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ABSTRACT
Recently, the Network Representation Learning (NRL) techniques,

which represent graph structure via low-dimension vectors to

support social-oriented application, have attracted wide attention.

Though large efforts have been made, they may fail to describe

the multiple aspects of similarity between social users, as only a

single vector for one unique aspect has been represented for each

node. To that end, in this paper, we propose a novel end-to-end

framework named MCNE to learn multiple conditional network

representations, so that various preferences for multiple behaviors

could be fully captured. Specifically, we first design a binary mask

layer to divide the single vector as conditional embeddings for mul-

tiple behaviors. Then, we introduce the attention network to model

interaction relationship among multiple preferences, and further

utilize the adapted message sending and receiving operation of

graph neural network, so that multi-aspect preference informa-

tion from high-order neighbors will be captured. Finally, we utilize

Bayesian Personalized Ranking loss function to learn the preference

similarity on each behavior, and jointly learn multiple conditional

node embeddings via multi-task learning framework. Extensive

experiments on public datasets validate that our MCNE framework

could significantly outperform several state-of-the-art baselines,

and further support the visualization and transfer learning tasks

with excellent interpretability and robustness.
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Figure 1: Multiple Similarity Relationships of Social Users

1 INTRODUCTION
With the development of embedding techniques, a series of Network

Representation Learning (NRL) algorithms have been proposed,

which aim to embed the network structure into a low-dimensional

space and obtain the vector representation for each node. Then

these learned node embeddings can be utilized as the features of

nodes, and be directly applied to various network-oriented applica-

tions, such as node classification [23, 27], link prediction[5], node

recommendation [33] and social influence analysis [13, 31, 34].

In the field of network representation learning, DeepWalk [17]

is the first to adopt skip-gram model proposed in Word2vec [15] to

learn the vector representation of nodes. Then Node2vec [6] fur-

ther leverages two parameters to control the breadth-first sampling

and depth-first sampling, which corresponds to the homogeneity

and structural equivalence respectively. At the same time, LINE

[24] analyzes the local and global network structure, and employs

the first-order and second-order proximity to derive the objective

functions. SDNE [26] further utilizes the semi-supervised auto-

encoder model to map the network to a highly non-linear latent

space, in order to preserve the network structure and be robust to

sparse networks. Furthermore, some research work combine the

network representation learning methods with the specific task to

further improve the performance. TriNRL [16] combines the net-

work structure with node attributes and labels, and jointly models

the inter-node relationship, node-word correlation and label-word

correspondence. And GCN [12] utilizes an approximate graph con-

volution operation to generate the node representation, and learns

the node embedding in a semi-supervised learning graph frame-

work. PinSage [33] is the state-of-the-art method that designs the
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effective graph convolutional architectures to generate the embed-

ding of graph-structured items, and uses the max-margin-based

loss function to learn the similarity between items. And it’s worth

noting that these network representation learning methods only

learn a single vector representation for each node. This means these

node embedding can only represent one unique aspect of similarity

between users. However, in a real social network, there are often

multiple aspects of similarity between users, which is illustrated in

Figure 1. From the figure, we can observe that user’s preferences

of different behaviors are not identical. For example, the ‘woman’

has similar preference with the ‘child’ on movie behavior. However,

on book behavior, the preferences of ‘woman’ and ‘men’ are more

similar. Therefore, we need to utilize multiple vectors to represent

users’ different preference similarities.

In general, there are several challenges to solve this problem.

