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Abstract—Reading psychology believes text comprehension to involve a complex psychological construction process, with the reader
mind being a dynamic associative system that stores an abundance of schemata. For Chinese text, in particular, the unique
ideographic writing system allows its lansign to trigger semantic association and schema recalling without the need of phonetics. In
contrast to previous research efforts on text classification problems, in this paper we present an interdisciplinary modeling approach
that draws inspirations from the cognitive principles of ideography, schema theory and deep learning to study Chinese text
classification. Specifically, we first propose a Radical-guided Associative Model (RAM) for preliminary cognitive imitation, which
comprises two coupled spaces, namely the Literal Space and Associative Space. Then, taking consideration of the schemata acquired
from the mind of a reader which plays an important role in influencing text-dependent information revision, we extend RAM with a
systematic Schema-aware Radical-guided Associative Model (SRAM) that embeds label semantics as essential text-independent
human knowledge for real-world abstraction. In SRAM, the Schema Space is introduced and a Schema Attention module is proposed
with a novel loss paradigm that includes the linkage and interaction between text-dependent prior concepts and text-independent label
schemata. Extensive experiments on three real-world datasets demonstrate the effectiveness and rationality of our proposed method.

Index Terms—Chinese Text Classification, Ideography, Association Mechanism, Schema Theory, Label Embedding.
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1 INTRODUCTION

T EXT classification is a fundamental natural language
processing (NLP) task, which plays an indispensable

role in various data mining scenarios, such as document re-
trieval, news filtering, public opinion analysis and so on [1],
[2]. Traditional text classification methods usually pay atten-
tion to theory investigations and feature modeling based on
Latin scripts and perform well in English or other phonetic
languages, but the performance and cognitive principles
behind Chinese language materials are either mediocre or
still unexplored. We might hardly imagine the reason for
this phenomenon is mainly due to the unique ideographic
writing system of Chinese. To bridge this gap and offer an
innovative Chinese text classification modeling perspective,
we in this paper will deeply delve into the essence of
ideographic characteristics, and present a holistic Chinese
text modeling framework by combining ideography, schema
theory with deep learning together.

Most of the time, when people receive a certain text, they
will not only grasp it according to the literal features of the
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Glyph Origin Radical (Chinese Characters) English Words

亻 (仆, 伴) Man (servant, partner)

目 (看, 瞳) Eye (look, pupil)

扌 (打, 挖) Hand (hit, dig)

足 (路, 踢) Foot (road, kick)

雨 (雾, 霜) Rain (fog, frost)

山 (峰, 崖) Mountain (peak, cliff)

辶 (道, 追) Walk (path, chase)

Fig. 1. Oracle bone inscriptions of ideographic radicals, and the ubiq-
uitous semantic connection between Chinese Phono-semantic Com-
pound Characters and radicals. These inherited collective semantics are
important schemata for reader’s text comprehension subconsciously.

text, but also expand a series of associations in their mind-
s based on those features [3]. Meanwhile, their acquired
knowledge will also subconsciously affect the text meaning
judgement. This is a fundamental reason why human beings
can still maintain a strong generalization ability in complex
language environments [4]. In fact, the language symbols
in a text that we can directly obtain or perceive are literal
features. Especially for Chinese, its writing system derived
from pictographs makes its literal features ideographic [5].
Moreover, as the semantic component used to compose
Phono-semantic Compound Characters [6] which take up over
80% of all Chinese characters, each radical has a pictorial
glyph origin which is depicted in Figure 1. This vivid feature
has been inherited for thousands of years, often allowing
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Fig. 2. Comparison of the main semantic conveying mode between
Chinese characters and English words. Radical carrying intuitive prior
concepts is the essence of ideography, while Latin words are often
phonetic substitutes for abstract concepts.

readers to understand the meaning of Chinese characters
without knowing their pronunciation, which forms a unique
cognitive process in the mode of conveying semantics com-
pared with English and other phonetic languages (Figure 2
gives an intuitive comparision) [7]. Furthermore, as shown
by the toy text classification example in Figure 3, ideo-
graphic radicals prompt us to associate prior concepts with
corresponding Chinese characters: “climate” for “snow”,
“foot” for “road”, “water” for “slippery”, etc., which help
us grasp relevant attributes of characters. At the same time,
our acquired experience and knowledge also enable us to
be aware of the candidate semantics in advance: “Traffic”:
“people or goods transported by road, air, train, or ship”;
“Sport”: “all types of physical activity that people do to
keep healthy or for enjoyment” [8]. Combining the above
thinking process, we may comprehensively evaluate and
commit the judgement of classification label “Traffic”.

Looking into the cognitive principles behind, on the one
hand, association in psychology refers to the psychologi-
cal connection between concepts, events or mental states,
usually derived from specific experiences [9]. It allows
people to use prior concepts outside a given text to assist
comprehension during reading, which is quite ubiquitous
in Chinese text due to its ideographic visual irritants. Ac-
tually, associative behavior is a fundamental and effective
principle in psycho-linguistics for explaining examples of
cognition and knowledge learning through accumulated
experience [10]. More importantly, since language involves
complex human physiological activities, language research
is inseparable from cognitive science [11], and more and
more researchers have regarded language learning as a
cognitive phenomenon [12], [13]. However, based on these
interdisciplinary theories of psychology and cognitive sci-
ence, how to leverage association mechanism to import de-
sired human prior concepts into Natural Language Process-
ing (NLP) is an urgent problem for current deep learning,
which faces great challenges.

Unfortunately, traditional text modeling methods often
ignore the participation of human associative behavior in
the process of text comprehension, just sticking to the
analysis of the literal space in isolation to deal with the
linguistic symbols [14]. This perspective is very limited now,
especially for short texts whose literal features are very s-
parse [15]. Therefore, introducing some external information
reasonably to enrich text representation is more in line with
human cognition. Fortunately, as a treasure-house of human

雨 雪 天 气 道 路 湿 滑。
(Roads are slippery in rainy and snowy weather.)
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Fig. 3. The cognitive process when understanding a Chinese text and
inferring its possible label, where radical of each Phono-semantic Com-
pound Character is circled in red. Many highly relevant concepts and
schemata could be derived via association and schema recalling due to
the ideographic property of Chinese.

knowledge, language dictionaries (e.g., Xinhua Dictionary
and Oxford Dictionary) are very efficient for inferring basic
information of radicals (roots), characters, words and com-
mon concepts to help understand texts in our daily life [16],
which leaves a valuable way for us to further improve text
representation and enhance classification.

To achieve the goal of imitating readers’ cognitive be-
havior with addressing the association mechanism in our
preliminary work [17], we first proposed a novel Radical-
guided Associative Model (RAM) for Chinese text classifi-
cation, which can take both literal features and associative
prior concepts into consideration with the help of language
dictionaries. Specifically, we first introduced a Literal Space
and devised a serialized structure to model the sequential
information of Chinese text. Then, we proposed an Associa-
tion module and a strategy of using radicals as the medium
for Radical-Word Association, so as to model text-dependent
associative contents in Associative Space. Afterwards, we
designed an Associative Attention module by imitating the
cognitive process in people’s mind to model the matching
and decision between Literal Space and Associative Space.

