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Abstract. Recent years have witnessed the increasing interest in
exploiting social influence in social networks for many applications, such
as viral marketing. Most of the existing research focused on identifying
a subset of influential individuals with the maximum influence spread.
However, in the real-world scenarios, many individuals also care about
the influence of herself and want to improve it. In this paper, we consider
such a problem that maximizing a target individual’s influence by rec-
ommending new links. Specifically, if a given individual/node makes new
links with our recommended nodes then she will get the maximum influ-
ence gain. Along this line, we formulate this link recommendation prob-
lem as an optimization problem and propose the corresponding objective
function. As it is intractable to obtain the optimal solution, we pro-
pose greedy algorithms with a performance guarantee by exploiting the
submodular property. Furthermore, we study the optimization problem
under a specific influence propagation model (i.e., Linear model) and
propose a much faster algorithm (uBound), which can handle large scale
networks without sacrificing accuracy. Finally, the experimental results
validate the effectiveness and efficiency of our proposed algorithms.

1 Introduction

Social network platforms, such as Twitter and Facebook, play an important and
fundamental role for the spread of influence, information, or innovations. These
diffusion processes are useful in a number of real-world applications, for instance,
the social influence propagation phenomenon could be exploited for better viral
marketing [1]. To this end, both modeling the influence propagation process and
identifying the influential individuals/nodes in social networks have been hot
topics in recent years [2].

Indeed, researchers have proposed several influence models to describe the
dynamic of influence propagation process, such as Independent Cascade (IC)
model [3], Linear Threshold (LT) model [4], a stochastic information flow
model [5] and the linear social influence model (Linear) [6]. Meanwhile, other
researchers focus on learning the real or reasonable influence propagation prob-
ability between two individuals in the influence models [7,8]. Based on the influ-
ence propagation models and the influence propagation probabilities, influence
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Fig. 1. A toy example

maximization (IM) is the problem of identifying a subset with K influential nodes
in a social network so that their aggregated influence in the network is maxi-
mized. Since influence maximization is a fundamental problem in viral market-
ing, various aspects of it have been studied extensively in the last decade [2,9,10].
For instance, Eftekhar et al. [10] studied influence propagation at group scale,
where they aimed at identifying the influential groups instead of a subset of
individuals.

However, most of existing works about IM focus on identifying a small subset
of individuals or groups in a network so that their aggregated influence spread is
maximized. In the real-world scenarios, an individual also cares about her own
influence and wants to improve it by making new links. Formally, if a given target
node (e.g., a person or a company) in a social network wants to maximize its
influence by making several new links (i.e., target node could spread its influence
through these links), which nodes should it link with? In this situation, linking
it with the most influential nodes or the nodes with largest degree, may not lead
to the maximum influence gain, since we have to consider the topology of the
target node and the overlap of influence spread between the target node and the
selected nodes. Let us take the network in Fig.1 as a toy example. If node 3 is
the given target node and we want to improve its influence by recommending
two new links for node 3. Suppose that node set {1, 2} are the most influential
node set found by IM method (e.g, by CELF [11]). Actually, the total influence
of node 3 after linking with nodes {1, 2} is less than that with nodes {4, 5}. The
reason may be that there is much overlap of the influence spread between nodes
3 and 1.

Though similar link recommendation problems have been studied in the lit-
erature (e.g., adding new links or strengthening the weaken social links to boost
the information spread across the entire network [12]), the problem of elimi-
nating the influence overlap to maximize the target node’s influence via link
recommendation remains pretty much open. Actually, there are two challenges
to solve this problem efficiently: First, how to design a rational measure to elim-
inate the influence overlap between nodes; Second, because the computation
of influence spread is very time-consuming, it is urgent to propose an efficient
algorithm which can sharply reduce the times of influence spread estimations.
To address these challenges, in this paper, we provide a focused study on the
problem of maximizing the target individual’s own influence by recommending
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new links for this individual (i.e., individual influence maximization via link
recommendation). Our contributions could be summarized as follows:

– We formulate this individual influence maximization-oriented link recom-
mendation problem as an optimization problem, and define the correspond-
ing objective function, which can be generally applied to different influence
propagation models.