First, although we can learn the node embedding for users on each

preference separately, we will need a lot of repeated parameters

and training data. How to utilize a single vector space to represent

multiple aspects of similarity is a nontrivial problem. Second, social

users often have relevant preferences on multiple behaviors, it is

necessary to model complex interactions among multiple users’

behaviors and jointly learn these in a united framework. To address

the challenges mentioned above, in this paper, we propose an end-

to-end framework named MCNE to learn multiple conditional node

embeddings of social users. Specifically, we design a binary mask

layer to separate the single node vector into multiple conditional

vector subspaces corresponding to each users’ preference. Then we

introduce the attention network to calculate weights of the users on

different preferences. And according to these learned weights, we

accumulate each preference similarity message to obtain the vec-

tor representation of multi-aspect preference similarities between

users, and update the node embedding by iteratively passing and

aggregating the information in immediate neighborhood. Finally,

we utilize the Bayesian Personalized Ranking (BPR) loss function to

learn the users’ preference similarity on each behavior, and jointly

learn the multiple conditional node representations though multi-

task learning framework. Generally, the technical contributions of

our paper could be briefly summarized as follow:

• we propose a novel problem that we learn multiple condi-

tional node representations to represent multiple aspects of

similarity between nodes within a single vector space.

• We design a binary mask layer to divide the single vector

as multiple conditional embeddings, and introduce the at-

tention network to model the complex interactions among

multi-aspect similarities. Andwe utilize themulti-task frame-

work to jointly learn conditional node embeddings.

• Extensive experiments on public datasets validate that our

MCNE framework could outperform several state-of-the-art

baselines with significant margin. Besides, we demonstrate

that MCNE could well support the visualization and transfer

learning tasks with excellent interpretability and robustness.

2 RELATEDWORK
2.1 Network Representation Learning
In recent years, unsupervised network representation learning

methods that only utilized the network structure information are

the most studied in this field. These approaches can be divided

into three categories: The first is based on truncated random walks

and assumes that nodes with the similar network structure have

similar vector representation. DeepWalk [17] first attempts to gen-

erate training samples by random walk on the network, and utilizes

skip-gram model proposed in Word2vec [15] to learn the vector

representation of nodes. Noticing that DeepWalk uses the uniform

sampling to generate the training sentences, node2vec [6] conducts

theweighted randomwalk by two hyperparametersp andq, in order
to capture the homogeneity and structure equivalence respectively.

The second is based on k-order distance between nodes in network.

For example, LINE [24] focuses on preserving first-order proximity

and second-order proximity to learn the node representation. Then

GraRep [1] further capturesk-order relational structure information

to enhance node representation by manipulating global transition

matrices. The third is based on deep learning techniques. With the

advantage of deep learning, we can obtain higher-order nonlinear

representation. Therefore, SDNE [26] proposes a semi-supervised

auto-encoder model to obtain node embedding by preserving the

global and local network structure information. DNGR [2] adopts a

random surfing model to capture the graph structural information

and learns the node representation from PPMI matrix by utilizing

stacked denoising auto-encoder. GraphGAN [28] proposes an inno-

vative graph representation learning framework that the generator

learns the underlying connectivity distribution and the discrimi-

nator predicts the probability the edge existence between a pair

of vertices. GraphSAGE [7] iteratively generates the node embed-

ding by sampling and aggregating features from the nodes’ local

neighborhood. And GAT [25] leverages the self-attentional layers

to replace the graph convolution operation.

Furthermore, some research work formalize it into a supervised

problem to obtain the task-specific node embedding. TriDNR [16]

learns node representation by modeling the inter-node relationship,

node-word correlation and label-word correspondence simultane-

ously. LANE [9] proposes to learn the representations of nodes,

attributes, labels via spectral techniques respectively, and projects

them into a common vector space to obtain the node embedding.

M-NMF [29] utilizes a novel Modularized Nonnegative Matrix Fac-

torization to incorporate the community structure into network

embedding. GCN [12] is based on an efficient variant of convolution

neural networkwhich operates directly on graphs and optimizes the

node representation in semi-supervised learning graph framework.

And PinSage [33] designs effective graph convolutional architec-

tures to learn the similar relationship of graph-structured items for

web-scale recommendation. And more related work on network

embedding can be found in this survey [4]. Different from previous

work, we propose a novel problem that learns multiple conditional

network representations to represent the multi-aspect similarities

of nodes in different semantics.

