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Abstract. This paper focuses on the problem of mining high utility episodes
from complex event sequences. Episode mining, one of the fundamental prob-
lems of sequential pattern mining, has been continuously drawing attention over
the past decade. Meanwhile, there is also tremendous interest in the problem of
high utility mining. Recently, the problem of high utility episode mining comes
into view from the interface of these two research areas. Although prior work [11]
has proposed algorithm UP-Span to tackle this problem, their method suffers
from several performance drawbacks. To that end, firstly, we explicitly interpret
the high utility episode mining problem as a complete traversal of the lexico-
graphic prefix tree. Secondly, under the framework of lexicographic prefix tree,
we examine the original UP-Span algorithm and present several improvements
on it. In addition, we propose several clever strategies from a practical perspec-
tive and obtain much tighter utility upper bounds of a given node. Based on these
optimizations, an efficient algorithm named TSpan is presented for fast high util-
ity episode mining using tighter upper bounds, which reduces huge search space
over the prefix tree. Extensive experiments on both synthetic and real-life datasets
demonstrate that TSpan outperforms the state-of-the-art in terms of both search
space and running time significantly.

1 Introduction

Sequential pattern mining [6], one of the most important data mining problems, has
been continuously drawing attention from researchers. And when the sequential data
becomes event sequence, the task of frequent episodes mining (FEM) [7] is introduced.
FEM reveals a lot of useful information hidden in the event sequence with a wide range
of applications [2,4,7,8,10]. However, the discovered frequent episode is still too simple
and primitive. In some cases, FEM may lose some important information. It only takes
the presence and absence of events into account and neglects the semantic information
of different events. However, in reality, events in the same sequence can be significantly
different from each other. For example, different web pages/items are of different im-
portance/cost/profit for the decision makers (both producers and consumers). If we only
apply FEM to event sequences, some truly interesting episodes, such as high-profit ones,
may be filtered out due to their low frequency.
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To tackle the above challenge, the concept of utility is introduced as an alternative
measure aside from frequency [3,12]. In high utility mining, unlike the traditional fre-
quency based pattern mining, the downward closure property does not keep. In other
words, when appending a new item/event to an itemset/episode one by one, the fre-
quency of an itemset/episode decreases monotonously or remains unchanged, but the
utility varies irregularly. As a result, previous optimization methods in frequent pattern
mining become invalid in high utility mining. Without efficient pruning strategies, high
utility mining becomes prohibitive due to the curse of dimensionality. Fortunately, ex-
ploiting transaction/sequence weighted utility (TWU/SWU) [5,13], we can first generate
candidates efficiently using TWU/SWU’s downward closure property, and then identify
high utility ones from far smaller number of candidates.

However, previous high utility mining works mainly focus on the transactional
databases, seldom consider other types of databases, like sequence database. As far
as we know, Wu et al. [11] presented the first attempt to solve the problem of high util-
ity episode mining1 in complex event sequence. But the proposed algorithm UP-Span
suffers from low efficiency in both running time and memory consumption. More im-
portantly, the proposed utility upper bound named Episode Weighted Utility (EWU) is
only a loose and basic utility bound for episodes. In practice, we may need to check
a large number of candidates when using EWU, which becomes a bottleneck for high
utility episode mining in large databases. To that end, in this paper we present several
improvements over UP-Span, and an efficient algorithm named TSpan, which has two
much tighter upper bounds than EWU for high utility episode mining.

Contribution. In this paper, we first explicitly tackle high utility episode mining under
the framework of a traversal of lexicographic prefix tree. Under this framework, we dis-
cuss how to implement the UP-Span algorithm in a much more efficient manner, which
can save a lot of search space and running time. Moreover, leveraging the lexicographic
prefix tree, we propose algorithm named TSpan (Tighter upper bound when Spanning
prefixes), which consists of two tighter upper bounds for operations related to spanning
episodes. These upper bounds are able to maintain the preferable downward closure
property, which effectively reduces search space over the tree. Last but not least, we
conduct experiments with both synthetic and real-life datasets and clearly show that
TSpan can effectively reduce both search space and running time.