On the other hand, regarding the cognitive principles
behind Figure 3, schema theory is an explanation of how
readers use prior knowledge to comprehend and learn from
text, and the previously acquired knowledge structures are
called schemata [18], [19]. The psychological term schema is
a concept similar to common sense, but it has its unique
characteristics since schema theory assumes that written
text does not carry meaning by itself [20]. Rather, a text
only provides directions for readers as to how they should
retrieve or construct meaning from their own previously
acquired knowledge [21]. For example, “Traffic” is a scheme
of affair schema structure, which includes driver, vehicles,
road and the knowledge related to “Traffic”. When the
human sensory system receives a textual message in Figure
3, much related knowledge and definition in the schema
net structure will be activated and the schema is used to
explain or supervise some particular plots, so the relevant
knowledge will be particularized by some specific infor-
mation. This particularization process is the so-called com-
prehension process [22]. Hence, we could see that schema
recalling is a key factor of human text comprehension,
which plays a fundamental role when we try to comprehend
unfamiliar things by mobilizing prior experience. However,
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how to combine “schema” with deep learning strategies and
achieve the modeling is also a challenging problem.

Therefore, we may find that the design and architecture
of RAM are somewhat inadequate, which does not have
the capability of modeling such text-independent schema
semantics to help text classification. Also, RAM cannot re-
flect the important role that human accumulated experience
and schema recalling play in the supervision of semantic
understanding. In fact, only after we have successfully used
the experience to supervise, compare and summarize new
things, can we form a holistic cognitive process in our
mind [22]. Thus, it is valuable if we could remind RAM
about this finding to supervise the overall text modeling. In
response to the challenges and schema principles mentioned
above, we in this paper extend RAM and propose a more
human-like and more systematic Schema-aware Radical-
guided Associative Model (SRAM) by incorporating label
semantics as important human prior schemata for real-
world abstraction and supervising the whole modeling. The
main contributions of our work are summarized as follows:

• We extend the overall perspective of text comprehen-
sion by formalizing schema theory as a label learning
problem in deep learning and propose a novel Schema
Space, where each label will be mapped into a formally
defined textual description in Oxford Dictionary Chi-
nese version.

• We design a new Schema Attention module so that the
descriptions of labels will be interacted with contextual
information to act as important text-independent prior
schemata to improve the literal features learning.

• Given that contents in Associative Space and Schema
Space are actually text-dependent and text-independent
prior concepts respectively, and the two kinds of pri-
or concepts should be mutually reinforcing, we finely
devise a new loss paradigm which can jointly evaluate
their similarity and supervise the whole modeling.

• Finally, we conduct extensive experiments on three
datasets, where the experimental results not only
demonstrate the effectiveness and rationality of SRAM
but also provide good cognitive and interdisciplinary
insights for future language modeling.

2 RELATED WORK

Text Classification & Deep Learning. Text classification
is a fundamental natural language processing (NLP) task,
which plays an indispensable role in various scenarios,
such as document retrieval, news filtering, public opinion
analysis [1], [2]. Recent years have witnessed the success
of deep learning in this field, no matter in terms of the
construction of deep classification model [23], [24] or word
embedding approaches including CBOW, Skipgram, GloVe
and so on [25], [26], [27]. Given the sequential property of
human language, Recurrent Neural Network (RNN) [28],
its improved version Long Short-Term Memory (LSTM) [29]
and Bidirectional LSTM (BiLSTM) have been proposed for
capturing the long-range information of the context [30],
which has a profound effect on the subsequent study of
text modeling. Currently, there has been another wave in
the field of natural language processing, that is the emerging
model of pre-training [31]. Among them, the most successful
model might be BERT [32], which combines Transformer’s
powerful representation ability with some language-related
pre-training goals to address many NLP tasks while exhibit-
ing impressive performance [33], [34].

Human Cognitive Modeling. No matter in the early
days or now, imitating human cognitive principles has

always been the original intention of deep learning [35], [36].
Initially, the fully-connected edges designed in artificial neu-
ral networks ideally mimic the numerous dendrites of nerve
cells. Then, to improve the nonlinear expression ability of
neural networks, the activation functions (e.g., sigmoid and
ReLU) were proposed by imitating the activation threshold
of biofilm action potential [37], [38]. More importantly, the
attention mechanism [39], [40] was proposed to mimic the
fact of eye allocation when people are reading a text or ob-
serving an image [41], which exhibits superior performance
and psychological interpretability at the same time [42].

Label Embedding. As an abstract summary of the com-
monality of similar things in the real world, labeling plays
an important role in supervised learning and can guide the
training of models [43]. In truth, the powerful connection
between language and cognition in humans begins in in-
fancy, and decades of research has revealed that labeling
and naming can facilitate infants’ classification ability and
help them know the world [44]. Currently, the development
of Artificial Intelligence is also in its infancy, and many
modeling methods imitating human principles still need to
be developed [45]. Rationally incorporating label’s seman-
tics to text modeling, so as to let the model know what is
the real meaning of training targets, is more in line with
our intuition [46], [47]. Inspiringly, label embedding has
indeed been shown to be effective and yield performance
improvement in various domains (such as natural language
processing and computer vision) recently [48], [49].

Chinese-specific Methods. In recent years, the human
brain investigations about the differences between Chinese
and phonetic languages have prompted researchers to ex-
plore the uniqueness of Chinese lansigns [50], [51]. Scholars
have also found that Chinese is a highly analytic language
with flexible expressions [52], and the low-level features of
Chinese characters such as radical [53], pinyin (Wang et al.
[54]), stroke [55] and glyph [56] also have certain semantics.
By introducing them into word or sentence representation
learning, the performance can indeed be improved. At the
same time, for the study of Chinese downstream tasks, a
proper text modeling method can highlight the characteris-
tics of Chinese, which is an important factor to improve the
performance [57], [58]. Lately, Tao et al. [59] have achieved
impressive results by directly introducing radicals to partic-
ipate in Chinese text representation and classification.

3 PROBLEM OVERVIEW

Here, we introduce the text classification problem studied in
this work and give it a formal definition. Given an arbitrary
unlabeled text T = {x1, x2, ..., xm} and a pre-defined set
of labels V , the goal of our task is to train and obtain a
classification function F with the ability to assign a proper
label l ∈ V for T :

F(T )→ l, (1)

where xi ∈ T (0 ≤ i ≤ m) stands for a feature token in T
after text preprocessing.

Generally, existing methods tend to regard word or char-
acter as feature token xi respectively or together. However,
the semantics of each label in V and the inherent semantical
relations conveyed in a Chinese word or character via
radicals are regularly ignored in this way. To achieve this
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Fig. 4. The overall architecture of the proposed SRAM Model, where RAM (Literal Space and Associative Space) is part of SRAM.

goal, we propose RAM and SRAM by exploiting the usage
of label descriptions and different xi together in a human-
like fashion, including Chinese character, radical and word.

4 METHODOLOGY

In this section, we first introduce the implementation of
our Radical-guided Associative Model (RAM) that could
directly achieve the primary goal of association mechanism
modeling. Then, we extend RAM to the proposed Schema-
aware Radical-guided Associative Model (SRAM) by elab-
orating how to incorporate label semantics as important hu-
man prior schemata to make the Chinese text classification
framework more solid and systematic.

4.1 RAM Model
As shown in Figure 4, RAM is part of our proposed SRAM
model. Specifically, RAM mainly comprises two coupled
spaces (i.e., Literal Space and Associative Space, together with
one Feature Acquisition process and two modules, namely
Association and Associative Attention. The technical details of
each part will be presented as follows.