2.2 Binary Neural Network
Recently, several approaches have been proposed on the develop-

ment of neural networks with binary weights [3, 10]. The main

goal of these methods is to simplify the calculations in neural net-

works and reduce the size of model storage. Matthieu et al. [3]

propose to binarize the weights for all layers during the forward
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and backward propagations while keeping the real-valued weights

during the parameter update. The real-valued updates are found

to be necessary for the application of Stochastic Gradient Descent

(SGD) algorithms. Mohammad et al. [18] introduce a weight bina-

rization scheme where both a binary filter and a scaling factor are

estimated. Motivated by these work, we propose a binary mask

layer to automatically select the relevant embedding dimension for

different tasks. To the best of our knowledge, our proposed MCNE

model is the first to introduce the binarization technique in the field

of network representation learning.

3 PROBLEM DEFINITION
In this section, we will give some formal definitions of the problem

for a better explanation. We first define a social network as follows:

Definition 1. (Social Network) A social network is denoted as
G = (V ,E), where V = {v1, ...,vn } represents the set of vertices and
E = {ei, j }ni, j=1 is the set of edges between vertices. Each edge ei, j ∈ E

is associated with a weightwi j ≥ 0, which indicated the strength of
relationship between vertex i and vertex j.

In real social networks such as Facebook and Epinions, vertices

often represent users in the network, and edges denote the friend

or trust relationship between users. The weights on the edges are

often represented by binary values that means wi j = 1 indicates

user vi and vj are linked by an edge, and vice versa.

And with the rapid development of social network, the services

provided to social users have become more diverse. The users can

not only establish friend relationship with each other, but also

consume on different types of social network services like movies,

music, etc. Therefore, the users also generate many different cate-

gories of behavioral record information in the social network, and

we formally define these as follows:

Definition 2. (Multi-category User Behavior) Given the so-
cial users V (|V | = N ) and items Ic (|Ic | = Mc ) of category c , we
utilize matrix Rc ∈ R |N |× |Mc | to represent the users’ behavior record
information on social service of category c . If user i consumes item
j, the corresponding value Ri j |c = 1, otherwise it equals 0. And we
utilize a set of matrices SR = {R1, ...,RC } to denote all behavior
record information of social users on multiple category social services,
where C is the number of categories.

As shown in the definition above, each behavior record matrix

Rc reflects the social users’ preference on category c . However, as
we illustrated the toy example in Introduction Section, the simi-

larities between users’ preferences on different categories are not

identical. Therefore, it is inappropriate to only learn a single vector

representation for each user to represent multiple similarity rela-

tionships between users. In order to address this problem, we first

elaborate the formal definition as follows:

Definition 3. (Multiple Conditional Network Representa-
tions) Given a network G = (V ,E) and a set of multi-category
behavior matrices SR = {R1, ...,RC }, we aim to simultaneously
learn a set of low-dimensional conditional vector representations
SU = {U1, ...,UC } for social users on multiple category behaviors.
And each conditional vector representationUc ∈ R |V |×d (d << |V |)
should satisfy the following properties: 1) the conditional network

representation should preserve the network structure information; 2)
the conditional network representation should maintain the similarity
relationship of users’ behavior on category c .

Next we will introduce how our proposed model can simulta-

neously learn multiple conditional network representations in a

united vector space.

4 MCNE: MULTIPLE CONDITIONAL
NETWORK EMBEDDINGS

In this section, we first present a general description of our model.

Then we introduce each part of the model in detail, and finally

illustrate the model optimization.

4.1 Framework
In this paper, we propose theMultipleConditionalNetworkEmbedding

(MCNE) model to jointly learn the network structure and multi-

category user behavior information, which is illustrated in Figure 2.

