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Abstract—Recent decades have witnessed a rapid growth of intelligent educational systems as well as an increasing demand for
computer-aided educational technologies. One of the fundamental issues in intelligent education is cognitive diagnosis, which aims to
discover the proficiency level of students on specific knowledge concepts. Existing approaches usually mine linear interactions of
student exercising process by manually designed function (e.g., logistic function). However, the cognitive interactions between students
and exercises is a complex process, and excessive simplifications would lead to under fitting and thus get inaccurate diagnostic results.
Besides, the manually designed interaction functions are relatively inflexible and limits their extensibility. This consequently causes lack
of consideration about useful non-numerical information in the cognitive process besides response logs. In this paper, we propose a
general Neural Cognitive Diagnosis (NeuralCD) framework as well as several implemented models (a basic implementation
NeuralCDM and three extensions), where we project students and exercises to factor vectors and incorporates neural networks to
learn the complex exercising interactions. To ensure the interpretability of diagnostic results, which is essential for cognitive diagnosis,
we apply an monotonicity assumption to our NeuralCD framework. Moreover, NeuralCD is a general framework and has good
extensibility. We show the generality of NeuralCD through proving how it can cover some traditional models. Then, we demonstrate the
extensibility of NeuralCD, which benefits future developments. On one hand, we demonstrate content-based extensions where we
provide examples of exploring the rich contents of exercise texts (CNCD-Q and CNCD-F). On the other hand, we demonstrate a
knowledge-association based extension to show that NeuralCD is flexible for structural adjustments so as to solve specific problems.
For instance, we improve the diagnostic results on uncovered knowledge concepts of a student by extending NeuralCD with the
knowledge associations consideration (KaNCD). Extensive experimental results on real-world datasets show the effectiveness of
NeuralCD framework with both accuracy and interpretability.

Index Terms—Intelligent education, personalized learning, cognitive diagnosis, neural network.
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1 INTRODUCTION

COGNITIVE diagnosis has been studied for decades, and
researchers (especially from psychometrics and edu-

cation) have obtained rich achievements. The purpose of
cognitive diagnosis is to discover a person’s cognitive state
(e.g. skill proficiency) from the person’s behaviors (e.g. test
results). It is a necessary and fundamental task in many real-
world scenarios such as games [1], clinical measurement [2],
[3] and education, where users’ (e.g., players, patients, stu-
dents) abilities require assessments, and thus attracts wide
attention. Specifically, in intelligent educational systems [4],
[5], cognitive diagnosis aims to discover the states of stu-
dents in the learning process, such as their proficiencies
on specific knowledge concepts [6]. Figure 1 shows a toy
example of cognitive diagnosis. Generally, students usually
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first choose to practice a set of exercises (e.g., e1, · · · , e4) and
leave their responses (e.g., right or wrong). Then, our goal is
to infer their actual knowledge states on the corresponding
concepts (e.g., Equation). In practice, these diagnostic reports
are necessary as they serve as the basis of further supports,
such as exercise recommendation, targeted training [7] and
computerized adaptive testing [8].

In the field of psychometrics, massive efforts have been
devoted for cognitive diagnosis, such as Deterministic In-
puts, Noisy-And gate model (DINA) [9], Item Response
Theory (IRT) [10] and Multidimensional IRT (MIRT) [11].
Despite achieving some effectiveness, these works rely on
handcrafted functions that model the interaction between
student and questions. The interaction functions are de-
signed based on assumptions that are the simplification
of real interaction process, and are mostly linear, such as
logistic-like function in IRT [10] or inner product in matrix
factorization [12]. However, the interaction between stu-
dents and exercises is a complex non-linear process, and
excessive simplifications would lead to under fitting of
the process and thus get inaccurate diagnostic results and
restrict the application scope of the models. Besides, these
works were proposed mostly for scale-based tests where a
set of examinees are tested with the same small set of ques-
tions, e.g., terminal examination of schools. In a scale-based
test, all examinees are supposed to answer all the questions,
therefore the response data is complete and usually not
large. While for broader applications of cognitive diagno-
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Fig. 1. A toy example of cognitive diagnosis.
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Fig. 2. An example of Q-matrix.

sis, the data could be collected via different scenes, such
as offline examinations and online self-regulated learning.
Therefore, the response data could have large volume but
sparse distribution, and more types of data becomes usable
(e.g. texts, graph). The interaction patterns behind the data
could be more elusive with simple functions, which makes
it impractical to manually design the interaction functions.
Fortunately on the other hand, the accumulation of data
provides us an opportunity to apply data-driven methods
to discover the complex interaction function [13].

In this paper, we address this issue in a principled
way of proposing a Neural Cognitive Diagnosis (NeuralCD)
framework by incorporating neural networks to model
complex non-linear interactions. Although the capability of
neural networks to approximate continuous functions has
been proved in many domains, such as natural language
processing [14] and recommender systems [15], it is still
highly nontrivial to adapt to cognitive diagnosis due to the
following domain challenges. First, the interpretability of
diagnostic results, such as getting a student’s mastery on
certain knowledge concepts (e.g., Equation) is essential for
cognitive diagnosis. However, the black-box nature of neu-
ral networks makes them difficult to get such explainable
results. Second, the information contained in response logs
is not complete for cognitive diagnosis. Extra resources such
as exercise text content has valuable information (e.g. diffi-
culty of reading comprehension) that beneficial for cognitive
diagnosis. Thus it is necessary to make sure that our propose
framework is extensible so as to aggregate the information
from these resources. Third, a widely applicable framework
should has a structure that is flexible to extend so as to meet
different requirements in different situations. For example,
in Figure 1, student 1 did not answer exercises related to
Absolute Value and student 2 did not answer exercises related
to Trigonometric Function. This is a common phenomenon
especially in online exercises which are not scaled based,
where the coverage of knowledge concepts in a student’s
response log is not complete due to the large total number
of knowledge concepts and limited questions done by the
student. In such situation, diagnostic models need to handle
the knowledge coverage problem so as to obtain reliable
diagnostic results when some knowledge concepts do not
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Fig. 3. The organization of this work.

appear in a student’s response history.
We propose a NeuralCD framework to address these

challenges. We firstly introduce how we use NeuralCD to
approximate interactions between students and exercises,
for getting both accurate and explainable diagnostic results.
As proposed in our preliminary work [16], in NeuralCD
we projected students and exercises to factor vectors and
leverage multi-layers for modeling the complex interactions
in the process of exercise answering. To ensure the inter-
pretability, without which the model would not be able to
provide understandable diagnostic results and thus turns
to a pure predicting model, we applied the monotonicity
assumption taken from educational property [11] on the
multi-layers. Then, we proposed a basic implementation
of the framework called NeuralCDM, where we simply
extracted exercise factor vectors from traditional Q-matrix
and achieved the monotonicity property with nonnega-
tive full connection layers, which showed feasibility of the
framework. Traditional Q-matrix is an exercise-knowledge
correlation matrix where Qij = 1 if exercise ei contains
knowledge concept kj and 0 otherwise. The Q-matrix of the
exercises in Figure 1 is shown in Figure 2.

After that, in this paper. we make further discussions
and demonstrations about the two extra advantages of
NeuralCD, i.e., generality and extensibility.

The generality of NeuralCD framework lies in its ability
to cover some traditional models such as MF, IRT, MIRT.
These models can be seen as degenerations of special cases
of NeuralCD. With proper neural network structures, Neu-
ralCD is capable of automatically learn different interaction
functions that are suitable for the data.

As for the extensibility, we emphasize that a cognitive
diagnosis framework should be open to extra information
or better structures that benefit. Therefore we propose mod-
els that demonstrate the extensibility of NeuralCD from
two aspects, i.e. content-based extension and knowledge-
association based extension. In content-based extension, we
demonstrate how information from exercise text can be
explored with neural network to extend the framework.
While in knowledge-association based extension, we pro-
vide a structural extension of NeuralCD to solve the knowl-
edge concept coverage problem. Specifically, a representa-

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3201037

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on April 11,2023 at 08:47:50 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. ?, NO. ?, AUGUST ? 3

tion based method is proposed to capture the associations
among different knowledge concepts so as to improve the
reliability of diagnostic results on uncovered knowledge
concepts of a student. These two types of extensions can
be combine together for better performance.