4.1.1 Feature Acquisition
Before delving into the details of each component, it is
necessary for us to understand how the features required by
our model are obtained. In line with the cognitive behavior
of people observing a text and acquiring features shown
in Figure 3, we first propose the Feature Acquisition process
illustrated by Figure 5 to extract the features required for our
model, i.e., characters, radicals and words. In fact, there are
six kinds of Chinese characters according to “six writings”1,
but only the radicals of Phono-semantic Compound Characters
contain informative semantics [6]. Therefore, in this paper,
we mainly pay attention to Phono-semantic Compound Char-
acters and their radicals. Then, we will use these radicals
to obtain corresponding associative words with the help of
three Chinese language dictionaries.
1) Character Type Masking. As intuitively depicted in
Figure 5, given an input Chinese text T containing m
characters, we first segment it into a character sequence

1. https://en.wikipedia.org/wiki/Chinese characters

C = {c1, c2, ..., cm} according to the string operation, where
C actually stands for the character-level feature of T . Then,
by referring to Chinese Character Type Dictionary [60], we
are able to label each character with a type tag so as to realize
the Character Type Masking process:

Mask(ci) =

{
1 ci = Cp,

0 ci = Others,
(2)

where Cp represents Phono-semantic Compound Characters.
Mask(·) denotes the masking function, and ci (0 ≤ i ≤ m)
is the i-th character in C.
2) Radical Distilling. After getting the mask code of each
character, we could carry out the following Radical Distilling
process. That is to say, in order to extract the radicals that
have significant ideographic effects from text T (i.e., radicals
of Phono-semantic Compound Characters) and thus help to
convey semantics, we need to remove other useless con-
tents. So, we multiply each character’s mask code with itself
to determine which characters could retain for querying
radicals from Chinese dictionary:

R = Radical Query(C �Mask(C)), (3)

where � is an element-wise product operation, and
Radical Query operation allows us to map each Chinese
character into a single radical with the help of Xinhua
Dictionary [61]. Additionally, we filter out all the repeated
radicals in R to avoid redundant processing. As a result,
R = {r1, r2, ..., rn} is the distilled radicals of character
sequence C , where n ∈ [0,m].
3) Radical-Word Association. Instead of using radicals
directly as an additional feature [59], we regard the dis-
tilled radicals as the medium for associating highly relevant
associative words that indicate attributes and extensional
meaning. Formally, we call this strategy Radical-Word As-
sociation, which corresponds to the Association module in
Figure 4. As a result, associative words connected with
Phono-semantic Compound Characters are denoted as Words-p
(red). By referring to Radical Concept Dictionary [62], each
distilled radical ri ∈ R = {r1, r2, ..., rn} will correspond to
a list of associative words:

W r
i = Concept Query(ri) = {wr1, wr2, ..., wrρi}. (4)
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Fig. 5. An intuitive and detailed illustration of the Feature Acquisition
process for Chinese text.

Here, ρi ≥ 1 denotes the number of associative words for
ri, which will vary from radical to radical. Therefore, all
the radicals R extracted from text T could form a set of
associative words U = {w1, w2, ..., wλ}:

U =
n
∪
i=1

W r
i , (5)

where U actually stands for the imported external word-
level feature for T and λ =

∑n
i=1 ρi denotes the total words

number of U . Since different radicals may correspond to
the same associative words, the set operation here allows
repeated associative words to be merged into one.

4.1.2 Literal Space Modeling.
Given an input Chinese text T containing m character-
s, RAM will literally project it into a character sequence
C = {c1, c2, ..., cm} for subsequent processing (each punc-
tuation will also be regarded as a character). Then, we devise
a deep modeling structure by harnessing the power of pre-
trained BERT (Bidirectional Encoder Representations from
Transformers) [32], which has embraced abundant “accu-
mulated experience” (statistical language information) based
on very large training materials [10], to obtain the sentence
representation tCLS ∈ R1×D and character representation
TC = {t1, t2, ..., tm} of T as follows:

tCLS , T
C = BERT ([CLS], C), (6)

where the first token [CLS] added in front of every se-
quence C is always a special classification token, and the
final hidden state tCLS corresponding to this token is used
as the aggregate sequence representation for classification
tasks. Because tCLS acts as the output of BERT for later
classification, we also use yco to denote it for convenience.

Meanwhile, TC represents the hidden vectors of corre-
sponding m characters contained in text T . Then, we send
the hidden states together as a new sequence into BiLSTM
to further learn the context dependencies, which is depicted
in Figure 6. Formally, we take the rest output of BERT, i.e.,
TC = {t1, t2, ..., tm}, as the sophisticated representations

Fig. 6. Diagrammatic sketch of literal space modeling.

for each character ci (1 ≤ i ≤ m) in C. Afterwards, we
apply BiLSTM to further imitate the conceptual change [63]
under the specific context of TC , which is consistent with
the process of people adjusting to a new text based on their
accumulated experience. Thus, given the vector embedding
sequence of BERT output TC , the hidden vectors of BiLSTM
are calculated by receiving TC as input:

−→
hi = LSTM(

−→
h i−1, si),

←−
hi = LSTM(

←−
h i+1, si),

yi = concatenate(
−→
hi ,
←−
hi),

(7)

where
−→
hi and

←−
hi denote the forward hidden vector and

backward hidden vector respectively at the i-th time step
si (1 ≤ i ≤ m) in the BiLSTM unit. While yi is the
concatenation of

−→
hi and

←−
hi . As a result, the final output of

BiLSTM (i.e., ym) will integrate the forward and backward
contextual information. For convenience, we also use yc

′

o to
denote it for subsequent calculation.

4.1.3 Associative Space Modeling.

As mentioned above, the ideographic characteristics of
Chinese characters are deeply rooted and ubiquitous [50],
which is a crucial factor for readers to associate relevant con-
cepts with radicals. Now that we have obtained associative
words through the Association module described in Feature
Acquisition process, we should further represent those words
and highlight the information that we need.
1) Associative Word Embedding. In order to represent the
associative words in the concept set U = {w1, w2, ..., wλ}
for subsequent calculation, we need to map each word
into a low-dimension real-value vector. Here, we apply
an external well pre-trained embedding model based on
distributional assumption [25], [28] and an Embedding Layer
to get the embedding vectors for associative words obtained
by Radical-Word Association:

ERW = Embedding(U) = {erw1 , erw2 , ..., erwλ }, (8)

where λ denotes the total associative words number of U .
2) Associative Attention Module. The attention mechanism
in deep learning is essentially similar to the selective visual
attention mechanism of human beings. In fact, as for reading
comprehension, people usually tend to first read through
the sentence to form a preliminary cognition in their minds,
and then back to select and match the proper concepts based
on the overall context of the sentence [64]. Inspired by this
cognitive process, we design an Associative Attention module
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which can focus our model on relatively important asso-
ciative words in U back with the consideration of learned
contextual representation explained before, i.e., yco and yc

′

o .
Formally, we regard yco and yc

′

o as querys,ERW as key and
value at the same time to implement attention mechanism.
That is, given the associative word representations obtained
in Associative Space, i.e., ERW = {erw1 , erw2 , ..., erwλ }, we use
the contextual representations obtained in Literal Space, i.e.,
yco and yc

′

o , to attend to each associative wordwi ∈ U and get
the attention weight for each erwε ∈ ERW and erwθ ∈ ERW
(1 ≤ ε ≤ λ, 1 ≤ θ ≤ λ):

α
′
= [α

′
1, ..., α

′
ε, ..., α

′
λ], α

′
ε = f(yco, e

rw
ε ),

β
′
= [β

′
1, ..., β

′
θ, ..., β

′
λ], β

′
θ = f(yc

′
o , e

rw
θ ),

(9)

where α
′ ∈ R1×λ and β

′ ∈ R1×λ are two vectors for
ERW respectively, representing the attention weight from
two contextual aspects of yco and yc

′

o . Besides, α
′

ε and β
′

θ
denote the ε-th or the θ-th weight of an associative word
respectively, and f(·, ·) denotes the distance function which
is stated as an element-wise dot product operation in this
paper. Then, we need to normalize α

′
and β

′
with the

softmax function:

αi =
exp (α

′
i)∑λ

ε=1 exp (α′
ε)
, where

λ∑
i=1

αi = 1,

βj =
exp (β

′
j)∑λ

θ=1 exp (β
′
θ)
, where

λ∑
j=1

βj = 1.