– To solve the intractable optimization problem effectively, we propose a
greedy algorithm with a performance guarantee. One step further, we present
another algorithm lazy for scaling up this simple greedy. Both algorithms
can be used in general influence models, such as IC and LT.

– We leverage the properties of influence spread estimations under the spe-
cific Linear model, and propose a much faster recommendation algorithm
uBound, which can handle large scale networks without sacrificing accuracy.

– We conduct extensive experiments on four real world datasets and the results
demonstrate the effectiveness and efficiency of our proposed algorithms.

2 Related Work

Influence Propagation and Maximization. Researches proposed several
models for describing the influence propagation process. IC model [3] and LT
model [4] are two widely used ones. However, both of them require time-
consuming Monto Carlo simulations to estimate the influence spread, some
researchers designed more efficient (or tractable) models, e.g., the stochastic
information flow model [5] and the linear social influence (Linear) model [6].
Since learning the influence propagation process is beyond the scope of this
paper, we use these existing influence models for illustration.

The IM problem can be traced back to Domingos and Richardson [1,13].
Kempe et al. [14] first formulated it as a discrete optimization problem, demon-
strated it as NP-hard and presented a greedy approximation algorithm with
provable performance guarantee. From then on, researchers proposed many com-
putationally efficient algorithms, such as CELF [11], PMIA [15], IPA [16] and
TIM [17], by exploiting specific aspects of the graph structure or the influence
model. Some researchers also consider other aspects of the IM problem [9,18].
For instance, Guo et al. [18] studied local influence maximization, aiming to find
the top-K local influential nodes on the target node. However, to the best of our
knowledge, few attention has been paid to the problem of maximizing the target
node’s own influence via link recommendation.

Recommendations in Social Networks. The user-to-user recommendation
in social networks is an important task for many social network sites like Twit-
ter, Google+ and Facebook, for the purpose of guiding user discover potential
friends [19–21] or improving the connectivity of the network [12,22]. Researchers
have proposed a number of recommendation algorithms to recommend potential
friends to users in a social platform, such as the Friend-of-Friend(FoF) algo-
rithm [19] and other interest-based or profile-based algorithms [20,21]. Some of
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these works also consider the influence propagation effect, such as selecting a set
of “influential” users for a new user [23] or a new product [24], like solving the
cold-start problem in recommender systems.

In addition, some works in the area of network/graph augmentation also try
to add links in the network for improving some quality of the graph [12,22].
For instance, Tian et al. [22] suggested users to re-connect their old friends and
strengthen the existing weak social ties in order to improve the social network
connectivity; Chaoji et al. [12] recommended an edge set in order to increase
the connectivity among users and boost the content spread in the entire social
network. However, these related works pay more attention to the entire social
network rather than the target individual’s own influence.

3 Individual Influence Maximization

Preliminaries. Let the directed graph G(V,E, T ) represents an influence net-
work, where V = {1, 2, ..., n} are n nodes in graph and E stores all the influ-
ence links(edges) between nodes. T = [tij ]n∗n is a given propagation probability
matrix. For each edge (j, i) ∈ E, tij ∈ (0, 1) denotes the influence propaga-
tion probability from node i to node j. For any edge (j, i) /∈ E, tij = 0. G is
assumed to be directed as influence propagation is directed in the most general
case. Given this graph, the influence spread fi for each node i ∈ V can be com-
puted by the influence propagation models (e.g., IC [3], LT [4] and Linear [6]).
Specifically, fi = [fi→1, fi→2, ..., fi→n]′, an n × 1 vector, denotes the influence of
node i on each node in the network. Thus, the total influence spread of node
i in network equals to the sum of influence of node i on other nodes, namely
fi→V =

∑
j∈V fi→j . Indeed, fi→V is the expected number of the nodes that will

be influenced by node i.