2 Preliminaries and Lexicographic Prefix Tree

Fig. 1 shows a simple complex event sequence, where each event in the sequence is
associated with an event type and occurrence time. It is called complex event sequence
because at each occurrence time there can be events occurring simultaneously and the
frequency of events at a given time is different, as shown in Fig. 1. Following [11],
events occur at the same time point are called simultaneous events SE. For high utility
episode mining, each event is associate with an external utility value and Table 1 shows
an example utility table for the example event sequence in Fig. 1.

1 Following [11], when talking about the word episode, we specifically refer to serial episode.
Other type of episodes are good candidates for future research.
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Fig. 1. A simple complex event sequence

Table 1. External utilities for events in Fig. 1

Event a b c d
Utility 1 1 1 1.5

Introduced in [7], the number of minimal occurrences is a popular measure for fre-
quent episode mining. Formal definition of minimal occurrence is as follows: an oc-
currence of an episode α, [Ts, Te], is minimal iff α does not occur at any subinterval
[T

′
s, T

′
e] ⊂ [Ts, Te]. For simplicity, here we denote a minimal occurrence of episode α

as mo(α). The set of all minimal occurrences of α is denoted as moSet(α). For in-
stance, in Fig. 1, the time interval [1,2] is one of the minimal occurrences of episode
〈ab〉 and moSet(〈a, b〉) = {[1, 2], [2, 3]}.

Based on minimal occurrence, we can define the utility of an episode. Given an
episode α = 〈SE1, SE2, ..., SEk〉, where each simultaneous events SEi is associ-
ated with a time point Ti, the utility of episode α w.r.t. minimal occurrence mo(α) =

[Ts, Te] is u(α,mo(α)) =
∑k

i=1 u(SEi, Ti). For example, u(〈ab〉, [1, 2]) = u(a, T1)+
u(b, T2) = 2+1 = 3. As one episode may have multiple minimal occurrences, the util-
ity of an episode can be naturally defined as the sum of episode’s utility w.r.t. each min-
imal occurrence, i.e., u(α) =

∑
mo(α)∈moSet(α) u(α,mo(α))/u(CES)2. For episode

〈ab〉 in Fig. 1, u(〈ab〉) = (u(〈ab〉, [1, 2]) + u(〈ab〉, [2, 3]))/11 = (3 + 3)/11 = 0.55.
In real world cases, the events of an episode usually happen together within a rea-

sonable time period. Following [11], we name maximum time duration of an episode
as MTD. For any minimal occurrence mo(α) = [Ts, Te] of α, it must satisfy the con-
dition that Te − Ts + 1 ≤ MTD. With MTD, we can then formally introduce the
concept EWU presented in [11] as follows.

Definition 1 (EWU(α)). Given episodeα = 〈(SE1), (SE2), ..., (SEn)〉 andmo(α) =
[Ts, Te] is one of its minimal occurrence, EWU (Episode3 Weighted Utility) value of α

w.r.t. mo(α), i.e., EWU(α,mo(α)) =
n∑

i=1

u(SEi, Ti) +
s+MTD−1∑

i=e

u(CESi, Ti). Then

givenmoSet(α) = {mo(α)1,mo(α)2, ...,mo(α)k}, EWU(α) =
k∑

i=1

EWU(α,mo(α)i)

/u(CES).

2 For simplicity of comparison, episode’s utility is defined a ratio between its utility value and
complex event sequence’s total utility value.

3 Under the current context, the term “episode” specifically denotes the largest episode when
expanding α given a user specified MTD.
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Similar to TWU/SWU, EWU serves as upper bound of an episode’s utility and
maintains the favorable downward closure property. Using this upper bound, the
candidate-generation-and-test mechanism can then be effectively used in high utility
episode mining. In this way, the computing cost of high utility episode mining becomes
acceptable.

Different from [11], we view high utility episode mining from complex event
sequences as a complete traversal over the lexicographic prefix tree. Under this frame-
work, a more clear understanding of the process can be obtained, and further devel-
opment of optimization becomes easier. Before formally introducing lexicographic
prefix tree, we would like to first define two operations over the prefix tree, i.e., I-
Concatenation and S-Concatenation, which are closely related to this concept.

