
ters and hyperparameters from conditional distributions ow-
ing to the adoption of conjugate priors. We have accordingly
designed an efficient generative process based on Gibbs
sampling in Algorithm 1. For sake of simplicity, we only
elaborate details on the sampling of user-specific factors
(e.g., U). Sampling of item-specific parameters can be im-
plemented similarly.

Sample factor hyperparameter ©;. According to
Bayesian rules, we could model the posterior distribution
over O as:

P(Ou|U) ~

P(UlOU)P(OU), (13)
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Algorithm 1 Gibbs sampling for CBPMF

: Initialize factor parameters U°, V°.

f0r t=1toT do
Draw factor hyperparameters O} and O}, from Gaussian-
Wishart distributions: P(0},|U*"') and P(©%,|V'™1) like
Equation (14).

4:  Draw variance parameters ~y;; and v{, from Gamma distri-

butions: T'(y;, [ay' ,0;' ) and I‘(’yv la*t bEt).

V’V

W

5:  Draw factor parameters U* and V¢ from Gausslan distribu-

tions: N'(U*| i, [A']*") and N (V' |, [AH]).
6: Draw each rating quj from
N (Rig|UDVE, (4}, 4, ) 7).
7: end for
where
POU) ~ N(MU|H07(ﬁOAU)_l)W(AU|W07V0),
quD 1 1 _
W(Au |vo, Wo) = |AU| eXp(—gtr(WO 'Aw)).

Here ©g = {uo, 0, Wo} and C are constants. D is the di-

mension of latent factor. W represents Wishart distribution.
And due to the adoption of conjugate prior, we can write

P(©y|U) as the form of Gaussian-Wishart distribution:

P(Ou|U) = N (py |15, (BsAv) " IW(AuIWG,15),  (14)
where

U= %Zf\,lUi’ S = %Zyl(ﬂi*ﬁ)(ﬂi*U)Tv

(W)™t =Wyt + NS+ 2255 (o — U) (o — U)7,

MS = Zi:}@fj‘,j\jﬁouo7 Z/O =1+ Na 58 = 50 + N.

Sample variance parameter v, . For v, , Bayesian infer-
ence is used with all related variables. Note that we place
Gamma distribution over variance parameters. We denote
Ri« = {Ri1, ..., Rips }- Thus we can simply write the poste-
rior distribution as

P(’)/UL|RL*) = (’YU |(1U ab*U )
~TI1 P(Rijlay,)" Pay,), (15)
where
a; =ay, +3 25 Lij, (16)
by, =by, + 5 2 Lijayy, vy, (Rij —~Urvy)?:  an

Sample factor parameter U. For U,, the conditional distri-
bution is still Gaussian on present values of other variables:



Table 1: The statistics of the datasets.

Dataset Users Items | Ratings | sparsity
MovieLens 6,040 3,952 IM 4.19%
Netflix 480,198 | 17,770 | 100M 1.18%
Jester 59,132 140 1.8M 21.28%

P(U1|Rl*a ‘/7®U7’7U) :N(ULUZ, [A;(J]_l)
I;;
~ T N RGIUT Y, (g, 1,00 )] PUIOY), (18)

where

Ay = S vy, v, ViV + Av,

b, = 105,177 (53 0%, v, RVl + Auy ) - 20)
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S Experiments

In this section, we mainly evaluate the proposed CMF
framework on three real-world datasets from three perspec-
tives. Specifically, we will discuss: (1) the accuracy of our
framework on rating prediction compared with baselines, (2)
the effectiveness on confidence measurement, (3) how CR
works on top-K recommendations.

Dataset Description

We conduct experiments on three real-world datasets, i.e.,
MovieLens, Netflix and Jester. MovieLens'and Netflix2
have been extensively exploited in recommender system ex-
periments. They are composed of ordinal values from 1 to 5
for movies. Differently, Jester* comprises continuous ratings
(-10.00 to +10.00) for jokes. In the experiments, ratings in
all datasets are mapped into the same numeric range (0 to 5)
for comparative purposes. Table 1 shows the basic statistical
properties of the datasets.

Baselines and Evaluation Metrics

We compared our proposed model CBPMF with four base-
lines: PMF, bias-PMF, CPMF, BPMF. PMF and BPMF have
been widely used in recommender systems and perform well
in the literature. Bias-PMF (Koren, Bell, and Volinsky 2009)
is a variant of PMF considering biases information. CPMF
is the realization of our framework on PMF. Though lacking
strict theoretical guarantee, empirical result shows that it is
easy to converge when exploiting PMF’s results as parame-
ter initialization.