3.1 Problem Statement and Formulation

In a real-world network, such as Twitter, nodes represent users, and edges repre-
sent their links/connections. If a target user wants to improve her own influence,
she should make new influence links1 with other users, especially the influen-
tial ones, then the information she posts will be read and followed by more
users (e.g., by retweet). Since making new links with other nodes may require
money or time, we also associate a nonnegative cost c(j) with each node j. That
is, the cost of linking to node j is c(j) if a target node makes a new link with
j. The less the cost is, the easier to create the link for the target node. We
denote the total cost of the target node for making new links with a subset S as
c(S) =

∑
j∈S c(j). Hence, the problem of individual influence maximization is

to find a subset S such that if the target node t makes new links with nodes in

1 In this paper, we use the expressions of “influence link ”and “link” without distinc-
tion.
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S, the t’s influence gain is maximum, and c(S) does not exceed a specific budget
B. Now this problem could be formulated as an optimization problem:

arg max
S

{fS
t→V − ft→V } , subject to c(S) ≤ B, (1)

where fS
t→V − ft→V is the influence gain of the target node t after linking with

nodes in set S. Notice that, we assume that the other parts of network structure
stay unchanged before t makes links with the nodes in S. To reduce complexity,
in this paper, we consider c(j) = 1 for each j ∈ V , i.e., every new link shares
the same cost. Hence, the cost c(S) equals to the number of nodes in S, namely
c(S) = |S|. Let F(S) = {fS

t→V − ft→V } and K = B, we can rewrite Eq. (1) as
below.

arg max
S

F(S) = {fS
t→V − ft→V } , s.t. |S| ≤ K. (2)

In summary, the individual influence maximization problem is formalized
as recommending a subset S with K nodes such that node t can achieve the
maximum influence gain by making new links with the nodes in S (i.e, adding
new edges (j, t), j ∈ S).

3.2 Definition of the Objective Function

The key of the above optimization problem is to design an appropriate objective
function F(S) to eliminate the influence overlap (the first challenge given in
Introduction) when adding S to link the target individual. For introducing our
definition of F(S), we start with a single link from node t to node c.

Definition 1. If a target node t makes a new link with a candidate node c, we
define F(S) = F({c}) as :

F({c}) = f
{c}
t→V − ft→V

= λc · (1 − ft→c) ·
∑

i∈V

(1 − ft→i)fc→i,

where λc ∈ (0, 1) is a hyper parameter to model the real-world social influence
propagation process.

Fig. 2. A Simple Example

Definition Explanation. Let us take a simple example. Suppose we want to
improve the target node t’s influence in Fig. 2, and thus we should estimate
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the total influence gain of t after making a new link (the red dashed line) with
a candidate node c. We first show how to estimate the influence gain of t on
any node i ∈ V . Before making the new link with c (Left part of Fig. 2), the
target t has an influence on node i (ft→i) and node c (ft→c) respectively, and
meanwhile, the node c also has an influence on node i (fc→i). When t makes a
new link with c (Right part of Fig. 2), we define that the influence of t on node c
has increased by λc(1−ft→c). Now, let’s explain this definition: Suppose t always
influences (or actives) c successfully (f{c}

t→c = 1), then the influence of t on node
c will be increased by (f{c}

t→c − ft→c) = (1− ft→c). However, this assumption is a
little unrealistic. Thus, for better modeling the real-world influence propagation
process, we introduce λc ∈ (0, 1) to weaken the influence gain of node t on c,
and get λc(1 − ft→c). 2 One step further, we can represent that the influence of
t on i through c has increased by λc(1 − ft→c)fc→i. Hence, the influence gain of
t on i after making a link with c is: f

{c}
t→i − ft→i = (1 − ft→i) · λc · (1 − ft→c) ·

fc→i. Then, we can get the total influence gain of node t on the entire network:
f

{c}
t→V − ft→V =

∑
i∈V (f{c}

t→i − ft→i) =
∑

i∈V (1 − ft→i) · λc(1 − ft→c)fc→i =
λc(1 − ft→c)

∑
i∈V (1 − ft→i)fc→i.

From this example, we could get the implication of the Definition 1. Though
we do not show more rigorous justification for this function, the extensive exper-
imental results show that the nodes selected by this function can really obtain
much real influence gain of a given target node, which illustrate that this function
is rational and effective.

One step further, we introduce the following definition of the objective func-
tion F(S), i.e, the influence gain of a target node when it makes new links with
nodes in S.