Definition 2 (I-Concatenation and S-Concatenation). Assume that we have an l-
episode4 α, appending an event to the end of α will lead to an expanded episode,
which is an (l+1)-episode. We call this operation as concatenation. Specifically, when
the time duration of α does not change, we denote this operation as I-Concatenation.
However, when the time duration of α is increased by 1, we denote this operation as
S-Concatenation.

Fig. 2. Lexicographic prefix tree for event sequence in Fig. 1 (MTD=2, min util=0.7)

Definition 3 (Lexicographic prefix tree). In lexicographic prefix tree, a) the root node5

of the prefix tree is empty, b) all the child nodes are generated from the I-Concatenation
or S-Concatenation of a parent node, c) all the child nodes are listed in an incremental
and lexicographic order.

Fig. 2 shows an example lexicographic prefix tree for the example event sequence
〈(ac)(abd)(bc)〉 in Fig. 1. In Fig. 2, we also present the minimal occurrences associated
with each episode. As it can be seen, even for such short an event sequence with MTD=2
and min util=0.7, large number of nodes need checking if there is no pruning strategy
employed. In Fig. 2, the black solid line shows the search space boundary over the

4 An l-episode means that the episode’s length is l.
5 Without ambiguity, the terms episode and node will be used interchangeably in the following.
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prefix tree when only using EWU(α) as the upper bound estimation of episode’s utility
for pruning. In the following, we will also take Fig. 2 as example for explaining our
improvements over UP-Span and proposed pruning strategies. For easy reference, we
summarize the notations defined above in Table 2.

Table 2. Summary of notations described above

CES The total complex event sequence
SEk Simultaneous events at time Tk

mo(α) The minimal occurrence of episode α

moSet(α) The set of all minimal occurrences of episode α

u(α) The utility value of α
MTD Maximum time duration of episodes
EWU(α) Episode Weighted Utility of α
I-Concatenation Concatenation operation that increases episode length by

1, but episode’s time duration size keeps unchanged
S-Concatenation Concatenation operation that increases episode length by

1, and also increases episode’s time duration size by 1

3 Efficient High Utility Episode Mining

In this section, we will first discuss the improvements over the original UP-Span algo-
rithm we have made. Secondly, we will present our proposed pruning strategies, which
are more tighter and efficient than EWU. Our strategies effectively improve the algo-
rithm’s efficiency by further reducing the search space. In the example lexicographic
prefix tree (Fig. 2) for event sequence 〈(ac)(abd)(bc)〉, the search space boundary us-
ing our pruning strategies is shown by the dashed cut line (red). Compared to EWU,
this example clearly shows that our proposed upper bound based pruning strategies are
much more effective and efficient.

3.1 Efficient Implementation of the UP-Span Algorithm

The algorithm UP-Span (high Utility ePisode mining by Spanning prefixes) presented
in [11], adopts idea similar to that of [13,9], all following the same prefix-growth (also
known as pattern-growth) paradigm. When spanning prefixes in the complex event se-
quences, there are two kinds of candidate events, i.e., the simultaneous events and se-
rial events, to extend with. Thus, we need to define two different procedures for span-
ning episode prefixes in high utility episode mining. The UP-Span algorithm uses the
term miningSimultHUE and miningSerialHUE to denote these two procedures. Read-
ers can refer to [11] for the details of the UP-Span algorithm. However, we’d like to
adopt I-Concatenation and S-Concatenation [13] to denote these two different proce-
dures, since these two terms explicitly indicating that these two operations are on the
lexicographic prefix tree. The details of our implementation of I-Concatenation and S-
Concatenation are shown in Algorithm 1 and 2. The procedure named Prefix-Growth
is omitted since it is simply a successive call of these two operations.
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Algorithm 1. I-Concatenation
Input : (1) α: episode (2) moSet(α): all minimal occurrences of α (3) MTD:

maximum time duration (4) min utility: minimum utility threshold
Output: The set of high utility simultaneous episodes w.r.t prefix α

1 for each mo(α) = [Ts, Te] ∈ moSet(α) do
2 IES = {e | event e occurs at Te and e is after the last event in α };
3 for each event e ∈ IES do
4 β = I-concatenate(α, e);
5 mo(β) = mo(α);
6 betaSet = betaSet ∪ β;
7 moSet(β) = moSet(β) ∪mo(β);