(10)

Afterwards, the two-aspect attentive representations yrwo
and yrw

′

o for associative words could be obtained through
attentive weighted sum as:

yrwo =
λ∑
ε=1

αεe
rw
ε , yrw

′

o =
λ∑
θ=1

βθe
rw
θ , (11)

where αε is the ε-th dimensional value of α ∈ R1×λ, and βθ
is the θ-th dimensional value of β ∈ R1×λ (1 ≤ ε ≤ λ,
1 ≤ θ ≤ λ). Consequently, the attentive representations
yrwo and yrw

′

o have precisely fused the information of Literal
Space and Associative Space together. Then, for better illustrat-
ing the parallel design in the following Schema Space part,
we choose to formalize the attention mechanism described
above and denote Equation (9) and (10) together as an
integrated Attention operation. In another words, given the
input query (yco and yc

′

o ), key (ERW ) and value (ERW ), we
could rewrite Equation (9) and (10) with its output yrwo and
yrw

′

o in Equation (11):

yrwo = Attention(yco, E
RW , ERW ),

yrw
′

o = Attention(yc
′

o , E
RW , ERW ).

(12)

4.2 SRAM Model

In our RAM model, we take radicals as a valuable guide to
text-dependent prior concepts based on readers’ associative
behavior when reading Chinese text. Through the Radical-
Word Association strategy and the Associative Attention mod-
ule, RAM can rationally integrate and balance literal and
associative information of Chinese text, while perfectly
avoiding the hidden adverse effect of wrong Chinese word
segmentation (CWS) [65]. However, due to the inability to
clarify the connection and evaluate the interaction between

associative concepts and reader’s active thinking system, the
modeling structure of RAM is not yet sufficient.

Imagine that we readers are now given an unfamiliar
text: 1) Have we already acquired some text-independent
knowledge in our minds before we see the text? 2) Will
we comprehend the text under the supervision of our pre-
viously formed knowledge schema? The answers to both
questions are of course “Yes”.

In fact, as we have noted previously in the principle
of “comprehension process”, when readers’ sensory system
receives a textual stimulus, much related knowledge and
definition in his/her schema net structure will be activated
and the schema is used to explain some particular plot
and supervise related judgement [22]. Correspondingly, in
terms of supervised learning and text classification tasks,
the essence of “labeling” is to guide the model to correctly
learn the potential correlation between text and labels [43],
where the labels are often defined as a kind of “single word”
summary description and reflect some real-world collective
semantics. Hence, we may find that the description of labels
is just in line with the function of schema in readers’ mind.
As for the Chinese language shown in Figure 1 and Figure 2,
its ideographic literal features actually act as a kind of
visual and textual irritant at the same time, the activation
of schema recalling is more easily and frequently compared
with phonetic lansigns [7].

In view of the facts above, we hold that Chinese text
representation and classification will be much more rational
and solid if the definition or description of labels could be
formally taken into consideration. Thus, it is valuable if we
could remind RAM about this text-independent information
so that our model could better prepare the target training
for text classification. Therefore, inspired by psychological
research findings, we extend RAM model and propose a
novel Schema Space to systematically bring label semantic-
s into Chinese text modeling. To be specific, our newly
proposed SRAM model contains three extra modules, i.e.,
Schema Space Modeling, Schema Attention and Loss Calculation.
The details will be elaborated as follows.

4.2.1 Schema Space Modeling
1) Label Embedding. In the literature, most existing models
are generally trained on a fixed label set using k-hot vectors,
and therefore treat target labels as mere numeric symbols
without any particular semantic connection to the space of
texts [66]. To cope with this limitation, we exploit the usage
of dictionary description and pre-trained BERT encoder in
deep learning together, so that the labels could be well
embedded with input text into the same space.

Formally, given a label set V = {l1, l2, ..., lK} containing
K different labels depicted in Problem Overview and Figure 4,
we manually query the most appropriate one description of
each label li from Oxford Dictionary in Chinese version:

W l
i = Entry Query(li) = {wl1, wl2, ..., wlρi}, (13)

where ρi ≥ 1 denotes the number of words for label li
in dictionary description, and ρi will vary from label to
label. Thus, all the descriptions of labels in V could form
a sentence matrixML:

ML = {W l
1,W

l
2, ...,W

l
K}, (14)
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where ML actually stands for the imported text-
independent schemata for input text T .

After the query operation, each label would be assigned
a textual description W l

i ∈ ML(1 ≤ i ≤ K). Then, in order
to rationally embed labels V with input text T in the same
space, an effective way is to apply a pre-trained BERT model
to represent the textual descriptionsML so as to achieve the
label embedding:

EL = BERT (ML) = {el1, el2, ..., elK}, (15)

where eli ∈ RD is the description embedding of label li.
2) Schema Attention Module. According to schema theory,
comprehending a text is an interactive process between
reader’s background knowledge and the text [22]. In other
words, people hearing the speech, seeing the text is not
equal to accepting the language, only when the textual
symbols and the acquired knowledge schemata produce a
meaningful match is the real principle of language under-
standing. Inspired by these facts, we design a Schema Atten-
tion module which is symmetrical to Associative Attention for
imitating the interaction process between literal and schema
spaces.

Before the implementation of schema attention mecha-
nism, we need to be aware of the purpose for imitation
and function of query, key and value. Here, we take yco and
yc

′

o as querys to function as external text stimuli, EL as key
and value at the same time to function as internal schema
correspondence. That is, given the label representations, i.e.,
EL = {el1, el2, ..., elK}, we use the contextual representations
obtained in Literal Space, i.e., yco and yc

′

o , to attend to each
label embedding eli ∈ EL:

yLo = Attention(yco, E
L, EL),

yL
′

o = Attention(yc
′

o , E
L, EL).

(16)

Through the calculation above, the attentive representations
yLo and yL

′

o have incorporated the information of Literal
Space and Schema Space together. Like the information pro-
cessing in human brain, the attention mechanism herein is
actually a bridge between the two spaces.
3) Loss Calculation Module. In Associative Attention and
Schema Attention module, we have detailed the necessity
of the attention mechanism for its function of information
screening and weighting. But three non-negligible questions
we may ask are: 1) “Will the schemata and label embeddings
directly help enrich the representation of input text?” 2)
“How do the schemata and label embedding manifest in the
final classification task?” 3) “What is the relation between
associative prior concepts and label schemata?”