Definition 2. If a target node t makes new links with the nodes in S, we define
F(S):

F(S) = fS
t→V − ft→V =

∑

c∈S

F({c})

=
∑

c∈S

λc(1 − ft→c) ·
n∑

i=1

(1 − ft→i)fc→i

We could demonstrate that the function F(S) satisfies the properties below:

1. F(∅) = 0, i.e., we cannot improve the influence of the target node without
making any new link.

2. F(S) is nonnegative and monotonically increasing. It is obvious that making
new links can not reduce the influence of the target node.

3. F(S) is submodular. That is, F(S) satisfies the “diminishing returns” prop-
erty.

2 Notice that, in real-world applications, λc’s value could be determined based on
the specific influence models and the characteristics of nodes c and t in the social
network.
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3.3 Greedy Strategy

Indeed, maximizing submodular function in general is NP-hard [25], and thus
it is intractable to obtain the optimal solution of the problem we formulated.
However, for a nonnegative monotone submodular function, such as F(S), the
greedy strategy, a common used heuristic, approximates the optimum within a
factor of (1 − 1/e) [26].

The simple greedy algorithm starts with the empty set S = ∅, and requires
about n times influence spread estimation in each iteration to select one node
(with the maximum influence margin) to join S. Thus, greedy requires about
(n · K) times influence spread estimations, where K = |S|. As each influence
spread estimation calculated by influence models (e.g., IC, LT) is very time-
consuming, greedy is quite slow.

Scaling Up. Here, we exploit the submodularity of F(S) and adopt the lazy-
forward strategy [11] for scaling up the simple algorithm greedy . Specifically,
based on the fact that the influence gain of node t after making a link with
node c in the current iteration cannot be larger than its marginal influence
gain in the previous iteration, we propose the algorithm lazy without sacrificing
any accuracy. Algorithm 1 shows the details about the algorithm lazy. Because
lazy just requires n times influence spead estimations in the initial iteration
for calculating the upper bound of influence gain of each candidate node i, it
requires totally (n + θ · K) times influence spread estimations, where θ � n is
the expected number of influence spread estimations in each iteration.

Algorithm 1. The lazy Algorithm
Input: G(V, E, T ), a given target node t,

K
Output: S with K nodes

1 initialize S = ∅;
2 for each node i ∈ V do

3 calculate F({i}) = f
{i}
t→V − ft→V ;

4 flagi = |S|; // here, |S| = 0
5 // flagi indicates that F({i}) is
6 // calculated in the |S| iteration

7 while |S| < K do
8 s = Find the greatest F({s}) in F ;
9 if flags == |S| then

10 S = S ∪ s ;
11 F(s) = 0 ;

12 else
13 recalculate F(s)=fS∪s

t→V −fS
t→V ;

14 flags = |S| ;

15 Return S;

4 Optimization Under the Linear Model

To address the challenge of inefficiency, we further explore this problem on a
specific influence model, the linear social influence (Linear) model [6]. Specif-
ically, the reasons could be summarized as: (1) Linear model is tractable and
efficient; (2) Linear has close relations with the traditional influence models. For
instance, it can approximate the non-linear stochastic model [5], and the linear
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approximation method for the IC model [27] is a special case of Linear. In the
following, we first review the Linear model.

Review. Given a directed graph G(V,E, T ), Linear model [6] is defined as below.

Definition 3. Define the influence of node i on j as

fi→i = αi, αi ∈ (0, 1] (3)

fi→j = dj

∑

k∈Nj

tkjfi→k, for j �= i (4)

where Nj = {u ∈ V |(u, j) ∈ E}, αi is the self-confidence of node i, which
represents the prior constraint of node i for spreading the information. The
parameter dj ∈ (0, 1] is the damping coefficient for the influence propagation.

Under the Linear model, there is an upper bound to measure a node’s influ-
ence [6]:

fi→V =

n∑

j=1

fi→j ≤ αi · (I − DT )−1
i· e (5)

where, I is an n-by-n identity matrix, D = diag(d1, d2, ..., dn) is a diagonal
matrix, e is an n × 1 vector consisting all 1s, (I − DT )−1

i· denotes the i-th row
of matrix (I − DT )−1.