8 for each β ∈ betaSet do
9 if EWU(β) ≥ min utility then

10 if u(β) ≥ min utility then
11 HUE Set = HUE Set ∪ β;

12 Prefix-Growth(β,moSet(β),MTD,min utility);

Algorithm 2. S-Concatenation
Input : (1) α: episode (2) moSet(α): all minimal occurrences of α (3) MTD:

maximum time duration (4) min utility: minimum utility threshold
Output: The set of high utility simultaneous episodes w.r.t prefix α

1 for each mo(α) = [Ts, Te] ∈ moSet(α) do
2 for each time point t in [Te + 1, Ts +MTD + 1] do
3 SESt = {e | event e occurs at t};
4 for each event e ∈ SESt do
5 β = S-concatenate(α, e);
6 mo(β) = [Ts, t];
7 M = {mo | mo ∈ moSet(β) and mo ⊆ mo(β)};
8 if M = ∅ then
9 N = {mo | mo ∈ moSet(β) and mo(β) ⊂ mo};

10 if N �= ∅ then
11 moSet(β) = moSet(β)−N ;
12 moSet(β) = moSet(β) ∪mo(β);

13 else
14 betaSet = betaSet∪ β;
15 moSet(β) = moSet(β) ∪mo(β);

16 for each β ∈ betaSet do
17 if EWU(β) ≥ min utility then
18 if u(β) ≥ min utility then
19 HUE Set = HUE Set ∪ β;

20 Prefix-Growth(β,moSet(β),MTD,min utility);
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Both I-Concatenation and S-Concatenation follow the same framework: firstly, gen-
erate all the valid candidates betaSet and their corresponding minimal occurrence set
moSet(β) by means of prefix growth from episode α (the first for loop); then each can-
didate is checked to see if its EWU value is above the threshold min utility to decide
whether or not to recursively call the procedure prefix-growth (the second for loop).
If the candidate β’s exact utility is above min utility, it will be added to HUE Set
(Line 11 and 19 respectively). After this recursive procedure prefix-growth is executed
on all the 1-episodes in lexicographic order, it exactly finishes the complete search on
the lexicographic prefix tree and all the high utility episodes will be collected into the
set HUE Set. It is worth noting that the sub-procedure I-Concatenate/S-Concatenate
performs simultaneous/serial concatenation operation on α and e ∈ IES/SES to form
candidate episode β (Line 4 and 5 respectively), and the sub-procedure EWU and u(α)
computes the EWU and utility value of an episode respectively.

Discussion. Although the main procedure of the above presented algorithms is the same
as the UP-Span algorithm, we make a couple of improvements compared to the original
UP-Span algorithm.

First of all, we conduct the search process explicitly under the framework of lex-
icographical prefix tree. Before the search process begins, the simultaneous events at
each time point are sorted in the lexicographic order as it is required in lexicographi-
cal tree. Consequently, we have the following nice property: Using the I-Concatenation
procedure described in Algorithm 1, 1) all the candidate simultaneous episodes betaSet
with prefix α will be generated, and 2) each β ∈ betaSet has exactly the complete and
correct minimal occurrence set moSet(β)6.

Secondly, when spanning prefixes using S-Concatenation (Algorithm 2), we do not
simply first collect all the serial candidate episode sets betaSet and their corresponding
minimal occurrence set moSet(β), and then filter out the illegal minimal occurrences
of each β. Instead, whenever adding a new minimal occurrence of β, we check if there
exists a minimal occurrence mo in moSet(β) such that mo ⊆ mo(β) (this set of mo is
denoted as M in Line 7) or mo ⊃ mo(β) (this set of mo is denoted as N in Line 9). If
M is not ∅, then mo(β) is not a valid minimal occurrence for episode β, and no further
steps are taken. On the other hand, if M is ∅ (Line 8), and N is not ∅, the set N will be
deleted from the moSet(β) (N is not minimal occurrence because of the new mo(β));
otherwise, mo(β) will be directly added to moSet(β) (Line 10-15).

Furthermore, as we can see, different from the UP-Span algorithm, the projected
database is not utilized in these algorithms, which is a common trick in sequential pat-
tern mining to facilitate the prefix-growth process. It is because that not only the episode
α itself, but also its minimal occurrence set moSet(α) are stored during the mining pro-
cess. Together with the original event sequence and MTD, moSet(α) already provides
a sparse representation of projected database w.r.t. α, which can be used to compute the
EWU value and utility of α efficiently.