The organization of our work is presented in Figure 3.
We first introduce our NeuralCD framework in Section 3.2.
Then in Section 3.3, we demonstrate the feasibility of Neu-
ralCD with an implemented model NeuralCDM. After that,
generality and extensibility of NeuralCD is introduced in
Section 4 and 5 respectively, and the extensibility is further
discussed from two aspects, i.e. content-based extension and
knowledge-association based extension.

Finally, we conduct extensive experiments on real-world
datasets with basic and extended implementations, and the
results show the effectiveness of NeuralCD framework with
both accuracy and interpretability guarantee.

Our code is available at: https://github.com/bigdata-
ustc/Neural Cognitive Diagnosis-NeuralCD

2 RELATED WORK

In this section, we briefly review the related works from the
following three aspects.

Cognitive Diagnosis. Existing works about student cog-
nitive diagnosis mainly came from educational psychology
area. DINA [9], [17] and IRT [10] were two of the most
typical works, which model the result of a student answer-
ing an exercise as the interaction between the trait features
of the student (θ) and the exercise (β). Specifically, in
DINA, θ and β were multi-dimensional and binary, where
β came directly from Q-matrix (a human labeled exercise-
knowledge correlation matrix). Another two exercise fac-
tors, i.e. guessing and slipping (parameterized as g and s)
are also taken into consideration. The probability of student
i correctly answering exercise j was modeled as P (rij =

1|θi) = g
1−ηij
j (1−sj)ηij , where ηij =

∏
k θ

βjk

ik . On the other
hand, in IRT, θ and β were unidimensional and continuous
latent traits, indicating student ability and exercise difficulty.
The interaction between the trait features was modeled in a
logistic way, e.g., a simple version is sigmoid(a(θ − β)),
where a is the exercise discrimination parameter. Although
extra parameters were added in IRT [18], [19] and latent trait
was extended to multidimensional(MIRT) [11], [20], most of
their item response functions were still logistic-like.

Recently, some researches from data mining perspective
have demonstrated the feasibility of MF for cognitive diag-
nosis. Student and exercise correspond to user and item in
matrix factorization (MF). For instance, Toscher et al. [21]
improved SVD (Singular Value Decomposition) methods to
factor the score matrix and get students and exercises’ latent
trait vectors. Thai-Nghe et al. [22], [23] applied some recom-
mender system techniques including matrix factorization in
the educational context, and compared it with traditional
regression methods.

The interaction functions of theses traditional models
are manually designed, which is based on various educa-
tional or psychometric theories or assumptions. For exam-
ple, Reckase summarized the assumptions adopted by most
IRT/MIRT models [11], including the independence among
students, the invariance of students and exercises during

a test, the monotonicity assumption, etc. In DINA model,
a student is assumed to correctly answer an exercise only
in two conditions: the student has mastered all the skills
required by the exercise without slip, or the student does
not mastered all the required skills but makes a successful
guess. Due to the theories/assumptions chosen, traditional
cognitive diagnosis models might perform well in some sit-
uations. However, the scope of applications are therefore re-
stricted and excessive simplification of the cognitive process
would lead to limited fitting ability. In practice, researchers
need to choose suitable models from various choices ( [24])
or even design their own model for specific usage, which
is labor-intensive. Although the professional theories and
assumptions provide valuable suggestions for cognitive di-
agnosis, we demand a new type of diagnosis model which
requires less expert knowledge (i.e. automatically learnable),
and provide accurate as well as interpretable diagnostic
results that are easy to understand.

Artificial Neural Network. Techniques using artificial
neural network have reached state-of-the-art in many areas,
e.g., speech recognition [25], text classification [26] and
image captioning [27]. There are also some educational
applications such as question difficulty prediction [28],
code education [29] and formula image transcribing [30].
However, using neural network for cognitive diagnosis is
nontrivial as it performs poorly in parameter interpretation
due to its inherent traits. To the best of our knowledge,
deep knowledge tracing (DKT) [31] was the first attempt to
model student learning process using recurrent neural net-
work, followed by some variations [32], [33]. However, these
knowledge tracing models paid more attention on modeling
the changes of student states to predict students’ scores, and
did not explicitly model the effect of students’ knowledge
proficiencies in the learning process with an educational ba-
sis. Thus such models are unsuitable for cognitive diagnosis.
Few works with neural network have high interpretability
for student cognitive diagnosis. Towards this end, in this
paper we propose a neural cognitive diagnosis (NeuralCD)
framework which borrows concepts from educational psy-
chology and combine them with fitting functions learned
from data. NeuralCD could achieve both high accuracy and
interpretation with neural network. Besides, the framework
is general that can cover many tradition models, and at the
same time easy for extension.

Knowledge Coverage Problem. Knowledge coverage is
an important issue in cognitive diagnosis. Traditional cog-
nitive diagnosis models mostly deal with scale-based tests
where the amounts of exercises and knowledge concepts are
small and the student responses are intact. The knowledge
coverage is complete for each student in these conditions.
However, when the amounts of exercises and knowledge
concepts are large while the responses are sparse, which is
the normal cases in nowadays intelligent education systems,
the knowledge coverage problem becomes non-negligible.
In traditional models such as IRT [10] and MIRT [11], [20],
knowledge concepts are not considered. In models such
as DINA [9], [17], DINO [34] and NIDA [35], knowledge
concepts are considered to be independent. The diagnos-
tic results of these models would be less reliable when
knowledge coverage is incomplete. Some researches con-
sider the relations among the proficiencies on different
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knowledge concepts. For example, the AHM [36] considers
the hierarchical relation among knowledge concepts. De La
Torre et al. [37] proposed HO-DINA which considered low-
dimensional high order latent traits that affect the students’
proficiencies on each knowledge concept. Liu et al. [38] pro-
posed a FuzzyCDF model that a student’s proficiencies on
knowledge concepts are affected by his/her ability parame-
ter. However, to the best of our knowledge, the knowledge
coverage problem has not been explicitly studied yet in
existing works.

3 NEURAL COGNITIVE DIAGNOSIS

We first formally introduce cognitive diagnosis task. Then
we describe the details of NeuralCD framework. After that,
we design a specific diagnostic network NeuralCDM with
traditional Q-matrix to show the feasibility of the frame-
work. In the next two sections, we will introduce the superi-
ority of NeuralCD framework in two aspects, i.e. generality
and extensibility.

3.1 Task Overview
Suppose there are N Students, M Exercises and K Knowl-
edge concepts at a learning system, which can be rep-
resented as S = {s1, s2, . . . , sN}, E = {e1, e2, . . . , eM}
and Kn = {k1, k2, . . . , kK} respectively. Each student will
choose some exercises for practice, and the response logs R
are denoted as set of triplet (s, e, r) where s ∈ S, e ∈ E and
r is the score (transferred to percentage) that student s got
on exercise e. In addition, we have Q-matrix (usually labeled
by experts) Q = {Qij}M×K , where Qij = 1 if exercise ei
relates to knowledge concept (abbreviated as KC) kj and
Qij = 0 otherwise.

Problem Definition Given students’ response logsR and the
Q-matrix Q, the goal of our cognitive diagnosis task is to mine
students’ proficiency on knowledge concepts through the student
performance prediction process.

3.2 Neural Cognitive Diagnosis Framework
Generally, cognitive diagnosis models are designed to sim-
ulate the results of students’ exercise answering process
where students use their cognition (e.g. knowledge, skills) to
overcome the obstacles set in exercises. Thus for a cognitive
diagnostic system, there are basically three elements need
to be considered: student factors, exercise factors and the inter-
action function among them [39]. In this paper, we propose
a general NeuralCD framework to address them by using
multi-layer neural network modeling, which is shown in
Figure 4. Specifically, for each response log, we use one-
hot vectors of the corresponding student and exercise as
input and obtain the diagnostic factors of the student and
exercise. Then the interactive layers learn the interaction
function among the factors and output the probability of
correctly answering the exercise. After training, we get
students’ proficiency vectors as diagnostic results. Details
are introduced as bellow.
Student Factors. Student factors characterize the traits of
students, which would affect the students’ response to
exercises. As our goal is to mine students’ proficiency on
knowledge concepts, we do not use the latent trait vectors

Student One-hot Exercise One-hot

y
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...