Optimization with Upper Bounds. In this part, we further exploit the
properties of the influence computation in Linear model and demonstrate that if
target node t makes a new link with an arbitrary candidate node i, the influence
gain cannot be greater than the upper bound, λiαi · (I − DT )−1

i· e.

Theorem 1. (Upper bound) If a given target node t makes a new link with
node i ∈ (V \ {t}), then the influence gain of node t satisfies the equation:

F({i}) = f
{i}
t→V − ft→V ≤ λi · αi · (I − DT )−1

i· e

Proof. We first prove that F({i}) = f
{i}
t→V − ft→V ≤ λi · fi→V . According to the

influence gain definition,

F({i}) = f
{i}
t→V − ft→V (6)

= λi(1 − ft→i)
n∑

k=1

(fi→k · [1 − ft→k]) (7)

≤ λi(1 − ft→i) ·
n∑

k=1

fi→k (8)

≤ λi

n∑

k=1

fi→k = λi · fi→V (9)

Both Eqs. (8) and (9) hold because fi→j ∈ [0, 1]. Combining Eqs. (5) with (9),
we have proved that F({i}) = f

{i}
t→V − ft→V ≤ λiαi(I − DT )−1

i· e. ��
Here, we can rewrite Theorem 1 into vector: [F({1}),F({2}), ...,F({n})]′ ≤

diag(λ1, λ2, ..., λn) · diag(α1, α2, ..., αn) · (I − DT )−1e. As (I − DT ) is a strictly
diagonally dominant matrix, (I − DT )−1e can be quickly calculated through
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Gauss-Seidel method in O(|E|) time. We use these upper bounds to replace the
influence gain estimations in the initial iteration of algorithm lazy, and then
propose the corresponding uBound algorithm without sacrificing any accuracy.
Algorithm 2 shows the details about uBound. According to the analysis above,
we know that uBound requires only (1+η ·K) times influence spread estimations,
where η � n is the expected number of influence spread estimations and it is
related to the tightness of the upper bound. In contrast, lazy (Algorithm 1)
requires (n + θ · K) times influence spread estimations.

Algorithm 2. The uBound Algorithm
Input: G(V, E, T ), a given target node t,

K
Output: S with K nodes

1 initialize S = ∅;
2 Compute the upper bound vector

U = diag(λ1, λ2, ..., λn) ·
diag(α1, α2, ..., αn) · (I − DT )−1 · e in
O(|E|) time;

3 for each node i ∈ V do
4 F(i) = Ui;
5 flagi = 0; // here, |S| = 0

6 while |S| < K do
7 s = Find the greatest F(s) in F ;
8 if flags == |S| then
9 S = S ∪ s ;

10 F(s) = 0 ;

11 else
12 recalculate F(s)=fS∪s

t→V −fS
t→V ;

13 flags = |S| ;

14 Return S;

5 Experiments

Experimental Setup. The experiments are conducted on four real-world
datasets with different sizes. (a)Wiki-Vote, a who-votes-on-whom network at
Wikipedia where nodes are users and an edge(j, i) represents that user j voted
on user i; (b)Weibo, a social media network in China, where nodes are the users
and edges are their followships. We crawled this data from weibo.com3 at March
2013 and then sampled a small network which only contains the verified users
for filtering the zoombie accounts; (c)Cit-HepPh, an Arxiv High Energy Physics
paper citation network where nodes represent papers and an edge(j, i) represents
that paper j cites paper i. Both Cit-HepPh and Wiki-Vote are downloaded from
SNAP4; (d)Twitter, another social media network. We downloaded this data
from Social Computing Data Repository at ASU5. Table 1 show the detailed
dataset information.