The final optimization of our implementation is that we propose to compute the exact
utility of candidate episodes incrementally since the prefix-growth paradigm generates
patterns recursively. As every minimal occurrence mo(β) of the candidate episode β

6 The proof is omitted due to space limit.
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will be generated, u(β,mo(β)) can be directly obtained from the sum of the corre-
sponding mo(α)’s utility and the newly appended event e’s utility. Thereafter, the util-
ity of β can be obtained from the sum of u(β,mo(β)). In this way, we can avoid the
frequent scans of the original database to compute the value of u(β).

3.2 Efficient Pruning Strategies

Although the pruning strategies proposed using EWU is effective as demonstrated
in [11], we argue here that the performance of this algorithm can be further improved.
Our proposed upper bounds are able to further prune the search space over the lexico-
graphic prefix tree and reduce the running time of algorithm significantly.

Table 3. Notations used in the following

Elast(α) The last event of α
IESi(α) Event Set for I-Concatenation w.r.t. moi(α)

SESi(α) Event Set for S-Concatenation w.r.t. moi(α)

IES(α) Event Set for I-Concatenation w.r.t. α
SES(α) Event Set for S-Concatenation w.r.t. α

Improved EWU for I-Concatenation As described in Definition 1, the computation
of EWU(α) w.r.t. one minimal occurrence mo(α) = [Ts, Te] is the sum of two parts,
episode α’s own utility w.r.t. mo(α), and the partial utility of CES starting from time
point Te to Ts +MTD− 1. Taking all the minimal occurrences of α into account, we
can then get EWU(α) by summing all the EWU(α,moi(α)). However, the estimated
utility upper bound is still very loose. In fact, the first and second part have overlaps
with each other during computation. That is, if α =< SEs, SEs+1, ..., SEe >, the
utility of event set SEe is counted twice during computation.

Under the framework of lexicographic prefix tree, events in each simultaneous event
set are sorted in the lexicographic order. Hopefully, the repetitive calculation of utility of
the events e ∈ SEe can be avoided. Specifically, we propose to compute an upper bound
in this way: the first part keeps unchanged; the second part becomes the sum of utility of
events after Elast in CESe, i.e. u(IES(α)), and utility of events in subsequent CESi

after CESe, i.e. u(SES(α)). As there often exist events in the set SEe, this method
can be seen as an improved upper bound of u(α) before I-Concatenation. We denote
this new upper bound as IEIC (Improved EWU for I-Concatenation).

IEIC(α,moi(α)) =

k∑

j=1

u(SEj , Tj) + u(IESi(α)) + u(SESi(α)), (1)

where α =< (SE1), (SE2), ..., < SEj >, ..., (SEk) >, moi(α) = [Tsi, Tei], and the
meaning of IESi(α) and SESi(α) is illustrated in Table 3.

Taking all the minimal occurrences mo(α) of episode α into consideration, we can
then obtain the value of IEIC(α):

IEIC(α) = (u(α) + u(IES(α)) + u(SES(α)))/u(CES). (2)
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This newly proposed upper bound IEIC(α), can be directly applied to replace the
function of EWU used in Algorithm 1, and 2. In this way, we get a more efficient upper
bound for pruning the search space.

Improved EWU for S-Concatenation. When it comes to S-Concatenation in the
prefix-growth procedure, an improved upper bound of u(α) can be obtained similar
to IEIC. Any S-concatenation episode β of α w.r.t. mo(α) = [Ts, Te] only considers
the event e ∈ {CESi | e+ 1 ≤ i ≤ s+MTD− 1}, i.e., SES(α). Therefore, there is
no need to take the utility of event set IES(α) into account when estimating the upper
bound of u(α) for S-Concatenation. Similar to IEIC, we denote this new upper bound
as IESC (Improved estimation of EWU for S-Concatenation).

IESC(α) = (u(α) + u(SES(α)))/u(CES). (3)

This efficient estimation of utility upper bound can only be applied before the sub-
procedure of S-Concatenation. Thus, the prefix-growth procedure for high utility
episode mining can be improved by employing this upper bound. We call this up-
dated prefix-growth procedure as TSpan, which is illustrated as follows.