1 0 0 0 0 0 0 0 1 0
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Input Layer

Interactive Layers

Proficiency Vector F s

Output Layer

Monotonicity 

Assumption
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Interaction Function

Other Exercise Factors F other

Knowledge Relevancy Vector F kn

Fig. 4. Structure of NeuralCD framework.

as in IRT and MIRT [11], which is not explainable enough
to guide students’ self-assessment. Instead, we design the
student factors as explainable vectors similar to DINA, but
has a major difference that they are continuous. Specifically,
We use a vector F s to characterize a student, namely profi-
ciency vector. Each entry of F s is continuous ([0,1]), which
indicates the student’s proficiency on a knowledge concept.
For example, F s = [0.9, 0.2] indicates a high mastery on the
first knowledge concept but low mastery on the second. F s

is got through the parameter estimation process.
Exercise Factors. Exercise factors are designed to character-
ize the traits of exercises. We divide exercise factors into
two categories. The first indicates the relationship between
exercises and knowledge concepts, which is fundamental
as we need it to make each entry of F s correspond to a
specific knowledge concept for our diagnosis goal. We call
it knowledge relevancy vector and denote it as F kn. F kn has
the same dimension as F s, with the ith entry indicating the
relevancy between the exercise and the knowledge concept
ki. Each entry of F kn is non-negative. F kn is previously
given (e.g., obtained from Q-matrix). Other factors are of
the second type and are optional. Factors from IRT [19] and
DINA [9] such as knowledge difficulty, exercise difficulty
and discrimination can be incorporated if reasonable.
Interaction Function. Interaction function simulates how
student factors interact with exercise factors to get the re-
sponse results (e.g. right or wrong). We use artificial neural
network to obtain the interaction function for the following
reasons. First, the neural network has been proven to be
capable of approximating any continuous function [40]. The
strong fitting ability of neural network makes it competent
for capturing relationships among student and exercise fac-
tors. Second, with neural network, the interaction function
can be learned from data with few assumptions (that behind
traditional models). This makes NeuralCD more general
and can be applied in broad areas. Third, the framework
can be highly extendable with neural network. For instance,
extra information such as exercise texts can be integrated
in with neural network (We will discuss its extendability in
the following subsections.). Mathematically, we formulate
the output of NeuralCD framework as:

y = ϕn(. . . ϕ1(F s, F kn, F other, θf )), (1)

where ϕi denotes the mapping function of the ith MLP
layer; F other denotes factors other than F s and F kn (e.g.,
difficulty); and θf denotes model parameters of all the
interactive layers.
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Interpretability Guarantee. Obtaining interpretable results
is indispensable for cognitive diagnosis, as the diagnostic
results are the basis for evaluating students’ learning states
and providing further personalized supports. However, due
to some intrinsic characteristics, neural networks usually
have poor performance on interpretation [41]. To solve this
problem, We take two steps to ensure that the factors are
explainable. The first step is to have the term F s ◦ F kn
in the input layer in order to align each dimension of
F s to an knowledge concept specified by the correspond-
ing dimension of F kn. The second step is to utilize the
monotonicity assumption, which is used in some IRT and
MIRT models [11], to make the values in F s variate in the
same direction with y. Monotonicity assumption is general
and reasonable in almost all circumstance, thus it has less
influence on the generality of NeuralCD framework. The
assumption is defined as follows:

Monotonicity Assumption The probability of correct re-
sponse to the exercise is monotonically increasing at any dimen-
sion of the student’s knowledge proficiency.

This assumption should be converted as a property of
the interaction function. Intuitively, we assume student s to
answer exercise e correctly. During training, the optimiza-
tion algorithm should increase (or at least not decrease) the
student’s proficiency if the model output a wrong prediction
(i.e., a value below 0.5). The increment of each knowledge
proficiency is otherwise controlled by F kn (step 1).

After introducing the structure of NeuralCD framework,
we will next show some specific implementations. We first
implement a basic model based on NeuralCD where knowl-
edge relevancy vectors are directly get from pre-given Q-
matrix to show the feasibility of NeuralCD (section 3.3).
Then we discuss the generality of NeuralCD by showing
that some traditional models can be regarded as its special
cases (section 4). Further, we show the extendability of
NeuralCD from content aspect (section 5.1) and structure
aspect (section 5.2).

3.3 Neural Cognitive Diagnosis Model
Here we introduce a specific neural cognitive diagnosis
model (NeuralCDM) under NeuralCD framework. Figure 5
illustrates the structure of NeuralCDM.
Student Factors. In NeuralCDM, each student is repre-
sented with a knowledge proficiency vector. The student
factor F s aforementioned is hs here, and hs is obtained by

multiplying the student’s one-hot representation vector xs

with a trainable matrix A. That is,

hs = sigmoid(xs ×A), (2)

in which hs ∈ (0, 1)1×K ,xs ∈ {0, 1}1×N ,A ∈ RN×K .
Exercise Factors. As for each exercise, the aforementioned
exercise factor F kn is Qe here, which directly comes from
the pre-given Q-matrix:

Qe = xe ×Q, (3)

where Qe ∈ {0, 1}1×K , xe ∈ {0, 1}1×M is the one-hot
representation of the exercise. In order to make a more pre-
cise diagnosis, we adopt other two exercise factors: knowl-
edge difficulty hdiff and exercise discrimination hdisc.
hdiff ∈ (0, 1)1×K , indicates the difficulty of each knowl-
edge concept examined by the exercise, which is extended
from exercise difficulty used in IRT. hdisc ∈ (0, 1), used
in some IRT and MIRT models, indicates the capability of
the exercise to differentiate between those students whose
knowledge mastery is high from those with low knowledge
mastery. They can be obtained by:

hdiff = sigmoid(xe ×B),B ∈ RM×K (4)

hdisc = sigmoid(xe ×D),D ∈ RM×1 (5)

where B and D are trainable matrices.
Interaction Function. The first layer of the interaction layers
is inspired by MIRT models. We formulate it as:

x = Qe ◦ (hs − hdiff )× hdisc, (6)

where ◦ is element-wise product. Following are two full
connection layers and an output layer:

f1 = φ(W1 × xT + b1), (7)
f2 = φ(W2 × f1 + b2), (8)
y = φ(W3 × f2 + b3), (9)

where φ is the activation function. Here we use Sigmoid.
Different methods can be used to satisfy the mono-

tonicity assumption. We adopt a simple strategy: restrict
each element of W1,W2,W3 to be nonnegative. It can
be easily proved that ∂y

∂hs
k

is nonnegative for each entry
hsk in hs. (Please refer to Appendix A for detailed proof.)
Thus monotonicity assumption is always satisfied during
training.

The loss function of NeuralCDM is cross entropy be-
tween output y and true label r:

lossCDM = −
∑
i

(ri log yi + (1− ri) log(1− yi)). (10)

After training, the value ofhs is what we get as diagnosis
result, which denotes the student’s knowledge proficiency.

4 GENERALITY OF NEURALCD
In this section we show that NeuralCD is a general frame-
work which can cover many traditional cognitive diagnostic
models. Using Eq. (6) as the first layer, we now show
the close relationship between NeuralCD and traditional
models, including MF, IRT and MIRT. Figure 6 gives an
intuitive comparison between NeuralCD and these models.
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Fig. 6. Relation between NeuralCD and some traditional models.