Specifically, we adopt the framework of Graph Neural Network

(GNN) that is based on the message-passing-receiving mechanism,

in order to iteratively aggregate information from a node’s local

neighborhood and update the node representation. For each layer

of graph neural network, we first utilize a binary mask layer to

select the relevant vector dimensions corresponding to each user’s

behavior preference. Then we use the attention mechanism to cal-

culate the weights of different behaviors between adjacent users,

and we aggregate the multi-preference information according these

weights to update the node representation of next layer. Further-

more, we utilize Bayesian Personalized Ranking (BPR) loss function

to learn the users’ preference similarity on each behavior. Finally,

we use the multi-task framework to simultaneously learn multiple

conditional network representations, in order to represent different

preference similarities of social users. As shown in Figure 2, MCNE

mainly contains three parts, i.e., generating multiple conditional

network representations, learning users’ preference similarity on

a specific behavior, and jointly learning multiple user preferences.

Next we will elaborate the technical details of each part.

4.2 Generating Multiple Conditional Network
Representations

In this section, we describe how to generate multiple conditional

network representations for each node.

4.2.1 Embedding Layer. Similar as many graph neural network

models, the input of our model is a social networkG(V ,E). We first

project all users into a low-dimensional vector space and utilize the

matrix U 0 ∈ R |V |×d0
to represent the initial node representation.

We regard these node vectors as a comprehensive representation

that can denotes users’ preferences on all behaviors. In practical

applications, we can also process the users’ profiles, such as gender

and age, as the initial node representation, and formalize it into an

inductive representation learning problem. While it’s not the focus

of this paper, we leave the exploration as a future work.

4.2.2 Binary Mask Layer. From the previous part, we obtain the

initial node representation U 0
, which can also be considered as

the node embedding of the k-th (k=0) layer of the graph neural
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Figure 2: Framework of Multiple Conditional Network Embeddings (MCNE).

network. In order to model the multiple conditional similarities

betweens users in different behaviors, we introduce a binary mask

layer to divide the node representation of each layer into different

vector subspaces, which is illustrated in the leftmost part of Figure 2.

Specifically, our modified graph neural network associates the node

embedding of each layer with a real-valued mask weight matrix

Mk
r ∈ R |C+1 |×dk , wheredk is the dimension size of node embedding

in k-th layer and C is the number of user behavior category. And

we add an additional dimension to represent other user behavior

preferences that are not included in the training dataset. After that,

we obtain the binary mask matrix Mk
b by passing the real-value

mask matrixMk
r through a hard thresholding function given by

Mk
bi j
=

{
1, ifMk

ri j ≥ 0

0, otherwise

, (1)

we denotemk
c to be the selection of the c-row of binary mask matrix

Mk
b . And the conditional network representation of user i on c-th

behavior can be defined as follows:

uki pc = u
k
i ⊙mk

c , (2)

where uki is the node embedding of user i in k-th layer, and ⊙
represents the element-wise product of two vectors. And the mask

mk
c plays the role of a gating function selecting the dimension

of embedding related to c-th behavior depending on whether the

corresponding value is 0 or 1. By using the binary mask matrix

Mk
b , we can divide a united vector space of node embedding into

different vector subspaces related to each behavior. For example, a

dense node embedding such as [0.1,0.9,-0.5,1] can obtain multiple

conditional network representations such as [0.1,0,0,1], [0,0.9,-0.5,0]

and [0,0.9,-0.5,1] after different binarymasks. Andwe consider these

separate subspaces as the conditional network representations of

the user on different behaviors. Although the hard thresholding

function in Eq. (1) is non-differentiable, we combine the techniques

used in network binarization [3] and train these mask variables in

end-to-end fashion, as described in detail below.

4.2.3 Multi-aspect Similarity Message Sending Operation. From the

binary mask layer, we can obtain the multiple conditional node rep-

resentations in k-th layer. Then we adopt the message sending and

receiving operations [22] of graph neural network to get the node

embedding in next (k+1)-th layer. In this part, we first introduce our

modified multi-aspect similarity message sending operation, which

is illustrated in Figure 3. Specifically, the multi-aspect similarity

message h(i, j) sent by nodevi on the connected edge ei, j is defined
as follows:

v → e : hk(i, j) =
|C |+1∑
c=1

ak(i, j) |c · u
k
i |c , (3)