Algorithm 3. TSpan
Input : (1) α: episode (2) moSet(α): all minimal occurrences of α (3) MTD:

maximum time duration (4) min utility: minimum utility threshold
Output: The set of high utility episodes with α as the prefix

1 I-Concatenation(α,moSet(α),MTD,min utility);
2 if IESC(α) ≥ min utility then
3 S-Concatenation(α,moSet(α),MTD,min utility);

Discussion. Replacing function EWU(α) with IEIC(α) and procedure Prefix-Growth
with TSpan (Algorithm 3) in Algorithm 1, 2, we finally obtain our improved algorithm
TSpan over UP-Span. As TSpan adopts strategies including tighter upper bound esti-
mation of u(α) and tighter upper bound estimation for S-Concatenation, much more
search space is pruned compared to UP-Span. The efficiency of TSpan can be shown
clearly in the example lexicographic prefix tree in Fig. 2. The black solid line shows the
search space boundary of the UP-Span algorithm, while the red dashed line shows the
search space boundary of TSpan.

To be specific, the total utility of u(〈(ac)(abd)(bc)〉) = 11 under the above settings.
Therefore, the utility of a given node α, i.e., u(α) must be greater than 7.7(11 ∗ 0.7) to
be recognized as a high utility episode. Using UP-Span, only nodes 〈(ab)(bc)〉 and
〈(b)(bc)〉 are pruned, while TSpan is much more efficient at reducing search space
in this example. For instance, the child nodes of 〈(ad)〉 are not pruned by UP-Span
since EWU(〈(ad)〉) = (u(〈(ad)〉) + u(〈(abd)(bc)〉))/11 = 1.1, greater than 0.7.
But IEIC(〈(ad)〉) = (u(〈(ad)〉) + u(〈(bc)〉))/11 = 7/11 < 0.7 , thus the child
nodes of 〈(ad)〉 is not searched using our proposed algorithm. Before performing S-
Concatenation operation on node 〈(b)〉, the original upper bound EWU(〈(b)〉) is sure
to be larger than 0.7 due to two minimal occurrences of 〈(b)〉. But IESC(〈(b)〉) =



80 G. Guo et al.

(u(〈(b)〉, [2, 2]) + u(〈(bc)〉) + u(〈(b)〉, [3, 3]))/11 = 6/11 < 0.7. As a result, all the
serial concatenation episodes of 〈(b)〉 are pruned from the search space. Similar results
can also be demonstrated for other pruned nodes.

4 Performance Evaluation

In this section, we will conduct experiments on various algorithms to evaluate the
performance of our proposed strategies.The main characteristics of datasets used in
experiments are presented in Table 4. The synthetic dataset is generated with the IBM
synthetic data generator for transactional database [1]. The main parameters to generate
these dataset include T: the average size of transactions; I: the average size of maximal
potential pattern; D: the total number of transactions; N: the number of distinct items.
Aside from synthetic dataset, three real-life datasets are also employed during evalu-
ation. The first one is Foodmart2000 database7, a well known example database for
business intelligence. The second one is Retail dataset, obtained from the FIMI dataset
repository8. The last one is Chainstore dataset, a large dataset downloaded from NU-
MineBench repository9.

Table 4. Statistical information of different datasets

DataSet #Trans #Items Avg. Length
T20I12N1KD10K 10,000 1,000 20

FoodMart2000 5,581 1,559 15.6
Retail 88,162 8,600 11.2

ChainStoreSmall 10,000 46,086 14.3

It should be noted that both the synthetic and real-life datasets can be seen as transac-
tional databases. But they can also be viewed as a single long complex event sequence
by considering each item as an event and each transaction as a simultaneous event set
at a time point. In the experiments, we only use the first 10k transactions of dataset Re-
tail and ChainStore as this size is enough for comparison and bigger size of the dataset
will cost too much time to run. Only the FoodMart2000 and Chainstore dataset have
unit profits (i.e., external utility) and product sales (i.e., internal utility). Therefore, we
generate unit profits and product sales as follows: the unit profits of each item are gen-
erated using a log-normal distribution ranging from 1 to 1000 and sales of each items
are generated randomly between 1 and 5.