To measure the performances of our framework, we adopt
different metrics for distinct perspectives. First, for sin-
gle value estimate evaluation, the widely-used Root Mean
Squared Error (RMSE) (Mnih and Salakhutdinov 2008) is

"http://www.grouplens.org/node/73
2www.netflixprize.com
*http://eigentaste.berkeley.edu/dataset/
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used on all baselines and datasets to demonstrate the practi-
cal effectiveness of CBPMF. Second, we use the Coverage
Percentage (CP) for interval estimate evaluation compared
with BPMF. Here, CP is defined as the percentage that rat-
ings fall into the prediction intervals to measure the quality
of interval estimation:

crP= >

R;;€Z

I(Ri; € Hij)

7] ) (21
where Z denotes the rating set of test data, and H;; is the
prediction interval for user ¢ and item j. Third, the Nor-
malised Discounted Cumulative Gain (NDCG) and Average
precision (AP) (Zhu et al. 2015) are used from ranking per-
spective to measure the top-K recommendations.

Experimental Settings

In the proposed CBPMF, we introduced variance parameters
vy and yy which obey Gamma distribution. As discussed in
Section 3, the shape and rate of Gamma distribution is ini-
tialized via a = b so that the mean value would always be 1.
Here, a and b are of great importance to statistical dispersion
of Gamma distribution. Larger a and b would lead to more
compact sampling results. We tune the value of a and b from
the candidate set {5, 10, 20, 30, 50, 100, 200}.

In PMF, following Mnih and Salakhutdinov(2008), we di-
vide the datasets into mini-batches and update parameters
after every mini-batch. In BPMF, following salakhutdinov
and Mnih(2008), we set g = 0 by symmetry, vy = D
where D is the dimension of latent factors and Wy = Ip«p
which is the identity matrix. To speed up the training pro-
cess, the Gibbs sampler is initialized with PMF’s output es-
timate. All parameters are tuned following the authors.

In our experiments, we randomly select 80% to 90% data
as training sets according to different datasets and the rest
part as test sets for five times. Each user and item are ensured
to be included by training sets in the selecting process. Thus
the final result is shown by average.

Experimental Results

Accuracy Evaluation. We first compare the result of rating
prediction to validate the prediction accuracy of our frame-
work. As mentioned before, when variance information is
introduced into the model, they not only contribute to build-
ing prediction intervals, but also help the model fit better.
The RMSE results under varying latent dimension D on
three datasets are shown in Figure 4. The smaller RMSE sig-
nifies the better prediction.

We can observe that CBPMF outperforms all other mod-
els in any case, which proves the effect of introduced vari-
ance information for model fitting. Variance serves as an im-
portant part in our models, instead of additional information
in the post-modeling process. Thus, our models could out-
perform their non-confidence-aware versions. Furthermore,
we can observe that the performances of PMF, bias-PMF and
CPMF all begin to fall back when factor dimensionality D
grows. However, the performances of BPMF and CBPMF
are able to keep on improving even facing growing model
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Figure 4: Overall comparison results of RMSE.

complexity. For more details, Figure 5 shows the conver-
gence process of PMF, BPMF and CBPMF on MovieLens
when D = 20. It can be seen clearly that PMF has been
in trouble with overfitting, while BPMF and CBPMF have
no such problem. Here BPMF and CBPMF start quite better
than PMF because we use the result of PMF as initialization.
Confidence Measurement Evaluation. In this part, we con-
centrate on confidence measurement which presents confi-
dence information for predicted ratings. Nonetheless vari-
ances in BPMF are set all the same, we can still obtain
prediction intervals from them. Such intervals would have
exactly the same length which are certainly inappropriate.
We compare the intervals derived from BPMF and CBPMF
when confidence level is 90% and 95%. CP is used to mea-
sure the probability that prediction intervals actually cover
the true value. It should be noted that a higher CP does not
mean a better performance since higher CP may imply too
large interval length which is also inappropriate. A model
has good performance only when the value of CP is close to
the confidence level. The closer, the better.