MF [22]. In MF there are student and exercise latent vectors
(hs and Qe), and we take the basic formation of interaction
functionQe ·hs as an example. It should be noted theQe in
MF is a learnable exercise parameter and cannot indicate the
knowledge relevancy. By setting hdiff ≡ 0 and hdisc ≡ 1,
the output of the first layer is x = Qe ◦hs. Then in order to
work like MF, all the rest of layers need to do is to sum up
(
∑

) the values of each entry in x, which is easy to achieve.
Monotonicity assumption is not applied in MF approaches.
IRT [10]. Take the typical formation of IRT y =
Sigmoid((hs − hdiff )× hdisc) as example. First, set Qe ≡ 1,
and let hs and hdiff be unidimensional, the output of the
first layer is x = (hs − hdiff ) × hdisc. Second, The multi-
layer neural network in NeuralCD degenerates to a single
Sigmoid activation function (σ). Monotonicity assumption
could be achieved by limiting hdisc to be positive. Other
variations of IRT (e.g., y′ = C+(1−C)y whereC is guessing
parameter) can be realized with a few changes.
MIRT [11]. One direct extension from IRT to MIRT is to
use multidimensional trait vectors of exercises and students.
Here we take the typical formation proposed in [20] as an
example:

y =
eQe·hs−de

1 + eQe·hs−de
, (11)

where Qe is usually a low dimensional parameter learned
from response data instead of the previously given knowl-
edge relevancy vector. First, let hdisc ≡ 1, the output of
the first layer given by Eq. (6) is x = Qe ◦ (hs − hdiff ).
Second, make the multi-layers in NeuralCD degenerate
to a summation (

∑
) followed by a Sigmoid function (σ).

Specifically, by Setting W1 =
[
1 1 · · · 1

]
, b1 = 0 and

φ(x) = Sigmoid(x) in Eq. (7), we have f1 = Sigmoid(Qe ·
hs − de) = y (where de = Qe · hdiff ). f1 could be output
without any more layers. Monotonicity assumption is not
compulsory but can be realized if each entry of Qe is
restricted to be nonnegative.

5 EXTENSIBILITY OF NEURALCD
In this section we show that NeuralCD is an open frame-
work that is easily extendable. We demonstrate two types of

extensions, i.e., utilize extra content information and explore
knowledge associations.

5.1 Content-based Extension
Due to the limitations of manually designed interaction
functions, traditional cognitive diagnosis models mostly
concentrate on numerical data such as student IDs, exercise
IDs, response results (right or wrong) and the knowledge
concepts of exercises in students’ response logs. However,
these information is not enough to characterize students’
cognitive process which is quite complex. Many other in-
formation, such as the time duration of when the student
answered exercises and the text content of exercises which
have been proved to be highly related to some exercise
features (e.g., difficulty, relevant knowledge concepts [28],
[42]), are also relevant to the students’ responses. Thus an
extendable framework should be able to aggregate these
extra information for better diagnostic results. Here we
choose two typical types of information in exercise text,
i.e., knowledge concepts and extra text-related factor, and
demonstrate their utilizations.

5.1.1 Knowledge Extraction From Text Content
The first demonstration is to extract relevant knowledge
concepts from exercise contents. In NeuralCDM we use
manually-labeled Q-matrix to represent the knowledge rel-
evancies of each exercise (a common practice in traditional
works). However, manually-labeled Q-matrix may be defi-
cient because of inevitable errors and subjective bias [39],
[43]. For example, in Q-matrix, maybe only ’Equation’ is
labeled for an equation solving exercise. However, ’Division’
is also required if we discover the existence of ’÷’ in the
text. It is quite common that only target knowledge concepts
are marked in Q-matrix while other relevant knowledge
concepts are neglected. An optional strategy to solve this
problem is to leverage the text content to refine the Q-matrix
by discovering ignored knowledge concepts of exercises,
which is feasible with the advantage of neural network. We
denote this extended model as content enhanced NeuralCD
with Q-matrix refinement (CNCD-Q), and present its struc-
ture in Figure 7.
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Specifically, we first pre-train a model that predicts
knowledge concepts related to the input exercise. Lots of
models that suitable for text processing can be used for
this task [44]. As CNN (convolutional neural network) has
advantage of extracting local information in text processing,
it’s able to capture important words from texts (e.g., words
that are highly relative to certain knowledge concepts). Thus
CNN is practically sufficient for our goal. Comparing or
designing more advanced KC prediction models is beyond
this work and we leave it for future research. The CNN
network we use takes concatenated word2vec embedding
of words in texts as input, and output the relevancy of
each predefined knowledge concept (that has occurred in
data) to the exercise (more details in section 6.2). Human-
labeled Q-matrix is used as label for training. We define
V ki = {Vij1 , Vij2 , . . . , Vijk} as the set of top-k knowledge
concepts of exercise ei outputted by the CNN.

Then we combine V ki with Q-matrix. Although there are
defects in human-labeled Q-matrix, it still has high confi-
dence. Thus we consider knowledge concepts labeled by
Q-matrix are more relative than {kj |kj ∈ V ki and Qij = 0}.
To achieve this, we adopt a pairwise Bayesian method as
follows. For convenience, we define partial order >+

i as:

a >+
i b, if Qia = 1 and Qib = 0 and b ∈ V ki , (12)

and define the partial order relationship set as DV =
{(i, a, b)|a >+

i b, i = 1, 2, . . . ,M}. Following traditional
Bayesian treatment, we assume Q̃ follows a zero mean
Gaussian prior with standard deviation σ of each dimen-
sion. To give Q-matrix labels higher confidence, we define
p(a >+

i b|Q̃i) with a pairwise logistic-like function:

p(a >+
i b|Q̃i) =

1

1 + e−λ(Q̃ia−Q̃ib)
. (13)

The parameter λ controls the discrimination of relevance
values between labeled and unlabeled knowledge concepts.
The log posterior distribution over DV on Q̃ is finally
formulated as:

ln p(Q̃|DV ) = ln
∏

(i,a,b)∈DV

p(a >+
i b|Q̃i)p(Q̃i)

=
M∑
i=1

K∑
a=1

K∑
b=1

I(a >+
i b) ln

1

1 + e−λ(Q̃ia−Q̃ib)

+ C −
M∑
i=1

K∑
j=1

Q̃2
ij

2σ2
,

(14)

where C is a constant that can be ignored during optimiza-
tion. Before using Q̃ in NeuralCDM, we need to restrict its
elements to the range (0, 1), and set elements of concepts
unlabeled or not predicted to 0. Thus, Sigmoid(Q̃) ◦M is
used to replace Q in NeuralCDM, where M ∈ {0, 1}M×K is
a mask matrix, and Mij = 1 if j ∈ V ki or Qij = 1;Mij = 0
otherwise. Q̃ is trained together with the cognitive diagnos-
tic model, thus the loss function is:

loss = − ln p(Q̃|DV ) + lossCDM . (15)

5.1.2 Factors Extraction From Text Content

Extracting relevant knowledge concepts is not the only way
to make use of exercise text contents. Some other factors
such as guess, slip [9], [17] and gaming [45] are also consid-
ered as reasons that influence students’ performances. Sim-
ilarly, other cognitively relevant information is contained in
exercise texts. For example, the understanding of the text
contents is the first stage of solving an exercise. Sometimes
the expression used in the text can be confusing, although
the knowledge concepts examined by the exercise might not
be difficult. Here are two examples:

• E1: 2× 10 + 3 = .
• E2: Alice’s speed is 1 m/s. John is twice as fast as

Alice. John starts at 3m from the starting point of a
straight runway and move forward. How far is John
from the starting point after 10s?

Both E1 and E2 examine the mastery of Addition and
Multiplication. The text of E1 is straightforward. However,
E2 assumes a practical scenario that the student needs to
understand and switch to the expression like E1 at first.
although the difficulty of knowledge concept examined by
E1 and E2 are close, the possibilities of correctly solving the
exercises are influenced by the student’s understanding of
the text contents.

Traditional cognitive diagnosis models are difficult to
aggregate this type of content information due to their
limited extensibility. Here we show an example of con-
sidering the extra type of exercise factor, i.e. text factor,
to extend our NeuralCD framework (denoted as CNCD-
F). The architecture of CNCD-F is presented in Figure 8.
Inside the dashed box is the text factor extraction process
where given the exercise text, we first use a TextCNN [46]
(which is efficient to process NLP texts) to get the text
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embedding e ∈ Rd0 . Then we translate it to text factor vector
htext ∈ Rd1 through:

htext = Wt × e+ bt, (16)

where Wt ∈ Rd0×d1 and bt ∈ Rd1 are trainable parame-
ters, and we set d1 = 1. Correspondingly, we extend the
matrix A and Q to Ã(∈ RN×(K+d1)) and Q̃(∈ RM×(K+d1))
respectively. The extended dimensions represent the skills
corresponding to the text factors (e.g. reading comprehen-
sion). Q̃·,(K+d1) = 1. The extended dimensions/factors are
exhibited in Figure 8 using squares with oblique lines.