To evaluate the proposed algorithm for high utility episodes mining, we com-
pare TSpan with three baseline algorithms, that is, the original UP-Span algo-
rithm (UP-Span), improved algorithm with strategy IEIC (IEIC Only), improved al-
gorithm with strategy IESC (IESC Only) and our proposed algorithm TSpan with

7 http://msdn.microsoft.com/en-us/library/
aa217032(v=sql.80).aspx

8 http://fimi.ua.ac.be/data/
9 http://cucis.ece.northwestern.edu/projects/DMS/MineBench.html

http://msdn.microsoft.com/en-us/library/aa217032(v=sql.80).aspx
http://msdn.microsoft.com/en-us/library/aa217032(v=sql.80).aspx
http://fimi.ua.ac.be/data/
http://cucis.ece.northwestern.edu/projects/DMS/MineBench.html
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both strategies (TSpan). As the optimization over the implementation of operations I-
Concatenation and S-Concatenation in Section 3.1 is in very fine granularity and is sure
to save running time and memory consumption, we focus on the performance compari-
son between TSpan and UP-Span. It is worth noting that both the baselines and TSpan
here adopt the implementation improvement in Section 3.1.

4.1 Evaluation on Synthetic Dataset

As shown in Fig. 3, the tendency between search space and running time are very
consistent. That is, the more the searched nodes, the longer the running time. Both
the proposed strategies IEIC and IESC take effects, reducing the running time and
search space as much as 25% when min utility = 0.05. And the combination of
both proposed pruning strategies leads to further improved efficiency. As it can be
seen, the difference between the four algorithms’ performance becomes larger when
the min utility decreases, and we can forecast that the gap between algorithms will
be larger as min utility continues to decrease. Since experiments are conducted under
the setting that MTD = 8 and utilities of events follow the lognormal distribution, high
utility episodes can only be generated when min utility is very small. All these facts
lead to the conclusion that the proposed strategies are practically useful.
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Fig. 3. Evaluation under varied min utility on dataset T20I12N1KD10K (MTD=8)

We also tested the scalability of the four algorithms when the size of the transac-
tions (i.e., the size of the complex event sequence) increases. The results are reported
in Fig. 4. As we generate the dataset using the same algorithm and all other settings
are the same, the number of searched nodes keeps the same. But the running time of
these algorithms grows linearly, indicating that the algorithms’ scalability is very good.
In Fig. 5, we vary the average length of transactions, i.e., the average length of simulta-
neous event set, to compare the performance difference between the algorithms. TSpan
grows smoothly in both number of searched nodes and running time, while the baselines
grow much faster, demonstrating that TSpan is more efficient.
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Fig. 4. Evaluation under varied #Trans on dataset T20I12N1KDxK (min utility=0.1, MTD=8)
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Fig. 5. Evaluation under varied Avg.Length on dataset TxI12N1KD10K (min utility=0.1,
MTD=8)

4.2 Evaluation on Real-life Dataset

Fig. 6 shows the performance comparison on real-life dataset FoodMart2000. As this
dataset is quite small and sparse, the execution time of the four algorithms is very short.
However, we can still clearly observe that the proposed algorithms outperform the base-
line by a large margin. For example, when min utility = 0.08, TSpan finishes in only
one fifth of the time needed by UP-Span. For dataset Retail, due to its inherent char-
acteristics and our settings on external utilities, the running time of these algorithms
becomes too long to observe when MTD > 4. So we only report the performance
comparison when MTD = 4, which is still capable of demonstrating the performance
advantage of our proposed strategies.We can predict from the curve’s trend of Fig. 7
(a) that the gap between the TSpan and the baselines will become even larger when
min utility is smaller than 0.1. In Fig. 7 (b), we can conclude that TSpan is faster
than the UP-Span algorithm by more than 2000 seconds in most cases. Fig. 8 shows
that TSpan is always the winner compared with others, similar to the other two real-
life datasets. And strategy IEIC and IESC can compensate each other well to further
improve the algorithm’s performance.
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Fig. 6. Evaluation under varied minimum utility thresholds on dataset FoodMart2000 (MTD=8)
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Fig. 7. Evaluation under varied minimum utility thresholds on dataset Retail (MTD=4)
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Fig. 8. Evaluation under varied minimum utility thresholds on dataset ChainStoreSmall (MTD=6)