For solving these doubts, we think deeply about the hu-
man thinking and inference process when comprehending
the text. As depicted in Figure 3, we may conclude that
the schemata activated by labels are independent of input
text, which is a kind of invariant abstraction for certain
collective semantics to some degree (e.g., label “Traffic”
actually embraces a quite stable knowledge structure rele-
vant to it). Thus, we hold that yLo and yL

′

o are playing a
role of global supervision and discriminator for semantical
judgement, and the semantics of labels are affecting the
whole text comprehension indirectly. While for yrwo and
yrw

′

o obtained in Associative Space, it is obvious that these
associative schemata are dependent of input text, which will

help enrich input text representation directly. Furthermore,
due to the parallel design and same goal of enhancing
text comprehension, the text-dependent prior concepts and
text-independent schemata should have similar semantical
direction and enjoy mutual enhancement respectively (i.e.,
yrwo should be similar to yLo , yrw

′

o should be similar to yL
′

o ).
Therefore, driven by the analysis above, and as a corre-

spondence to deep learning strategy, we devise a new loss
paradigm to allow different loss functions to evaluate and
constrain the needful similarity between the aforementioned
associative prior concepts and label schemata:

LS = lossx(y
rw
o , yLo ) + lossx(y

rw′
o , yL

′
o ), (17)

where lossx denotes a certain loss function (we choose co-
sine similarity loss [67] as the default setting for SRAM mod-
el), and the performance rendered by different lossxs will
be discussed in subsequent Experiments section. Through
this way, the two groups of embeddings in Associative Space
and Schema Space will be viewed as a joint modeling process
throughout the training of our SRAM model.

4.2.2 Prediction
As in the literal, associative and schema spaces described
earlier, we have already obtained six different representa-
tions for Chinese text T : two-aspect contextual represen-
tations learned through literal features, i.e., yco and yc

′

o ;
attentive representations derived from jointly modeling of
literal features and associative concepts, i.e., yrwo and yrw

′

o ;
and attentive representations derived from jointly modeling
of literal features and label schemata, i.e., yLo and yL

′

o . Since
the semantics of labels tend to assist us in making classi-
fication decisions indirectly, we choose to directly combine
the first four semantic representations to conduct prediction,
i.e., yco, yc

′

o , yrwo and yrw
′

o , while leveraging yLo and yL
′

o to
supervise the prediction via Schema Attention and Cosine-loss
Calculation mechanism. In order to systematically integrate
and fully learn the information of the four representations,
we first conduct a concatenation operation:

H = [yco; y
c′

o ; y
rw
o ; yrw

′

o ], (18)

where H ∈ R1×4D is the vector concatenated through
dimension with an advantage of retaining all the informa-
tion [42], [68]. Afterwards, we leverage the superior fitting
ability of the fully connected neural network to learn the
hidden interactions and enhancements among these four
representations:

O = σ(W ×H + b),

σ(x) =
1

1 + e−x
,

(19)

where W and b respectively denotes the weight matrix and
bias vector fitted by the linear neural network, and O ∈
R1×K is its output. Note that K represents the size or scale
of label set V which has been stated in Problem Overview.
Finally, the classification could be conducted through the
softmax function and argmax operation as:

l = argmax(softmax(O)). (20)

As a result, the predicted label l, which corresponds to
the dimension index with the maximum value, would be
assigned to input text T .
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4.3 Training Strategy

Currently, we may have a holistic understanding of the
architecture of our SRAM model. Next, we will discuss its
learning and training strategies, including Loss Function and
Model Initialization.

Loss Function. As the multi-class classification task ex-
hibits an output of distribution with different probabilities
on various classes, we need to judge the most significant
class and distinguish it from others. According to previous
work [57], [59], cross-entropy is a good way to scale the
significance of probability distribution for classification:

LE = −
∑

T∈Corpus

K∑
i=1

pi(T ) log pi(T ), (21)

Additionally, we take into account the analysis and Cosine-
loss described in Schema Space, and devise a new loss func-
tion as follows:

Loss = µLE + (1− µ)LS , (22)

where µ is an important hyperparameter to trade-off the two
kinds of losses, which will be detailedly discussed in the
following Experiments section. In this way, we could find
that the cross-entropy loss is the main role responsible for
the final classification, while the proposed cosine similarity
loss is an effective means to balance the interaction between
text-dependent concepts and text-independent schemata.

Model Initialization. Before training, a proper initializa-
tion is beneficial for optimizing our model. In conjunction
with the architecture of RAM and SRAM, we apply the pre-
trained Chinese BERT model with 24-layer, 1024-hidden,
16-heads and 330M parameters2 to support the literal s-
pace modeling and label embedding, so that the labels
could be embedded with input text into the same space
as we need [66]. In addition, for ensuring the embedding
heterogeneity between associative prior concepts and label
schemata, hence better verifying the effectiveness of our
proposed new loss paradigm, we select a well pre-trained
Chinese word embedding model3 based on distributed
assumptions [25] with a dimension of 256 to represent
associative words in U (Because homogeneous pre-trained
embedding will naturally reduce the impact of LS). The em-
bedding dimensionD is also set as 256, with fully connected
neural network for dimension transformation if necessary
according to Figure 4, while the hidden size of BiLSTM
is set as 1,024. To prevent our model from overfitting, we
add a dropout mechanism in front of the embedding layer
and fully-connected layer with a drop rate of 0.5. As for
the scale size λ of concept set U , it is a variable which will
be adapted to Radical Concept Dictionary dynamically. Be-
sides, we apply orthogonal initialization for the parameters
of BiLSTM and Xavier initialization for the fully connected
neural network, and the training epoch of SRAM and RAM
is set as 20. Finally, we apply Adagrad optimizer with a
learning rate of 0.01, and use Pytorch to build our model
and train it with two 2.30GHz Intel(R) Xeon(R) Gold 5218
CPUs and a Tesla V100-SXM2-32GB GPU.

TABLE 1
The statistics of three real-world datasets.

Datasets Count Length (Avg. / Max) Number of Class

CNT Train 47,693 17.8/56 32Test 15,901 17.8/56

FCT Train 8,220 16.3/75 20Test 8,115 16.2/64

TNT Train 287,007 22.7/150 15Test 95,664 22.7/146

5 EXPERIMENTS

5.1 Dataset Description
To fit the problems studied in this paper, we carefully
select three real-world datasets to evaluate our model with
different emphases: the Chinese News Title Dataset (CNT),
Fudan Chinese Text Dataset (FCT) and Toutiao News Text
Dataset (TNT). The original statistics of them are shown
in Table 1. To avoid randomness as much as possible, we
merge and shuffle all data for each dataset and conduct 5-
fold cross-validation for all comparison methods.

• CNT [57] is a public dataset which covers a wide range
of 32 different categories of Chinese news. After prepro-
cessing the useless text whose length is lower than 2, it
contains 47,693 texts for training and 15,901 for testing,
which is suitable for validating the generalization ability
of different methods.

• FCT4 is an official dataset provided by Fudan University
with 20 categories covering abundant academic texts for
validation. To guarantee the quality of implementation,
we carefully preprocessed this dataset by correcting and
removing unreadable samples. As a result, it contains
8,220 texts for training and 8,115 for testing. Due to the
inherent imbalanced samples between different classes,
this dataset is a good choice to evaluate the stability and
robustness of different methods.

• TNT5 is a public Chinese dataset which covers 15 d-
ifferent categories of Chinese news. It contains 287,007
texts for training and 95,664 for testing, whose scale and
volume are quite larger than the former two datasets.
Therefore, this dataset is beneficial for validating the
comprehensiveness of different methods.