where uki |c is the conditional representation of users on c-th behav-

ior, and ak(i, j) |c is the corresponding weight. Then we accumulate

all the conditional representation according to the weights, and

obtain the embeddinghk(i, j) of edge ei, j that contains multiple users’

preference information. As we illustrated in Figure 1, the preference

similarities of users on different behaviors are not equivalent. So we

introduce the attention network to calculate weight score ak(i, j) |c ,
as described below:

ak
′

(i, j) |c = hk
T
ReLU (Wk

a [uki |c ,u
k
j |c ]), (4)

whereWk
a ∈ Rt×2dk and hk ∈ Rt are model parameters. We take

each conditional representation [uki |c ,u
k
j |c ] of two adjacent nodes

on edge ei, j as input of the attention network, and then obtain

the corresponding weight score by a multi-layer neural network.

Furthermore, these scores are normalized by the softmax function:

ak(i, j) |c =
exp{ak ′(i, j) |c }∑ |C |+1

l=1 exp{ak ′(i, j) |l }
, (5)

by using this attention network, more similar behavior between

users will be assigned a greater weight score. And the greater the

weight score ak(i, j) |c of c-th behavior corresponds, the moremessage

of conditional representationuki |c will be passed on edge ei, j , which

makes the users more similar on c-th behavior.

4.2.4 Multi-aspect Similarity Message Receiving Operation. After
we obtain the representation of message passed on edges, we further

take the message receiving operation to update the node embedding

in next layer. For each node vi in the network, the detailed process

of receiving operation is illustrated as follows:

e → v :

{
hk+1N(i) = AGGR

k+1({hk(i, j),∀j ∈ N(i)})
uk+1i = ACT(Wk+1[hk+1N(i),u

k
i ])

, (6)

specifically, we uniformly sample a fixed-size set of nodes N(i)
from the neighbors of vi

1
, in order to keep the computational foot-

print of each batch fixed. Then we utilize the average pooling as

1
Exploring weight sampling is an important direction for further work.
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Figure 3: Multi-aspect Similarity Message Sending Opera-
tion in MCNE.

the function AGGR
k+1

to aggregate the neighbors’ multi-aspect

similarity messages into a single vector hk+1N(i). Finally, we com-

bine the current node embedding uki and aggregated neighborhood

vector hk+1N(i), and take them into a fully connected layer with non-

linear activation function ACT(x) =max(0,x) to obtain the node

embedding uk+1i in next (k+1)-th layer.

4.2.5 Final Multiple Conditional Network Representations. By the

multi-aspect similarity message sending and receiving operation

in each layer, we are able to aggregate the information of multiple

users’ preferences in immediate neighborhood. Then we can con-

tinuously stack k layers to capture more information from k-order
nodes. And we denote the final node embedding output at last layer

(k+1), as U ∈ R |V |×d
. Furthermore, we utilize the last binary mask

layer to obtain final multiple conditional network representations

{U1,U2, ...,UC } of social users on different behaviors.

4.3 Jointly Learning of Conditional Network
Representations

In this section, we will introduce how to simultaneously learn

multiple conditional network representations of social users on

different behaviors. As we focus on the implicit feedbacks of users,

we utilize the widely used Bayesian Personalized Ranking (BPR)

criterion to learn the users’ preference similarity in each behavior.

Given the record matrix Rc and conditional embedding ui |c on c-th
behavior, the loss function is formally defined as follows:

Lc (Rc ,Uc ) = −
∑

(i,p,n)
lnσ (ui |czp |c − ui |czn |c ) + λ1∥Θc ∥2, (7)

where zp |c and zn |c are the embeddings of item p and n on c-th
behavior, with the same dimension as the conditional node embed-

ding ui |c . For each user vi , we take the interacted item p as the

positive sample, and randomly select the non-interacted item n as

the negative sample. By optimizing Eq. (7), we can make the users’

preference on positive item larger than those on negative item, so

that we can learn the users’ preference similarity on c-th behavior.