The overall modeling process is similar to NeuralCDM
except that:

1) Q in Eq. (3) and A in Eq. (2) are replaced with Q̃
and Ã respectively.

2) Eq. (6) is changed to:

x = Qe ◦ (hs − (hdiff ⊕ htext))× hdisc. (17)

After training, the values of the first K dimensions in hs are
the diagnosed proficiencies on KCs.

5.2 Knowledge-association Based Extension

In this subsection we demonstrate that the structure of
NeuralCD is flexible to extend so as to adapt to different
situations. Here we propose a knowledge-association based
extension, in order to address the knowledge coverage prob-
lem in cognitive diagnosis. Normally in an intelligent edu-
cational system, there can be numerous knowledge concepts
for a single subject. However, due to the limited questions
answered (in a test or a short time span for diagnosis) by
a student, this student’s coverage of knowledge concept
is usually quite low (analyses on real-world datasets are
provided in Fig. 9 and Table 2). For convenience, we call
these untested KCs of a student as weak-KC and those
questions of which more than half of the contained KCs
are weak-KCs as weak-question. In our previous models, the
proficiency values of these weak-KCs are not reliable. For
example, if student s never answered a question related
to Statistics, the corresponding dimension in the student’s
knowledge proficiency vector (hs) would never be trained
as the relevancy is always 0. To make the diagnostic model
more robust, the ability of approximating the proficiencies
on the weak-KCs of a student is necessary.

In this work we address this problem by considering the
relations among knowledge concepts. Existing researches
has revealed that knowledge concepts are not independent
[36], [47]. Knowledge proficiencies are associated with each
other, as well as knowledge difficulties of exercises. We
formulated the proficiency of student si on knowledge kj as
Prof(si, kj) = Φ(si, kj , Rel

k), where the Relk denotes the
knowledge relations, e.g. knowledge hierarchy [36], knowl-
edge concept graph [48]. Considering that these explicit
knowledge relations require expert knowledge and is not
always available, we here provide an example of modeling
implicit knowledge relations purely from response logs.
When explicit knowledge relations are absent, a normal
practice is to calculate pairwise constraints between each
pair of item, which requires large scale of parameters, espe-
cially when the constraints are student specific or exercise

specific. Instead, we adopt a representation based method
to implicitly model the knowledge association, and the
extended framework is called KaNCD.

Specifically, we do not directly learn the matrix A (Eq.
(2)). Each student (si) and each KC (kj) are represented with
a d-dimensional (d < K) latent vector respectively (lsi and
lkj ). Each element in A is the result of operation between the
corresponding student and KC vectors. Here we regard the
d dimensions as higher order skills behind the pre-defined
knowledge concepts (inspired by [37]). The values of each
dimension in lkj denotes its preference for each high order
skill, thus lsi is filtered by:

a1 = lsi ◦ lkj , . (18)

Then the proficiency of si on kj is calculated as the weighted
sum of the filtered latent traits in a1 with Sigmoid activation
(in Eq. (2), to limit the proficiency to (0, 1)):

Ai,j = Wa2 × a1 + ba2, , (19)

where Wa2 ∈ Rd×1 and ba2 ∈ R are trainable parameters.
Following this way, we apply the same process to the

knowledge difficulty matrix B with the consideration of
knowledge associations. Each exercise (ei) is represented
with a d-dimensional latent vector (lei ). The difficulty of ei
on KC kj is calculated as:

b1 = lei ◦ lkj , (20)

Bi,j = Wb2 × b1 + bb2, , (21)

where Wb2 ∈ Rd×1 and bb2 ∈ R are trainable parameters.
Overall, the process of KaNCD is as follows. We compute

Ai,j(i = 1, . . . , N, j = 1, . . . ,K) and Bi,j(i = 1, . . . ,M, j =
1, . . . ,K) to get A and B. Then we feed the training data
with Eq. (2)˜ (9) and train the parameters (including latent
vectors of students, exercises and KCs) with the same loss
function as Eq. (10). After training, the student proficiencies
on KCs can be inferred with Eq. (18)˜ (19) and Eq. (2). In
Appendix C, we provide comparisons between KaNCD and
some existing relevant models including AHM [36], HO-
DINA [37] and FuzzyCDF [38].

5.3 Discussion
We have introduced the details of NeuralCD framework and
showed special cases of it. NeuralCD is a general framework
that could get accurate and explainable diagnostic results.
Meanwhile, the framework has better extensibility than tra-
ditional models, such as aggregating extra information (e.g.
text content) and improving framework structure to solve
specific problems (e.g. knowledge coverage problem). 1) It’s
necessary to point out that the student’s proficiency vector
F s and exercise’s knowledge relevancy vector F kn are basic
factors needed in NeuralCD framework. Additional factors
such as exercise discrimination can be integrated into if
reasonable. 2) The formation of the first interactive layer is
not limited, but it’s better to contain the term F s ◦ F kn to
ensure that each dimension of F s corresponds to a specific
knowledge concept. 3) The nonnegative full connection is
only one of the strategies that implement monotonicity
assumption. More sophisticated network structures can be
designed as the interaction layers. For example, recurrent
neural network or memory network may be used to capture
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the time characteristics of the student’s learning process. 4)
As for the model output, we focus on objective exercises
where responses are correct (1) or incorrect (0) in this paper,
therefore the outputs of NeuralCD models are the proba-
bilities that the students would correctly answer the exer-
cises. In fact, NeuralCD models can also handle exercises
with non-dichotomous responses. For example, for exercises
with continuous response labels (e.g., scoring rates in range
(0,1)), the model outputs are predicted scores; for exercise
with polytomous possible scores, the output layer can be
changed to output a classification vector which indicates
the predicted class (i.e., score). Better measures could be
considered into the modeling, such as multiple independent
components or multiple sequential steps in an exercise [11],
and we leave it for future research.

6 EXPERIMENTS

In this section, we conducted extensive experiments to
demonstrate the effectiveness of our NeuralCD models from
various aspects: (1) the student performance prediction task
against baselines; (2) the model analysis about the interpre-
tation of diagnostic results; (3) the visualization of learned
embeddings of knowledge concepts, exercises and students.

6.1 Dataset Description

We used two real-world datasets in the experiments, i.e.,
Math and ASSIST. Math dataset supplied by iFLYTEK Co.,
Ltd. was collected from the widely-used online learning
system Zhixue1, which contains mathematical exercises and
logs of high school examinations. ASSIST (ASSISTments
2009-2010 ”skill builder”) is an open dataset collected by
the ASSISTments online tutoring systems [49], which only
provides student response logs and knowledge concepts2.
We chose the public corrected version that eliminates the
duplicated data issue pointed out by previous work [50].
Table 1 summarizes basic statistics of the datasets.
Preprocess. We filtered out students with less than 30
and 15 response logs for Math and ASSIST respectively to
guarantee that each student has enough data for diagnosis.
Therefore for dataset Math, we got 10,268 students, 2,507 ex-
ercises with 497 knowledge concepts for diagnostic network,
and the remaining exercises with knowledge concepts not
appearing in logs were used for the Q-matrix refining part of
CNCD-Q; for dataset ASSIST, we got 2,493 students, 17,671
exercises and 123 knowledge concepts. We performed a
80%/20% train/test split of each student’s response log. As
for ASSIST, we divided the response logs in the same way
with Math, but CNCD-Q and CNCD-F were not evaluated
on this dataset as exercise text was not provided. All models
were evaluated with 5-fold cross validation.
Verification of static knowledge proficiency. Students’
knowledge proficiencies are stable in Math as the dataset is
composed of logs from examinations. However, a student’s
proficiency on a knowledge concept in ASSIST may change
as he will be continually given exercises of that concept until

1. https://www.zhixue.com
2. https://sites.google.com/site/assistmentsdata/home/assistment-

2009-2010-data/skill-builder-data-2009-2010

TABLE 1
Dataset summary.