5.2 Dictionary Preparation

In order to guarantee the reliability of our model, we apply
three formal Chinese Dictionary datasets to support the
process of Character Type Masking, Radical Mapping and Con-
ceptual Mapping process. In addition, we manually annotate
the labels in each dataset and query the corresponding
label descriptions and definitions from the online Oxford
Dictionary in Chinese version6, which could consequently
form a Schema Dictionary. Accordingly, Chinese Character
Type Dictionary7 contains all the information about Phono-
semantic Compound Characters; Xinhua Dictionary8 contains
the necessary radical information for mapping each char-
acter to a radical; Radical Concepts Dictionary9 includes
detailed conceptual information for all Chinese radicals,

2. https://github.com/ymcui/Chinese-BERT-wwm
3. https://spaces.ac.cn/archives/4304
4. https://www.kesci.com/home/dataset/5d3a9c86cf76a600360edd04
5. https://www.kesci.com/mw/dataset/5dd645fca0cb22002c94e65d/file
6. https://dictionary.cambridge.org/zhs/
7. http://zidian.kxue.com/
8. http://zidian.aies.cn/
9. http://xh.5156edu.com/page/z2443m7618j19616.html
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with over 1,000 concept words in total and 6 concept words
for each radical on average; Since the Schema Dictionary
is relevant to specific datasets, according to Table 1, there
would be 32 label descriptions for CNT dataset, 20 for FCT
dataset and 15 for TNT dataset.

5.3 Benchmark Methods
To comprehensively evaluate the performance of our model,
we finely select 13 benchmark text classification methods
from three perspectives, and the number of them are also
noted in Table 2: a) basic deep learning models (1-5); b)
recently proposed non-Chinese-specific outstanding models
(6-10); c) models considering the effect of Chinese-specific
feature granularity (11-13).

• TextRNN (word/char) [28] refers to the plain recurrent
neural network which processes tokens sequentially. To
compare the functionality of Chinese feature granularity
in different scenarios, we set character-level and word-
level feature as the input respectively.

• TextCNN (word/char) [24] is a convolutional neural
network-based model for text classification. With the
same aim of comparison like TextRNN, the input is also
set as two kinds, i.e., character-level and word-level.
We apply jieba10 as the segmentation tool to obtain the
word-level feature.

• FastText (word) [69] is a quite simple but effective mod-
el which applies the average of word/n-grams embed-
dings to achieve text representation and classification.

• TextGCN (word) [70] is a widely used graph convo-
lutional network for text classification. Its core idea is
to build a graph based on the co-occurrence of words
and texts, and then utilize the convolutional operation
to capture high-order neighborhoods information.

• HyperGAT (word) [71] is a state-of-the-art graph-based
network for text classification, which models texts with
text-level hypergraphs. Hence, the high-order interac-
tion between words could be captured.

• LEAM (word) [46] is a representative label embedding
model, which introduces label descriptions and learns
embeddings of words and labels in the same space to
enhance text representations. To seek common ground
while being different from LEAM, our SRAM model
employs a new strategy of utilizing label information,
which is more suitable and rational for Chinese text
classification.

• BERT (char) [32] stands for the current state-of-the-
art pre-training model for natural language processing,
which is usually applied in English materials and per-
forms well. We here take it as an important baseline and
fine-tune it to validate the rationality and effectiveness
of the design of our SRAM model.

• LCM (char) [72] is a recently proposed model enhance-
ment framework for general text classification. We take
it to enhance BERT as a contrast benchmark.

• C-LSTMs/C-BLSTMs (char+word) [57] are two
Chinese-specific text classification models applying two
independent LSTMs to concatenate word and character
features together. Since both characters and words
are important features for Chinese text, they make
up for the disadvantages of using one kind of feature
unilaterally. And C-BLSTMs is the bidirectional version.

• RAFG (char+word+radical) [59] is another Chinese-
specific text classification method. This state-of-the-art
baseline is a four-granularity model, which integrates
two extra kinds of radicals (character-level and word-
level) together with corresponding Chinese characters
and words to directly help Chinese text classification.

10. https://github.com/fxsjy/jieba

5.4 Experimental Results

The comparison results on three datasets are shown in
Table 2, from which we can see that our SRAM model is
able to substantially achieve the best results on all datasets,
no matter in terms of Accuracy, Recall or F1-score. However,
there are still some thought-provoking findings.

5.4.1 Main Results

Firstly, by comparing Chinese-specific methods (11-15) with
those non-Chinese-specific ones (1-10), we could notice that
the feature granularity of Chinese text is a crucial factor
for classification performance. Models using character-level
features consistently perform better than word-level ones,
which is due to the high recall brought by countable Chinese
characters. And utilizing character or word features unilat-
erally is worse than combing them together, which proves
that Chinese characters and words can make up for each
other and Chinese word segmentation may cause loss of
information unavoidably. In the meantime, we could infer
from Table 2 that although BERT-based models (9-10) only
take Chinese characters as main input, they can maintain a
robust performance on all datasets (more stable Recall and
F1 on FCT dataset whose samples are quite inbalanced),
which confirms that after large-scale corpus pre-training,
single character-level features can effectively adapt to the
high recall property of Chinese characters and obtain better
robustness when faced with different corpora. All these
granularity-relevant findings are quite consistent with the
study in [65]. Secondly, the significant performance of la-
bel embedding model LEAM (8) compared with recently
proposed outstanding models (6-10, graph-based and pre-
trained benchmarks) also inspires us, where the utilization
of label semantics can yield considerable performance im-
provement and rationality at the same time. Thirdly, looking
back on our modeling of the three features in Chinese (char-
acter, radical and word), we can find that RAM and SRAM
only use the character features of Chinese text literally, and
meanwhile, the word features are associated via the medium
of radical instead. This process perfectly avoids the adverse
effects of Chinese word segmentation errors, which plays a
non-negligible role in promoting the performance of RAM
and SRAM. Fourthly, the results are clear that RAM and
SRAM have a comprehensive improvement in performance
compared with the most advanced pre-trained BERT model,
which shows that our modeling strategy based on cognitive
principles can better grasp the purport of Chinese text. Last
but not least, we might know that radical is a special low-
level Chinese feature which does not possess the property of
“context”, so the way of RAFG directly integrating radicals
with Chinese characters and words context is imperfect and
taking every radical into consideration is a little improper.
Therefore, through the comparison between RAFG, RAM
and SRAM, we could learn that a more rational method of
utilizing radicals is very beneficial for better understanding
hence harnessing the messages conveyed by radicals. Over-
all, the results in Table 2 demonstrate that our proposed
RAM and SRAM can substantially outperform benchmark
methods on diverse dataset distributions.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 03,2022 at 10:26:28 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3171690, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 10

TABLE 2
Experimental results (average Accuracy, Recall and F1-score with standard deviation under 5-fold cross-validation) of different methods on CNT,

FCT and TNT dataset (“c” represents character-level feature, “w” represents word-level feature, “r” represents radical-level feature).