Table 1. Experimental Datasets

Name Wiki-Vote Weibo cit-HepPh Twitter
Nodes 7,115 7,378 34,546 11,316,811
Edges 103,689 39,759 421,578 85,331,845

3 http://www.weibo.com/
4 http://snap.stanford.edu/data/
5 http://socialcomputing.asu.edu/datasets/Twitter

http://www.weibo.com/
http://snap.stanford.edu/data/
http://socialcomputing.asu.edu/datasets/Twitter
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Influence Model and Propagation Probability. We validate our discoveries
under the IC, LT and Linear models, as widely used in the literature [6,11,14,18,
28]. For each network, we transform it into a directed influence graph G(V,E, T ).
Specifically, if there is an edge (j, i) in the original network, we add an influence
link (i, j) ∈ E 6 in G and then assign the corresponding influence propagation
probability tij = 1/indegree(j). For LT [14], each node j chooses a threshold θj
uniformly at random from [0, 1], and the Monte Carlo simulation times are set
to be 20,000 for both IC and LT. For Linear model, we use the same damping
coefficient for all nodes similar to Xiang et al. [6,28] (i.e., di = 0.85 for i ∈ V ),
and we set αi = 1 assuming that each initial node shares the same prior influence
probability. Note that, for simplicity, we manually set the λc = 0.85 for all the
nodes in objective function F(S).

We implemented the algorithms in Java and conducted the following exper-
iments on Windows 64-bit OS with 2.20GHz Intel Core i3-2330M and 16GB
memory.

5.1 Real Influence Gain Comparison

We first demonstrate that our objective function is rational and effective, i.e.,
the node set S recommended based on our F(S) can help a target node t make
more influence gain than the benchmark methods. Specifically, for a given target
node t, we first calculate its original influence ft→V . Secondly, we let t make new
links with the nodes in S recommended by different methods, and recalculate
the t’s new influence fS

t→V
7. Finally, we get the t’s real influence gain F(S) =

fS
t→V −ft→V . Thus, the performance of each method is evaluated by the influence

gain it could provide to the target node, i.e., the larger influence gain, the better
the method is. In the following, we call our method as ISIM (Individual Social
Influence Maximization) and the results are based on the lazy algorithm. For
comparison, we choose several benchmark methods:

– Random. Let the target node make links with K nodes that are selected
randomly.

– OutDeg. Let the target node link to the top K nodes with the largest
out-degree.

– LongDist. The recommended K nodes are the farthest ones from the target
node, i.e., those have the fewest influence overlap with the target node. Here,
the distance is measured by Random Walk with Restart [29].

– PageRank. Recommend the nodes with top K ranked PageRank values [30].
– HighestInf (Highest Influence). Let the target node make links with the

top-K nodes with highest influence. This method is also competitive because
the largest influential nodes can improve the target node’s influence sharply.
However, this method does not consider the influence overlap.

6 For example, if user j follows user i in Twitter, then i influences j.
7 After linking t to nodes in S, the indegree of node c ∈ S pluses one. The

influence propagation probability of each edge (u, c) ∈ E will be updated by
1/new indegree(c).
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Fig. 3. Comparisons under IC Model
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Fig. 4. Comparisons under LT Model
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Fig. 5. Comparisons under Linear Model

– IMSeeds. It selects and recommends the most influential node set S by
using the CELF algorithm [11] for traditional social influence maximiza-
tion problem. This method could alleviate the influence overlap between the
nodes in S. However, it does not consider the influence overlap between the
target node and those in S.

On each dataset, we run the above selection algorithms on the randomly chosen
100 target nodes from different out-degree ranges, and then we compute and
compare the average influence gain (with the size of the recommendation set
|S| = 5, 10, ..., 50) for each algorithm. We compare the effectiveness of each
algorithm under IC, LT and Linear model, respectively. Figs. 3, 4 and 5 show
the corresponding results. Actually, similar results could be seen from all figures.
That is, the node set S selected by our ISIM could help the target node to get
more real influence gain than the benchmarks; the node set S recommended by
IMSeeds cannot always guarantee the best performance. What’s more, we only
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show the results on the three data sets, because IMSeeds (i.e., CELF) cannot
obtain a result within feasible time on the Twitter data.

5.2 Time Complexity Analysis

In the part, we compare the efficiency of our proposed algorithms (greedy, lazy
and uBound) for our ISIM method under Linear model from two aspects: the
number of influence spread estimations and the running time of the algorithms.

Table 2. Numbers of Influence Spread Estimation

Datasets
�������Alg.