Dataset Math ASSIST

#Students 10,268 4,163
#Exercises 917,495 17,746
#Knowledge concepts 1,488 123
#Response logs 864,722 324,572
#Knowledge concepts per exercise 1.53 1.19
AVG#log 2.28 8.05
STD#log>1 0.305 0.316

(a) Math (b) ASSIST

Fig. 9. Knowledge coverage of student response logs.

meeting certain criterion (e.g., answering 3 relevant exer-
cises correctly in a row). To analyze whether static models
(e.g., NeuralCD and static traditional models) are suitable
to apply on ASSIST, we compare two metrics between Math
and ASSIST. The first metric is the average amount of logs
that each student toke for each knowledge concept:

AVG#log =

∑N
i

∑K
j Log(i, j)∑N

i

∑K
j I(Log(i, j) > 0)

, (22)

where Log(i, j) is the amount of exercises student si an-
swered that related to knowledge concept kj . Further, an-
other metric is the mean standard deviation of scores rij
that Log(i, j) > 1 as:

STD#log>1 = mean
si∈S

( mean
kj∈Kn,

Log(i,j)>1

(stdij)), (23)

where stdij is the standard deviation of scores that stu-
dent si got for exercises related to knowledge concept kj .
As listed in Table 1, although ASSIST has a much larger
AVG#log than Math, their STD#log>1 are close. Therefore,
it is reasonable to assume that the knowledge states of
students in ASSIST are also stable, and our static NeuralCD
models and baselines are applicable for both datasets. There
will be more discussions in Model Interpretation.
Knowledge coverage visualization. To illustrate the knowl-
edge coverage of each student’s full response logs (before
splitting the data into training and testing sets), we draw
heat maps for the two datasets. In Figure 9, the horizontal
axis and vertical axis denote the KC ID and student ID
respectively. The blue color means that the corresponding
student has response logs that related to the corresponding
KC (i.e has answered relevant exercises), and the color
would be white otherwise. We could observe that the knowl-
edge coverage of student response logs are quite low on
both datasets. This confirms the statement we proposed

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3201037

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on April 11,2023 at 08:47:50 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. ?, NO. ?, AUGUST ? 10

before that the knowledge concept coverage problem is a
common phenomenon and needs attention.

6.2 Experimental Setup

The dimensions of the full connection layers (Eq. (7) ∼ (9))
were 512, 256, 1 respectively, and Sigmoid was used as
activation function for all of the layers. We set hyperpa-
rameters λ = 0.1 (Eq. (13)) and σ = 1 (Eq. (14)). For k in
top-k knowledge concepts selecting, we used the value that
make the predicting network reach 0.85 recall. That is, in
our experiment, k = 20. We initialized the parameters with
Xavier initialization [51], which fill the weights with random
values sampled from N (0, std2), where std =

√
2

nin+nout
.

nin is the number of neurons feeding into the weights, and
nout is the number of neurons the results is fed to. As for the
monotonicity assumption, the implementation is not limited
to certain method. In our experiments, after each parameter
updating using a batch of data, we clipped all the elements
into full connection weights (i.e., W1,W2 and W3 in Eq.
(7)∼(9)) to [0,+∞).

In CNCD-Q, the CNN contained 3 convolutional layers
followed by a full connection output layer. MaxPooling was
used after 1st and 3rd convolutional layers. The channels
of convolutional layers were 400, 200, 100, and kernel sizes
were set to 3, 4, 5 respectively. We adopted ReLu activation
function for convolution layers and Sigmoid for the output
layer. Multi-label binary cross entropy was used as loss
function for training the CNN.

In CNCD-F, the TextCNN architecture was basically the
same with [46]. We set 150, 150 and 150 filters with kernel
size 3, 4 and 5 respectively. Average pooling was used
after each filter. We adopted ReLu activation function for
convolution layers and Sigmoid for the output layer. The
dropout of the output layer was set to 0.5.

To evaluate the performance of our NeuralCD models,
we compare them with previous approaches, i.e., DINA,
IRT, MIRT and PMF. All models are implemented by Py-
Torch using Python, and all experiments are run on a Linux
server with four 2.0GHz Intel Xeon E5-2620 CPUs and a
Tesla K20m GPU.

6.3 Student Performance Prediction

The performance of a cognitive diagnosis model is difficult
to evaluate as we cannot obtain the true knowledge profi-
ciency of students. As diagnostic result is usually acquired
through predicting students’ performance in most works,
performance on these prediction tasks can indirectly evalu-
ate the model from one aspect [38]. In order to sufficiently
evaluate the models, we applied two methods to split the
datasets. The first is a random split where 80% of each
student’s response logs were randomly chosen as training
set, which is the normal practice in student performance
prediction task. The other is a weak-coverage split which is
designed in the purpose of better comparing model perfor-
mances in case when the KC coverages of students’ training
data are low. Therefore, we designed a split algorithm which
assign more weak-questions into the test set while keep
the train/test ratio (80%/20%) unchanged. The details are
showed in Appendix A. We design this algorithm in order

TABLE 2
Proportion of response to weak-questions in test sets.

Random Split Weak Coverage Split

Math ASSIST Math ASSIST

Weak response proportion 0.315 0.040 0.876 0.857

to control that the changes of model performances result
from the differences of weak response proportions in test
sets instead of the differences of data size for training. The
proportions of responses to weak-questions in test sets are
showed in Table 2, where we can observe that the weak re-
sponse proportions of weak coverage split are significantly
higher than random split.

Considering that all the exercises we used in our data
are objective exercises, we use evaluation metrics from both
classification aspect and regression aspect, including accu-
racy, RMSE (root mean square error) [52] and AUC (area
under the curve) [53]. The experimental results of normal
scenario and low-knowledge-coverage scenario are shown
in Table 3 and Table 4 respectively, where the error bars after
’±’ are the standard deviations of 5-fold cross validation
runs for each model.

Normal Scenario. From Table 3, we have the following
observations. First, the NeuralCD models outperform al-
most all the other baselines on both datasets, indicating the
effectiveness of our framework. Second, the better perfor-
mance of content based extensions (CNCD-Q and CNCD-
F) over NeuralCDM proves that extra information more
than response logs, such as exercise text contents, is benefi-
cial to cognitive diagnosis. Moreover, the Q-matrix refining
method we propose is effective, and also demonstrates the
importance of fine estimated knowledge relevancy vectors
for cognitive diagnosis. The results of CNCD-F show that
text factors indeed plays an import role in the cognitive pro-
cess. Third, comparing KaNCD and NeuralCDM, we could
observe significant improvements, which is benefited from
the modeling of knowledge associations. The improvements
of these extended models proves the future potential of
NeuralCD framework.

Weak-Knowledge-coverage Scenario. From Table 4, we
have the following observations. First, the model perfor-
mances drop significantly compared to normal scenario,
indicating that the low coverage problem of KCs has consid-
erable negative effects on the diagnostic results. Second, the
NeuralCD models still perform better than baselines, which
demonstrates the superiority of our NeuralCD framework.
Third, the improvements of extended NeuralCD models
over NeuralCDM are more than those in normal scenario.
In other words, the falls in the model performances are
smaller than NeuralCDM, which proves that the extension
methods increase the tolerance of NeuralCD to the problem
of low KC coverage. The better performances of CNCD-Q
and CNCD-F than KaNCD indicate that extra information
(e.g. exercise text) has greater positive effect to cognitive
diagnosis than barely improving the model structure.

6.4 Interpretability of Diagnostic Results
The student performance prediction task is not sufficient
to evaluate the cognitive diagnosis models, as the inter-

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3201037

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on April 11,2023 at 08:47:50 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. ?, NO. ?, AUGUST ? 11

TABLE 3
Experimental results of student performance prediction with random split.