Model (granularity) CNT FCT TNT
Accuracy Recall F1-score Accuracy Recall F1-score Accuracy Recall F1-score

(1) TextCNN (w) 0.7560±0.003 0.7562±0.004 0.7569±0.003 0.8849±0.008 0.5149±0.016 0.5340±0.022 0.8496±0.002 0.7837±0.003 0.7848±0.002
(2) TextCNN (c) 0.7574±0.005 0.7575±0.004 0.7588±0.005 0.9091±0.003 0.6480±0.012 0.6926±0.017 0.8479±0.002 0.7830±0.002 0.7860±0.001
(3) TextRNN (w) 0.6951±0.005 0.6952±0.005 0.6967±0.006 0.8449±0.005 0.4714±0.019 0.4727±0.023 0.8447±0.001 0.7806±0.002 0.7799±0.001
(4) TextRNN (c) 0.7051±0.008 0.7050±0.007 0.7071±0.007 0.8685±0.012 0.4940±0.011 0.4775±0.011 0.8471±0.003 0.7842±0.003 0.7835±0.003
(5) FastText (w) 0.7349±0.003 0.7383±0.003 0.7393±0.003 0.8653±0.006 0.5034±0.021 0.5030±0.024 0.8410±0.001 0.7771±0.001 0.7791±0.002
(6) TextGCN (w) 0.7696±0.002 0.7693±0.002 0.7689±0.001 0.8602±0.006 0.6060±0.019 0.6520±0.026 0.8707±0.001 0.8036±0.002 0.8070±0.005
(7) HyperGAT (w) 0.7692±0.003 0.7691±0.003 0.7672±0.003 0.8980±0.004 0.6866±0.014 0.6795±0.012 0.8582±0.001 0.8141±0.004 0.8055±0.003
(8) LEAM (w) 0.7991±0.002 0.7991±0.002 0.7984±0.002 0.9320±0.003 0.7217±0.016 0.7646±0.017 0.8641±0.001 0.7989±0.002 0.7992±0.002
(9) BERT (c) 0.8082±0.003 0.8077±0.002 0.8081±0.002 0.9073±0.003 0.7390±0.015 0.7778±0.017 0.8608±0.001 0.7968±0.002 0.7975±0.002
(10) LCM (c) 0.8203±0.011 0.8203±0.009 0.8206±0.010 0.9374±0.003 0.7911±0.034 0.8104±0.023 0.8835±0.001 0.8197±0.002 0.8204±0.003
(11) C-LSTM (c+w) 0.8128±0.003 0.8135±0.003 0.8123±0.002 0.9139±0.003 0.6897±0.012 0.7007±0.009 0.8557±0.001 0.7996±0.001 0.8021±0.001
(12) C-BLSTM (c+w) 0.8178±0.004 0.8145±0.002 0.8160±0.004 0.9172±0.002 0.6893±0.011 0.7046±0.012 0.8566±0.001 0.8024±0.001 0.8046±0.002
(13) RAFG (c+w+r) 0.8253±0.007 0.8256±0.007 0.8253±0.007 0.9139±0.004 0.6981±0.011 0.7164±0.013 0.8630±0.001 0.8041±0.002 0.8066±0.002
(14) RAM (c+w+r) 0.8497±0.002 0.8500±0.002 0.8499±0.002 0.9428±0.002 0.8018±0.025 0.8272±0.027 0.8866±0.003 0.8256±0.003 0.8252±0.003
(15) SRAM (c+w+r) 0.8550±0.003 0.8549±0.002 0.8549±0.002 0.9448±0.002 0.8176±0.020 0.8386±0.025 0.8888±0.003 0.8304±0.002 0.8332±0.002

5.4.2 Ablation Results
As mentioned earlier, the designed components of SRAM
are solidly based on the cognitive principles between ideog-
raphy and reading psychology [13]. In order to validate the
design of SRAM and determine how each part affects the
final results, we conduct an ablation study by removing
each module respectively or compositionally, which is sum-
marized in Table 3.

According to the results of six ablation variants, we can
observe a consistent performance decline compared with
SRAM on all three datasets no matter which module is
removed. That is to say, all modules designed in our model
contribute a certain degree to performance improvement.
Meanwhile, the changes in ablation performance reflected
by the three datasets are quite different, namely, different
dataset distributions rely on and focus on different modules.
Consistent with the purpose of our initially selecting the
dataset, for the CNT dataset, the performance of SRAM
drops obviously when schema space or associative space
is removed. It verifies that the concept words in associative
space and label semantics in schema space are indispensable
aids to enhance the generalization ability for multi-class
Chinese text classification. In the meantime, we can notice
that the performance of SRAM on the FCT dataset de-
creases severely when the associative attention and schema
attention module are removed, which shows that simply
introducing prior information without filtering and weight-
ing will be harmful to robustness in turn. Furthermore,
as for the TNT dataset, there is a significant drop when
removing schema space, which means that a proper trade-
off between the two spaces interaction (i.e., associative and
schema spaces) and holistic classification is necessary for en-
suring comprehensiveness. Although some variants on TNT
dataset are somewhat more accurate, they cause a signifi-
cant recall decline after the removal of particular modules.
Therefore, the F1-score that embodies the comprehensive
performance better illustrates the stability of SRAM. Alto-
gether, all the ablation results could lead us to a conclusion
that each module of SRAM is indispensable to achieving
excellent performance for Chinese text classification.

5.5 Loss Paradigm Study

In Section Introduction and Section 4.2, we have discussed
the inadequacy of the previous RAM model, and left an

open choice of loss functions in our proposed Loss Calcu-
lation module. In a word, our core idea of entending RAM
to SRAM is to let our model obtain as much human prior
knowledge as possible about the semantic understanding of
input text within a reasonable range, while guaranteeing a
balance between text-dependent information (i.e., yrwo , yrw

′

o )
and text-independent information (i.e., yLo , yL

′

o ). Therefore,
we need to determine some suitable similarity/loss func-
tions to achieve this goal. To comprehensively evaluate the
design of our model, we further conduct a loss paradigm
study in this section. Specifically, we choose three loss func-
tions, i.e., cosine similarity [67] (default for SRAM model),
KL-divergence (Kullback-Leibler divergence) [73] and Mean
Square Error (MSE). The experimental results are shown in
Table 4, from which we can find that the default setting for
SRAM (SRAM-Cos) serves as a moderate benchmark. At the
same time, SRAM-KL fits better on the CNT dataset, while
SRAM-MSE performs the best on FCT and TNT datasets.

5.6 Hyperparameter Study

To validate the design of our proposed loss paradigm and
explore the hidden correlation between text-dependent pri-
or concepts and text-independent schemata, we make µ
increase from 0 to 1 to see how it affects the final per-
formance of SRAM (Since the classification effect of cross-
entropy loss will totally disappear when µ = 0, so we have
µ ∈ (0, 1]). The experimental results of adjusting parameter
µ are shown in Figure 7. Firstly, from this figure, we could
notice an obvious changing trend of rising first and then
falling rather than invariant when µ increases from 0 to
1, which indicates that combing the interactions between
two spaces and global prediction properly is crucial for
achieving better classification performance. Secondly, we
can find that when the value of µ reaches 1 (Loss = LE), the
comprehensive performance of SRAM (F1-score) becomes
either mediocre or the worst on three datasets. This phe-
nomenon is due to the cancellation of our proposed simi-
larity constraints for text-dependent and text-independent
information, which effectively proves the necessity of the
proposed loss paradigm LS . Besides, more informatively,
we can also see the peak values of nine curves in Figure 7
correspond to a consistent value range of µ from 0.2 to
0.4 in all three datasets, which means that the weights of
LS occupy 60% to 80%. That is to say, our proposed loss
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TABLE 3
Average ablation performance of SRAM, where “as.” denotes “associative” and “sc.” denotes “schema” for simplification.