Meanwhile, the multiple behaviors of users are often relevant

in practical application. To this end, we consider the learning of

each conditional embedding as a single task, and utilize the multi-

task learning framework to jointly learn the multiple conditional

embeddings, as defined below:

L(SR , SU ) = 1

C

C∑
c=1

Lc (Rc ,Uc ) + λ∥Θ∥2, (8)

where C is the number of user behaviors and tasks, Θ indicates

all the parameters of our model. Through the combination of our

binarymask layer andmulti-task learning framework, we can simul-

taneously learn users’ multiple preference similarities on different

behaviors, and utilize the learnable subspace to share the relevant

information between different behaviors, which can effectively al-

leviate the sparsity of training data, and enhance the robustness of

learned multiple conditional network representations.

4.4 Model Optimization
In this section, we will introduce the optimization of our model

in detail, which consists of two parts: binary mask learning and

mini-batch training algorithms.

4.4.1 Binary Mask Learning. Because the initialization of real-

valued mask weight matrixMk
r has a great impact on the conver-

gence and performance of our model, we will describe it in detail

here. We utilize the Uniform Distribution Mk
ri j ∼ U (−0.5, 0.5) to

initialize the variables, and find that initialization with a fixed value

can not achieve competitive performance in experiments. And this

initialization scheme proposed above allows us to better understand

the benefits of learnable masks, which we will further elaborate in

the following Experiments Section.

In Eq. (1), we obtain the binary mask matrix Mk
b by applying

a non-differentiable threshold function to the real-valued matrix

Mk
r . In order to use the class of Stochastic Gradient Descent (SGD)

algorithms to update the variables in matrix Mk
r , we adopt the

training method proposed in [3]. Specifically, we only binarize the

mask variables during the forward and backward propagations of

network, and update the real-valued mask variablesMk
r using the

gradients computed for binary mask variablesMk
b . In addition, we

enforce the real-valued variables to lie within the [−1, 1] interval
at each training iteration. Because the real-valued variables would

otherwise grow very large with any impact on the binary variables.

Finally, we utilize the Adam algorithm[11] to train our model in an

end-to-end differentiable manner.

4.4.2 Mini-batch Training. In Section 4.2, the computational com-

plexity of generating multiple conditional network representations

for all nodes is very high. So we extend our proposed generating

algorithm to the mini-batch setting, in order to enable that our

model can be applied to the large-scale social networks. Concretely,

given a part of nodes in the network, we first forward sample the

required neighbors (up to layer k+1), and only compute the node

representations that are necessary to used in each layer, which can

greatly improve the speed of our model optimization.

TimeComplexity. By using themini-batch training setting, the

time complexity for our MCNE model is fixed at O(M∏k
i=1 |Ni |),

whereM is the number of nodes in each mini-batch data, k is the

layer number of our modified graph neural network, and Ni is the

number of sampling neighbors in each layer. In general, we often

set k = 2 and |N1 | · |N2 | ≤ 50 to achieve satisfactory performance.
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Table 1: Statistics of the Datasets

Datasets #Users #Links Behaviors #Items #Interactions

Ciao 4,321 121,408

Beauty 9,243 23,091

Book 12,409 21,105

Travel 11,899 20,857

Epinions 10,459 280,258

Game 6,804 30,417

Electronics 12,425 30,429

Travel 11,885 38,578

Therefore, the time complexity is acceptable and the proposed

MCNE model could be applied to the real-world applications.

5 EXPERIMENTS
5.1 Experimental Settings
5.1.1 Datasets. We conduct the experiments on two publicly avail-

able datasets Ciao and Epinions
2
, which are two popular who-trust-

whom online social networks. The users consume multiple different

categories of products on the website, and establish their trust net-

works based on other users’ product views. And we select three

representative behaviors from Ciao and Epinions to study multiple

preferences of users in the network, respectively.

In the dataset preprocessing step, for both datasets, we filtered

out the users that have less than 2 social links and 2 multi-category

behavior records. The detailed statistics of the data after prepro-

cessing are shown in Table 1.