Math (Random Split) ASSIST (Random Split)

Model Accuracy RMSE AUC Accuracy RMSE AUC

DINA 0.593±.001 0.487±.001 0.686±.001 0.650±.001 0.467±.001 0.676±.002
IRT 0.782±.002 0.387±.001 0.795±.001 0.674±.002 0.464±.002 0.685±.001
MIRT 0.793±.001 0.378±.002 0.813±.002 0.701±.002 0.461±.001 0.719±.001
PMF 0.763±.001 0.407±.001 0.792±.002 0.661±.002 0.476±.001 0.732±.001

NeuralCDM 0.792±.002 0.378±.001 0.820±.001 0.719±.008 0.439±.002 0.749±.001

KaNCD 0.805±.001 0.368±.002 0.836±.001 0.732±.001 0.424±0.001 0.767±0.001
CNCD-Q 0.804±.001 0.371±.002 0.835±.002 - - -
CNCD-F 0.802±.001 0.370±.002 0.840±.002 - - -

TABLE 4
Experimental results of student performance prediction with weak-coverage split.

Math (Weak-coverage Split) ASSIST (Weak-coverage Split)

Model Accuracy RMSE AUC Accuracy RMSE AUC

DINA 0.223±.001 0.502±.002 0.560±.001 0.471±.001 0.490±.001 0.588±.002
IRT 0.624±.001 0.467±.001 0.638±.002 0.657±.001 0.464±.001 0.633±.002
MIRT 0.620±.001 0.583±.001 0.572±.001 0.637±.001 0.505±.001 0.612±.001
PMF 0.596±.001 0.585±.002 0.625±.001 0.625±.001 0.478±.002 0.730±.003

NeuralCDM 0.735±.002 0.432±.002 0.649±.001 0.710±.003 0.455±.001 0.633±.002

KaNCD 0.736±.001 0.430±.001 0.691±.001 0.720±.001 0.435±.001 0.732±.002
CNCD-Q 0.748±.001 0.418±.001 0.725±.001 - - -
CNCD-F 0.741±.001 0.419±.001 0.732±.001 - - -

pretability is an essential part of cognitive diagnostic results.
Specifically, we adopt Degree of Agreement (DOA) [54]
as the evaluation metric for the diagnosed student states
(hs). This metric is based on the intuition that if student a
has a better mastery on knowledge concept k than student
b, then a is more likely to answer exercises related to k
correctly than b [55]. For knowledge concept k, DOA(k)
is formulated as3:

DOA(k) =
1

Z1

N∑
a=1

N∑
b=1

I(F sak > F sbk)

∑M
j=1 I(Qjk = 1) ∧ J(j, a, b) ∧ I(raj > rbj)

Z0
,

(24)

Z0 =
M∑
j=1

I(Qjk = 1) ∧ J(j, a, b) ∧ I(raj 6= rbj), (25)

Z1 =
N∑
a=1

N∑
b=1

I(F sak > F sbk)I(Z0 > 0), (26)

where F sak is the proficiency of student a on knowledge
concept k. I(Statement) = 1 if Statement is true and
I(Statement) = 0 otherwise. J(j, a, b) = 1 if both student
a and b did exercise j and J(j, a, b) = 0 otherwise. It
should be noted that if Z0 = 0, the corresponding (a, b, k)
triplet is excluded from the calculation of DOA. We average
DOA(k) on all knowledge concepts to evaluate the quality
of diagnostic result (i.e., knowledge proficiency acquired
by models). It should be noted that although the DOA we
define in Eq. (24) ignores the synergism when an exercise
contains multiple KCs, it does reflect an interpretable cogni-
tive phenomenon to some extent.

3. This formula corrects the mistake in [16].
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Fig. 10. DOA results of models on two datasets.

Among traditional models, we only compare with
DINA, since for IRT, MIRT and PMF, there are no clear
correspondence between their latent features and knowl-
edge concepts. Besides, we conduct experiments on two
reduced NeuralCDM models. In the first reduced model
(denoted as NeuralCDM Q), knowledge relevancy vectors
are estimated during unsupervised training instead of get-
ting from Q-matrix. While in another reduced model (de-
noted as NeuralCDM M), monotonicity assumption is re-
moved by eliminating the nonnegative restriction on the
full connection layers. These two reduced models are used
to demonstrate the importance of fine-estimated knowledge
relevancy vector and monotonicity assumption respectively.
Furthermore, we conduct an extra experiment in which
students’ knowledge proficiencies are randomly estimated,
and compute the DOA for comparison.

Figure 10 presents the experimental results, from which
we can observe several conclusions. First, the DINA model,
which is indeed a highly explainable cognitive diagnosis
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model, gets the highest DOAs on two datasets. This is
because the type of interpretation of cognitive diagnosis
results that DOA measures is highly agree with the intuition
behind DINA. However, considering the results of student
performance prediction task, the cognitive diagnosis results
of DINA are still not suitable as diagnosis report and for
further learning assist. Second, DOAs of NeuralCD mod-
els are in the order of CNCD-F >NeuralCDM >CNCD-
Q >KaNCD. Although lower than DINA, their DOAs are
still significantly higher than Random, which reveals their
strong interpretability. The reason that the DOA of CNCD-
Q is lower than NeuralCDM is that there are more relevant
KCs of each exercise in CNCD-Q, while the increasing
synergism of KCs is not measured by DOA. The lower
DOA of KaNCD is the result of knowledge associations
modeled. The DOA of CNCD-F is even higher than Neu-
ralCDM, which shows that text factor is a good supple-
ment of the cognitive model. For example, when student
A, who has higher knowledge proficiency than student
B, get lower scores on some exercises than B, the reason
might be that A misunderstood the texts of these exercises.
Since the influence of exercise texts is transferred to text
factor, CNCD-F gets higher DOA. Third, comparing Neu-
ralCDM Q and NeuralCDM M with NeuralCDM, there
are noticeable drops of DOA, which indicates that both
information from Q-matrix and monotonicity assumption
are important for getting interpretable diagnosis results
(knowledge proficiency vectors). Besides, NeuralCDM and
KaNCD perform much better on Math than on ASSIST. This
is mainly due to the contradictions in logs, i.e., a student
may answer some exercises containing knowledge concept
kj correctly while others containing kj wrong (reasons may
be the change of knowledge proficiency, or other knowl-
edge concepts contained by the exercises). As showed in
Table 1, ASSIST has much larger AVG#log and slightly
higher STD#log>1 than Math dataset, which makes more
contradictions in logs. Longer logs with more contradictions
would decrease DOA.

6.5 Analyses On Content-based Extensions

Exercise text contents provide useful supplementary infor-
mation for cognitive diagnosis. In Table 5 we present an
example from Math dataset that demonstrates how CNCD-
Q leverages text content to refine the Q-matrix and therefore
improve the diagnostic performance. From the table we
could observe that there is only one KC, i.e., “Number
and formula” labeled by Q-matrix, which is inaccurate to
describe the knowledge concepts tested by this exercise.
Such inaccuracy could results from multiple reasons, such
as experts’ focus on main knowledge concepts of an ex-
ercise, or lack of systematically organizing the knowledge
concepts. From the text content, CNCD-Q predicts KCs that
are relevant to the exercise, such as “Positional relationship
between a line a plane in space”. The relevancies of the
KCs labeled by Q-matrix and predicted bv CNCD-Q are
discriminated (0.87 and 0.45±0.01 respectively). As we fix
the total number of predicted KCs (i.e., 20), and limited
by the performance of knowledge prediction component in
CNCD-Q, some predicted KCs might not be relevant to the
exercise (KCs without underline). Currently, CNCD-Q could

TABLE 5
An example of Q-matrix refinement.

Exercise text
content

Let m,n be two different lines, α, β, γ be three
different planes. Of the following propositions,
select the correct ones: (1) If m ‖ n and
nparallelα, then m ‖ α or m ⊂ α. (2) If m ‖ α, n ‖
α,m ⊂ β, n ⊂ β, then α ‖ β. (3) If α ⊥ γ, β ⊥ γ,
then α ‖ β. (4) If α ‖ β, β ‖ γ,m ⊥ α, then m ⊥ γ.