Top K
5 10 15 20 25 30 35 40 45

Wiki-Vote
greedy 35208 70390 105547 140679 175786 210868 245925 280957 315964
lazy 7124 7139 7171 7195 7220 7250 7306 7331 7374

uBound 19 53 84 119 157 204 265 297 352

Weibo
greedy 36836 73646 110431 147191 183926 220636 257321 293981 330616
lazy 7414 7446 7505 7572 7638 7738 7838 7917 8047

uBound 50 98 180 278 356 494 622 726 868

Cit-HepPh
lazy 34554 34566 34586 34608 34642 34660 34691 34710 34744

uBound 17 37 64 89 137 161 194 221 264
Twitter uBound 16 43 71 99 136 166 212 253 286

Table 2 shows the expected numbers of influence spread estimations when
selecting different K seeds using different algorithms. The results illustrate that
greedy needs the largest number of influence spread estimations. Compared to
lazy, the expected number of influence spread estimations of uBound at top K =
45 is reduced at a rate of 95.2%, 89.2%, 99.2% on the three datasets(ie, Wiki-
Vote, Weibo, Cit-HepPh), respectively. The reason is that lazy requires n times
influence spread estimations in the initial iteration to establish the upper bounds
of the marginal influence, while uBound requires only one time. Correspondingly,
Fig. 6 shows the real running time of different algorithms when selecting K
seeds on different datasets. From the results, we know that the simple greedy
algorithm is very time-consuming as the number K increases. That is because
greedy requires about (n · K) times influence spread estimations. What’s more,
we can observe that uBound is much faster than lazy. Actually, uBound is so
efficient that it can handle the Twitter data, a large scale network with tens of
millions of nodes, and the running time is growing linearly as the the number K
increases.
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5.3 Case Study

We finally use a case study to illustrate the necessity of designing individual-
ized link recommendation algorithms. Fig. 7(a) shows the Jaccard index of the
25 nodes recommended by ISIM for 8 target nodes which are randomly selected
(distinguished by node ID) from Wiki-Vote. This figure illustrates that the nodes
recommended for different target nodes are different, and this is because the
method ISIM considers the target node’s personalized information, such as the
topology structure of the target node. Similarly, Fig. 7(b) shows the Jaccard
index of different node sets recommended by different methods. This figure illus-
trates that the nodes selected by different algorithms are also quite different.
Meanwhile, the more similar with our proposed method(i.e., ISIM), the more
effective of the algorithm (combining the results in Figs. 3, 4 and 5).

6 Discussion

In this part, we mainly discuss the limitations and possible extensions of this
study. For better illustration, in this paper we only deal with individual influence
maximization by designing general algorithms, and our solutions could be further
improved in the future. First, it is better to include different costs for the link
connection (i.e., the c(S) in Eq. (1)) instead of treating them equally. Meanwhile,
more reasonable settings for parameters λc or threshold θ are required when we
know about more prior knowledge or real propagation action logs (like using the
data-driven approach for threshold θ settings [31]). What’s more, our assumption
that the rest of the network stays unchanged during the link connection may be
relaxed. Secondly, it is also better to study individual influence maximization
and social influence modeling from the observed data rather than the simple
simulation. For one thing, the information diffusion process may be affected by
some other factors, e.g., information topic and homophily [32]. For another, as is
only exploratory in nature, the conclusions of the simulation studies often have a
great deviation to the actual propagation data. Thirdly, this study only focuses
on the one target individual’s influence, and one possible extension is to add links
for improving the influence spread of several individuals simultaneously, where
the competitions or cooperations between each target individual may be a big
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challenge. Last but not least, like the uBound algorithm under Linear model,
we would like to find out the upper bounds under other influence models (e.g.,
IC, LT) and propose the corresponding scalable algorithms.

7 Conclusion

In this paper, we studied the problem of maximizing individual’s own influence
by recommending new links. We first formulated it as an optimization problem
and designed a rational objective function. Then we proposed three algorithms to
solve this intractable problem; especially the uBound algorithm with O(1+η ·K)
time complexity could handle large scale network. The experiments have shown
encouraging results, and we hope this study could lead to more future work.
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