5.1.2 Baselines. In order to demonstrate the effectiveness of learned

conditional network representations, we compare with the-state-

of-art algorithms and some variants of MCNE. And the compared

baselines are selected from two aspects. One is the representative

algorithms in recommendation field like BPR, LibFM and NFM, and

the other is competitive network representation learning methods

such as Node2vec, LINE, GraphSage and PinSage. And the details

of these baselines are illustrated as follows:

• BPR[20]: It’s a competitive latent factor model for implicit

feedback based recommendation, which designs a ranking

based function that assumes user prefers the interacted items

over all other non-observed items.

• LibFM[19]: It’s the official implementation
3
of Factorization

Machines. And it has shown strong performance for person-

alized tag recommendation and context-aware prediction[21].

We utilize the user’s adjacency matrix as its own attributes.

• NFM[8]: It utilizes the deep neural network to capture the

higher-order feature interaction, and bring together of linear

factorization machines with the strong representation ability

of non-linear neural networks.

• Node2vec[6]: Different from DeepWalk, it designs a biased

truncated random walks to efficiently explore diverse neigh-

borhood and utilize skip-gram model to learn node embed-

ding. Besides, we combine Node2vec and BPR to formalize

a supervised network representation learning problem, and

obtain node embedding by jointly predicting the network

structure and items consumed by users. We represent this

2
https://www.cse.msu.edu/~tangjili/trust.html

3
http://www.libfm.org/

supervised algorithm as Node2vec-B, and only report the

best results of them for brevity.

• LINE[24]: It learns the network embedding by preserving

the first-order proximity or second-order proximity of the

network structure separately. And we utilize the best of them

as the final baseline. Similar to Node2vec, we also add the

LINE-Bmethod and only illustrate the best algorithm in the

experimental results.

• GraphSage[7]: It iteratively generates the node embedding

by sampling and aggregating features from the nodes’ local

neighborhood. Then the node embedding are learned by

maintaining the network structure information.

• PinSage[33]: It’s a state-of-the-art algorithm designing ef-

fective graph convolutional architectures for web-scale rec-

ommendation. The origin PinSage focuses on learning the

embeddings of graph-structured items, and we generalize

their method to apply to our problem by constructing a com-

plete network by user-user and user-item bipartite graphs.

• MCNE-F: It is the simplified version ofMCNE,which utilizes

the fixed disjoint masks instead of our proposed learnable

binary masks, illustrated in the left of Figure 4, and omits

the attention network.

• MCNE-A: It is the reduced version of MCNE only without

introducing the attention network.

5.1.3 Evaluation Protocols. In order to evaluate the performance

of learned conditional network representations, we randomly se-

lect 70% of each behavior data as training set, 10% as validation

set, and 20% as test set. For the compared baselines, we adopt two

different dataset partitioning methods. One is that we conduct the

baselines on the training sets of all behavior records, and regard the

learned single vector representation as conditional embeddings of

users on all behaviors. Another is that we independently train these

baselines on the training set of each behavior, so as to obtain the

different conditional representations of users. And we take the best

of them as the final experimental results for brevity. Meanwhile, we

utilize BPR model on the training set to learn the item embeddings

for unsupervised network representation learning methods like

Node2vec, LINE and GraphSage. And for the supervised algorithms,

we can directly use the inner product of the conditional node em-

beddings and item embeddings as the similar score. Since it’s too

time-consuming to rank all items for every user during evaluation,

we adopt the common strategy[30, 32] that randomly sample 100

negative items that are not interacted by the user, and rank the

test items among the 100 items. Furthermore, the performance of a

ranked list is evaluated by two widely adopted ranking based met-

rics: Recall and Normalized Discounted Cumulative Gain (NDCG).

And we truncate the ranked list at different value K=[5, 10, 20] for
both metrics, and observe the similar trend. So we only report the

results of K=5 for brevity. Finally, we repeat each experiment 10

times independently and report the average ranking results.