KCs labeled by
Q-matrix (rele-
vancy: 0.87)

“Number and formula”

KCs predicted
by CNCD-Q
(relevancy:
0.45±0.01)

“Positional relationship between a line and a
plane in space”, “Positional relationship between
planes”, “Positional relationship between lines
in space”, “Basic properties and applications of
plane”, “Judgment of perpendicularity between
planes”, “Judgment of perpendicularity between
a line and a plane”, “Judgment of parallelism
between a line and a plane”, “Properties of
perpendicularity between planes”, “Properties of
perpendicularity between a line and a plane”,
“Properties of parallel lines and planes”, “Angle
between a line and a plane”, “Angle formed by
skew lines”, “Skew lines”, “Set”, “Simple poly-
hedron”, “Side area, surface area and volume”,
“Distance among points, lines and faces”, “Full
quantifier and existential quantifier”, “Judgment
of necessary, sufficient and sufficient conditions”

not differentiate the relevancies of the predicted KCs, and
this requires future improvement.

An additional effect that content-based extension brings
is better tolerance of the knowledge coverage problem.
From the results in Table 4, we could observe that al-
though CNCD-Q and CNCD-F are not designed specifically
for weak-knowledge-coverage scenario, they still perform
well, and sometimes even better than KaNCD, in this sce-
nario. The reason could be that in CNCD-Q, the predicted
knowledge concepts significantly increases the knowledge
coverage of students’ response logs. As for CNCD-F, the
extended dimension in hs that corresponding to text factor
htext serves as an important indicator of the students’ abil-
ities, and affect the students’ performance on all exercises
regardless the knowledge coverage problem. In summary,
when exercise text contents are available, taking advantage
of the content information is a better solution to overcome
the knowledge coverage problem.

6.6 Embedding Visualization in KaNCD

Using the trained KaNCD model on ASSIST, we visualize
the embedding vectors of knowledge concepts (lk) by pro-
jecting them to 2-D points with t-SNE [56]. Figure 11 shows
the visualization result of knowledge concept embeddings.
We group the knowledge concepts into 7 clusters accord-
ing to their positions and differentiate them with different
colors. The clusters reveals some reasonable results. For
example, the knowledge concepts in the first cluster are
basically about basic algebra. Some relevant knowledge con-
cepts are close (e.g. 88 Area Rectangle and 90 Area Triangle).
These knowledge associations are implicitly captured by the
embeddings learn from response logs, which helps improve
the diagnostic results on weak-KCs.

Discussion. In KaNCD, we also represent each student
and exercise with vector embeddings, which should also
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Fig. 11. t-SNE visualization of knowledge concept embeddings.

(a) Student embedding.
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(b) Exercise embedding.

Fig. 12. t-SNE visualizations of student and exercise embeddings.

capture important information. Some information could
probably be reflected by the distribution or the distances
among embeddings. Thus, we try to visualize the student
embeddings (ls) and exercise embeddings (le) using t-SNE
method. To ensure enough training data, we only visualize
the embeddings of students with more than 15 responses
and exercises with more than 10 responses. Finally we get
Figure 12(a) and Figure 12(b), where we could observe
that the points follow certain patterns instead of scatter
randomly. Although it is difficult to figure out the reasons
of why they appear such patterns, we do find an interesting
phenomenon. If we color the student/exercise points with
their correct rates (i.e., the correct rate of the student’s all
responses and the correct rate of all the responses of the
exercise), we could find that the correct rates gradually
increase from bottom-left to top-right in Figure 12(a) and
from inside to outside in Figure 12(b). This indicate that
the low-dimensioned student/exercise embeddings have
captured the information about correct rates. There might
be some other information (e.g. relations with knowledge
concepts), and we leave this for future research.

6.7 Case Study
In Figure 13 we present an example of a student’s diagnostic
results by NeuralCDM and KaNCD on the public dataset
ASSIST. The table in Figure 13(a) shows the Q-matrix of
three of the exercises answered by the student and the
corresponding response results. The radar chart behind Q-
matrix table presents the diagnosed results of the student
on the corresponding knowledge concepts. As shown in the
radar chart, NeuralCD models could provide explainable
diagnosis reports that indicate students’ proficiencies on
different knowledge concepts. Then, we compare the knowl-
edge difficulties and the student’s proficiencies. As shown in
Figure 13(a) and Figure 13(b), where the bars represent the

student’s proficiencies on each relevant knowledge concepts
and the lines with different colors and markers represent
the knowledge difficulties of relevant knowledge concepts.
We can observe from the both of the subfigures that when
the student answered correctly, the diagnosed knowledge
proficiencies tend to be higher than knowledge difficulties.
For example, in Figure 13(a), Exercise 3 requires the mas-
tery of ’Ordering Fraction’ and corresponding difficulty is
0.35. The student answered it correctly, so the diagnosed
proficiency is 0.6. Both knowledge difficulty (hdiff ) and
knowledge proficiency (hs) in our models are explainable
as expected. Furthermore, we plot all the proficiencies di-
agnosed by NeuralCDM and KaNCD in Figure 6.6. The
knowledge concepts are resorted so that the first 45 concepts
appeared in the student’s training data and the last 78
knowledge concepts are weak-KCs. We can observe that
although there are variations of NeuralCDM on the first
45 concepts, the proficiencies on weak-KCs are close to 0.5,
which remain their initialized values and never trained. On
the other hand, the proficiencies provided by KaNCD have
reasonable variations on all the knowledge concepts and
their average (0.65) is closer to the student’s overall correct
rate (0.75), which again confirms the observation in 6.6 that
the low-dimensional student embeddings have captured the
information about students’ correct rates.

With a deeper observation of the Figure 6.6, we could
find that the models provide different diagnostic results.
This arouse a question: which result should we trust, or
how we use the diagnosed results appropriately? As our
NeuralCD framework and implemented models are data-
driven, proficiencies diagnosed by different trained mod-
els (e.g., with different data or hyper-parameters), are not
strictly guaranteed to be comparable. The explanation and
usage of diagnosed proficiencies should be together with the
estimated exercise attributes (e.g., difficulty), as they are in
the same parameter scale. We leave the comparison of profi-
ciencies from different trained models and the validation of
their credibility for future exploration.

7 CONCLUSION AND DISCUSSION

In this paper, we proposed a neural cognitive diagnostic
framework, NeuralCD framework, for students’ cognitive
diagnosis. Specifically, we first discussed fundamental stu-
dent and exercise factors in the framework, and placed
a monotonicity assumption on the neural-network-based
framework to ensure both accuracy and interpretability of
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(c) Difficulties and diagnosed proficiencies
by KaNCD.

Fig. 13. Diagnosed results of two students and their relation with knowledge difficulties on ASSIST.
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Fig. 14. Diagnosed results on knowledge concepts.

diagnostic results. We then implemented specific models un-
der NeuralCD (i.e. NeuralCDM and three extended models),
and with extensive experiments on real-world datasets, we
proved the feasibility of the framework. We have prelimi-
narily shown that neural network is competent for cognitive
diagnosis and has better potential than traditional models.
The NeuralCD framework we proposed is not only accurate
and interpretable for cognitive diagnosis, but also has good
generality and extensibility. Specifically, we demonstrated
that some traditional models (e.g. MIRT) can be regarded as
special cases of NeuralCD, while NeuralCD is more flexible
to be extended so as to better simulate the cognitive process.
For example, more types of response data (e.g. exercise text
content) could be aggregated, and the structure of NeuralCD
could be adjusted so as to deal with different situations (e.g.
knowledge coverage problem).

Serving as the basis of intelligent education, cognitive
diagnosis provides supports to numerous adaptive learn-
ing applications, such as learning feedback, computerized
adaptive testing [8], [57], resource recommendation [58] and
learning path planing [59], [60]. In addition to intelligent
education, cognitive diagnosis is also widely applicable
in areas where users’ latent traits such as ability or psy-
chological states require assessments. Clinical assessment
is a typical application of cognitive diagnosis [2], includ-
ing measuring psychological disorder [34], patient-report
outcomes [3], etc. In game field, a common demand is
to predict players’ matchups and preferences [1], which
requires assessing players’ abilities as well as their coop-
eration and competition [61]. In career field, An et al. [62]
tried to assess the proficiencies of trial lawyers. In summary,
cognitive diagnosis is a fundamental task in many areas, and

an important basis for extensive applications. Considering
the high flexibility and potential of neural network, we
hope this work could lead to further studies for cognitive
diagnosis in different areas.
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