The CP results are shown in Table 2. The difference bew-

teen CP and confidence level is listed in parenthesis for com-
parison. As we can see from the table, prediction intervals
derived from CBPMF are remarkably closer to the confi-
dence level, which demonstrates our framework’s capacity
for describing confidence in recommender systems. For ex-
ample, BPMF’s difference bewteen CP and confidence level
is about four times bigger than CBPMF on MovieLens. Be-
sides, it is noticeable that CBPMF gains larger improve-
ments on CP value compared to BPMF on Jester than on
MovieLens and Netflix. A possible explanation is that rat-
ings of MovieLens and Netflix are discrete while ratings
of Jester could be viewed as approximately continuous, and
variance is used for describing the predicted probability dis-
tribution which is also continuous.
Top-K Recommendations Evaluation. As introduced in
Section 3, CR gives a confidence view for top-K recommen-
dations. We could exploit the accuracy and confidence infor-
mation of rating distributions instead of mean values to sort
recommendation lists.

In the experiment, we believe user likes one item when
he or she gives the rating no less than 4 scores. Note that
R;; = 0 does not imply user ¢ dislikes item j. It just means
the absence of record. Thus the data is highly imbalanced
with too much negative samples. We deal with the problem
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Figure 5: Convergence process on Movielens (D=20).

by using an effective undersampling technique. In detail, we
randomly select ¢ missing ratings for each positive sample.
Since the negative samples randomly change every time. In
this way, missing ratings would give quite weak negative
signals (Wu et al. 2016a).

The results of NDCG@K and AP@K are shown in Fig-
ure 6. Here, R is set to 3.8. AP@K means the AP value
when we recommend K items to each user and so does
NDCG@K. Both AP and NDCG are the larger, the bet-
ter. We can see that even pure CBPMF has outperformed
BPMF, which verifies the function of variance information
for model fitting. Moreover, with the help of CR, our model
can get even better results. It’s interesting to notice that CR’s
effect decreases with the larger K since CR is more and
more closer to single value ranking using precision metrics.
Computational Complexity. The computational complex-
ity of parameter estimation is O(7'(M D? + N D3 +Y D?)),
where T is the number of iterations, N, M and Y are the
quantity of users, items and observed ratings. And the com-
putation of Sharpe Ratio is quite convenient and direct in our
framework with the complexity O(Y).

Analyzing the Variance Parameters on MovieLens

Our proposed framework is able to capture each movie and
user’s unique characteristic on confidence in the form of
variance parameters. In our framework, bigger variance pa-
rameter implies higher confidence. We next present some
interesting results on MovieLens since MovieLens provides
some extra information besides ratings. Figure 7 shows the
variance parameters on different users’ age ranges, genders
and movies’ genres. We can observe that elder users tend
to have bigger variance parameters, which indicates less un-
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Table 2: The comparison results of CP. -

Dataset confidence level 90%
BPMF CBPMF
MovieLens | 86.26% (3.74%) | 89.24% (0.76 %)
Netflix 82.16% (7.84%) | 86.48% (3.52%)
Jester 78.06% (11.94%) | 86.57% (3.43%)
Dataset confidence level 95%
BPMF CBPMF
MovieLens | 91.14% (3.86%) | 94.26% (0.74%)
Netflix 87.88% (7.12%) | 91.73% (3.27 %)
Jester 84.15% (10.85%) | 92.56% (2.44%)

certainty on ratings. Besides, males tend to have bigger vari-
ance parameters than females, which may because males are
more rational, and females are more perceptual. On the other
hand, movies with more non-realistic elements seem to show
more uncertainty on ratings. Thus we must make diverse
recommendation strategies for users of different ages, dif-
ferent genders and movies of different genres. For example,
we may avoid recommending items with high uncertainty to
elder users, who usually value tradition and stability more.
Also, female users may tend to more novelty because they
often have a more wide interest spectrum.

6 Concluding Remarks

In this paper, we proposed a general Confidence-aware Ma-
trix Factorization framework, which can simultaneously op-
timize the accuracy of rating prediction and measure the pre-
diction confidence for recommender systems. Particularly,
variance parameters from both users’ and items’ perspec-
tives were considered, and prediction intervals were effec-
tively utilized for measuring confidence in the recommenda-
tion results. We provided two implementations of our frame-
work: Confidence-aware Probabilistic Matrix Factorization
and Confidence-aware Bayesian Probabilistic Matrix Fac-
torization. We also designed the Confidence-aware Ranking,
a Sharpe Ratio based ranking method for top-K recommen-
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Figure 7: Presentation of variance parameters on users’ age
ranges, genders and movies’ genres. In the right panel, we
only present the top 3 and last 3 genres in the order of me-
dian variance parameters.

dations. By combining accuracy and confidence, our model
outperformed alternative methods on prediction accuracy,
confidence measurement and top-K recommendations.
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