Model CNT FCT TNT
Accuracy Recall F1-score Accuracy Recall F1-score Accuracy Recall F1-score

(1) w/o as. & sc. attention 0.8516±0.002 0.8516±0.002 0.8517±0.002 0.9418±0.004 0.7841±0.023 0.8077±0.025 0.8903±0.002 0.8265±0.002 0.8279±0.001
(2) w/o associative attention 0.8520±0.002 0.8521±0.001 0.8522±0.001 0.9415±0.003 0.7991±0.029 0.8191±0.021 0.8889±0.001 0.8276±0.001 0.8266±0.002
(3) w/o schema attention 0.8527±0.003 0.8530±0.002 0.8527±0.002 0.9425±0.003 0.7894±0.020 0.8139±0.022 0.8890±0.002 0.8266±0.002 0.8269±0.001
(4) w/o as. & sc. space 0.8499±0.002 0.8500±0.002 0.8498±0.002 0.9423±0.001 0.7969±0.021 0.8239±0.022 0.8906±0.002 0.8265±0.002 0.8263±0.002
(5) w/o schema space 0.8497±0.002 0.8500±0.002 0.8499±0.002 0.9428±0.002 0.8018±0.025 0.8272±0.027 0.8866±0.003 0.8256±0.003 0.8252±0.003
(6) w/o label description 0.8524±0.002 0.8525±0.002 0.8525±0.002 0.9420±0.002 0.8038±0.021 0.8250±0.019 0.8900±0.002 0.8279±0.002 0.8281±0.003
(7) SRAM 0.8550±0.003 0.8549±0.002 0.8549±0.002 0.9448±0.002 0.8176±0.020 0.8386±0.025 0.8888±0.003 0.8304±0.002 0.8332±0.002

TABLE 4
Average performance of SRAM applying different loss functions in the Loss Calculation module.

Model CNT FCT TNT
Accuracy Recall F1-score Accuracy Recall F1-score Accuracy Recall F1-score

(1) SRAM-Cos 0.8550±0.003 0.8549±0.002 0.8549±0.002 0.9448±0.002 0.8176±0.020 0.8386±0.025 0.8888±0.003 0.8304±0.002 0.8332±0.002
(2) SRAM-KL 0.8557±0.004 0.8559±0.003 0.8557±0.003 0.9447±0.002 0.8080±0.029 0.8356±0.027 0.8890±0.002 0.8294±0.002 0.8315±0.002
(3) SRAM-MSE 0.8549±0.003 0.8551±0.003 0.8551±0.003 0.9426±0.004 0.8208±0.028 0.8395±0.027 0.8883±0.003 0.8312±0.004 0.8341±0.004
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Fig. 7. Performance of our SRAM model on three real-world datasets
when hyperparameter µ is ranging from 0 to 1 (µ ∈ (0, 1]).

paradigm plays a salient and effective role in boosting the
holistic classification performance.

5.7 Efficient Analysis

To show SRAM is effective not only in learning knowledge
but also in operating efficiency, we further conduct an
efficient analysis in this section. To be specific, since RAM
and SRAM are both BERT-based models, we select BERT as
the best benchmark pre-trained model for the ease of control
variates method. The corresponding results are shown in
Table 5. Clearly from the results, we can find that the
average inference time of the three models is very fast, with
a minor difference. Although the total training time of RAM
and SRAM is longer, the convergence is much faster than
BERT. At the same time, SRAM is able to achieve a quite
lower validation loss on all datasets, which is considerably
due to our proposed loss paradigm. Thus, we can get the

TABLE 5
Average runtime of BERT, RAM and SRAM, where the “Train time”
means total training time (20 epochs). “Conv time” and “Conv loss”

means the average convergence time and convergence validation loss.

Model BERT RAM SRAM

CNT
Train time 26m41s 38m59s 43m0s
Conv time 23m7s 18m58s 24m46s
Conv loss 0.5977 0.5040 0.1881

FCT
Train time 6m27s 11m28s 11m49s
Conv time 5m37s 4m58s 6m5s
Conv loss 0.3440 0.2257 0.1618

TNT
Train time 256m49s 306m12s 346m5s
Conv time 231m46s 194m18s 232m48s
Conv loss 0.4772 0.3829 0.1316

Inference time (ms/text) 1.33 2.43 2.47

conclusion that our SRAM model has superior ability and
efficiency to tackle Chinese-specific features across different
corpora, which demonstrates the effectiveness of the pro-
posed SRAM framework again. Because all models reach
their lowest loss before 20 epochs, we keep this setting for
each model’s training on three datasets.

5.8 Case Study

To provide some intuitionistic examples for explaining why
our model gains a better performance than any other base-
line methods, we conduct a case study similar with [74] to
see what is happening in the working flow of SRAM, where
the specific cases could be found in Table 6. Taking the first
example to say, we notice that the associative words and lit-
eral features can enhance each other, i.e., associative words
“plant” and “agriculture” associated by SRAM are important
clues for inferring the concept of “Eggplant”, while other
associative words (e.g., “action” suggests the attribute of
“salvation”, and “liquid” indicates the property of “sauce”)
could be regarded as complementary contents for source
text thus helping us grasp less prominent but global seman-
tics. Then, for the second example, we could find that the
label description in dictionary enables SRAM to be aware of
the semantics of “Dress” in advance, and associative words
“vegetation”, “material” and “hair” globally reflect the trait of
“fur”, while “condition”, “property” and “time” together help
us recognize the semantics of “fashion” hence lead us to the
idea of “Dress”. As for the BERT model, due to its inability
to understand the label semantics of “Dress”, hence the pre-
diction is disturbed by certain characters in the input text.
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TABLE 6
A case study for some Chinese source texts, where the Phono-semantic Compound Characters are all painted in red.

Moreover, as for the remaining two examples, we could also
observe that the prior information provided by associative
words and label semantics are mostly informative indicators
for determining the ground truths. Although there might
be some associative words which are not directly related
to the semantics of ground truths (e.g., “liquid” for “Dress”
and “weave” for “Sports”), those words actually reflect the
original meaning of corresponding radicals, which will be
balanced under the Associative Attention module and may
be helpful in another context. In fact, when we humans are
associating related concepts and recalling relevant schema
to help text comprehension in our minds, we tend to think
of all possible meanings. This is similar to the unconscious
iceberg effect [75], [76], i.e., although some associative con-
tents seem to be irrelevant to the classification ground truth
of the current text, the sufficient associative information
and priorly learned label semantics is actually a key hidden
factor to grasp original meanings of characters and ensure
the understanding robustness. In summary, all the above
findings could finally enable us to confirm the rationality
and effectiveness of our model.

6 CONCLUSION

In this paper, we conducted an explorative but focused
study on Chinese text classification from an interdisci-
plinary viewpoint of human beings, and proposed a novel
Schema-aware Radical-guided Associative Model (SRAM)
for this task. Unlike previous methods which neglect the
cognitive principles of language comprehension such as
association and schema recalling, SRAM comprises three
coupled spaces called Literal Space, Associative Space and
Schema Space, which ideally imitates the real process in
readers’ mind when comprehending a Chinese text. While
combining computer science and language-related interdis-
ciplinary theories, our model can balance and correspond
to key technologies in the field of deep learning, so that the
performance and interpretability of our SRAM model can
coexist. Through extensive experiments, our study has gone
some way towards enhancing our understanding between
ideography, schema theory and human cognition.
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