5 Conclusion and Future Work

In this paper, we focus on proposing practical and fast high utility episode mining al-
gorithms. The most important thing we did is that we tackle the problem under the
framework of a complete traversal of the lexicographic prefix tree. Using this frame-
work, we first presented four efficient improvements over the original implementation
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of UP-Span. Secondly, we proposed two novel strategies named IEIC and IESC to
obtain tighter upper bounds of a given node’s utility, which bring about the efficient
algorithm TSpan. Finally, we demonstrated the effectiveness of these strategies sys-
tematically on both synthetic and real life datasets. Experimental results show that the
proposed strategies can improve the performance significantly by reducing the number
of searched nodes and the running time. We believe that these proposed strategies can be
incorporated with other similar high utility mining tasks, and more effective strategies
can be proposed using lexicographic prefix tree in the future.

Acknowledgement. This work was supported in part by the National High Technol-
ogy Research and Development Program of China under Grant No. 2014AA015203,
the Anhui Provincial Natural Science Foundation under Grant No. 1408085QF110 and
the Fundamental Research Funds for the Central Universities of China under Grant No.
WK0110000042. This work was also partially supported by the Singapore National Re-
search Foundation under its International Research Centre @ Singapore Funding Ini-
tiative and administered by the IDM Programme Office, Media Development Authority
(MDA). Lei Zhang is supported by the Academic and Technology Leader Imported
Project of Anhui University (NO. J10117700050).

References

1. Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association rules in
large databases. In: VLDB, pp. 487–499 (1994)

2. Ahmed, C.F., Tanbeer, S.K., Jeong, B.S.: Mining high utility web access sequences in dy-
namic web log data. In: SNPD, pp. 76–81 (2010)

3. Chan, R., Yang, Q., Shen, Y.-D.: Mining high utility itemsets. In: ICDM, pp. 19–26 (2003)
4. Lee, W., Stolfo, S.J., Mok, K.W.: A data mining framework for building intrusion detec-

tion models. In: Proceedings of the IEEE Symposium on Security and Privacy, pp. 120–132
(1999)

5. Liu, Y., Liao, W.K., Choudhary, A.N.: A fast high utility itemsets mining algorithm. In:
Workshop on Utility-Based Data Mining (2005)

6. Mabroukeh, N.R., Ezeife, C.I.: A taxonomy of sequential pattern mining algorithms. ACM
Comput. Surv. 43(1), 3 (2010)

7. Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event se-
quences. Data Min. Knowl. Discov. 1(3), 259–289 (1997)

8. Ng, A., Fu, A.W.-C.: Mining frequent episodes for relating financial events and stock trends.
In: Whang, K.-Y., Jeon, J., Shim, K., Srivastava, J. (eds.) PAKDD 2003. LNCS, vol. 2637,
pp. 27–39. Springer, Heidelberg (2003)

9. Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.: Prefixspan:
Mining sequential patterns by prefix-projected growth. In: ICDE, pp. 215–224 (2001)

10. Saxena, K., Shukla, R.: Significant interval and frequent pattern discovery in web log data.
CoRR, abs/1002.1185 (2010)

11. Wu, C.-W., Lin, Y.-F., Tseng, V.S., Yu, P.S.: Mining high utility episodes in complex event
sequences. In: KDD (2013)

12. Yao, H., Hamilton, H.J., Butz, C.J.: A foundational approach to mining itemset utilities from
databases. In: The 4th SIAM International Conference on Data Mining, pp. 482–486 (2004)

13. Yin, J., Zheng, Z., Cao, L.: Uspan: an efficient algorithm for mining high utility sequential
patterns. In: KDD, pp. 660–668 (2012)


	High Utility Episode Mining Made Practical and Fast
	1Introduction
	2Preliminaries and Lexicographic Prefix Tree
	3Efficient High Utility Episode Mining
	3.1Efficient Implementation of the UP-Span Algorithm
	3.2Efficient Pruning Strategies 

	4Performance Evaluation
	4.1Evaluation on Synthetic Dataset
	4.2Evaluation on Real-life Dataset

	5Conclusion and Future Work
	References