5.1.4 Parameter Settings. We implement our method based on Ten-

sorFlow, and the model parameters are initialized with a Gaussian

distribution(with a mean of 0 and standard deviation of 0.01). We

set the number of hidden layers k in MCNE as 2, the embedding

dimensions of each layer as [256, 128, 100], and neighbors sample

size Ni of each layer as [20, 20]. The regularization parameter λ is
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Table 2: Recall@5 and NDCG@5 Comparisons for Multiple Behaviors on the Ciao and Epinions Datasets.

Datasets Ciao Epinions

Tasks Beauty Book Travel Electronics Travel Game

Metrics Recall@5 NDCG@5 Recall@5 NDCG@5 Recall@5 NDCG@5 Recall@5 NDCG@5 Recall@5 NDCG@5 Recall@5 NDCG@5

BPR 12.71% 21.14% 14.75% 21.23% 14.73% 16.20% 11.83% 13.64% 30.96% 33.29% 34.47% 39.86%

LibFM 15.38% 22.34% 16.42% 21.62% 15.31% 20.33% 18.93% 18.78% 32.73% 36.92% 35.62% 40.97%

NFM 16.79% 23.94% 18.24% 22.51% 15.91% 21.36% 19.37% 19.61% 33.83% 37.36% 36.57% 41.55%

Node2vec-B 19.17% 26.88% 21.98% 27.36% 19.78% 24.68% 24.33% 23.87% 39.24% 42.07% 41.14% 45.64%

LINE-B 19.49% 28.80% 19.71% 26.50% 16.21% 21.18% 23.35% 24.41% 38.03% 41.19% 39.51% 44.07%

GraphSage 17.25% 25.62% 20.31% 25.31% 18.32% 23.84% 25.12% 23.11% 36.12% 40.85% 40.12% 43.47%

PinSage 23.41% 31.01% 25.13% 28.55% 24.45% 29.47% 27.36% 26.52% 42.56% 44.02% 42.68% 45.54%

MCNE 28.18% 36.40% 29.67% 35.75% 28.47% 34.75% 33.20% 33.84% 45.30% 48.24% 46.98% 50.92%
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Figure 4: Visualization of the Last Binary Masks

set as 0.0001 and the number of negative item samples is set as 5.

In the process of model training, we set the learning rate as 0.003

and mini-batch size as 128. The parameters of other baselines are

the same as those in their origin paper and tuned to be optimal.

Besides, we set the final node embedding dimension to be 100 for

all methods in order to get a fair comparison.

5.2 Experimental Results
In this section, we first introduce the overall performances of all

models on two datasets, and then present the comparison results

of MCNE variants.

5.2.1 Performance Comparison. In this part, we first compare with

the state-of-the-art methods on two datasets, and illustrate the

Recall@5 and NDCG@5 results for both datasets in Table 2. And

we utilize bold-faced to highlight the best experimental results.

From Table 2, we can obtain the following observations:

First, compared with all the baselines, MCNE model consistently

achieve significant improvements on multiple behavior tasks of

two datasets. It demonstrates that the conditional network repre-

sentations learned by our MCNE model can effectively represent

the user’s different preferences in multiple behaviors.

Second, by comparing with the representative recommendation

algorithms BPR, LibFM and NFM, we can observe that the NRL

methods achieve better performance. This shows that node em-

bedding learned by NRL methods can better capture the network

structure information between users.

Third, we can find that the performance of PinSage, Node2vec-B

and LINE-B outperforms GraphSage, LINE and Node2vec, respec-

tively. It demonstrates that comprehensive node embedding learned

by unsupervised NRL methods can’t effectively present the prefer-

ence similarity between users on a specific behavior. That means it’s

necessary to learn a corresponding conditional network represen-

tation for each behavior, so as to capture the different similarities.

Finally, PinSage achieves better performance than Node2vec-B

and LINE-B methods, which indicates that graph neural network

framework can capture network structure information between

users more effectively. And MCNE obtains better performance than

PinSage, because it considers the weighting relationships between

different preferences of social users, and utilizes multi-task learning

framework to share information among multiple behaviors.

5.2.2 Performance with MCNE Variants. In order to demonstrate

the effectiveness of each part in MCNE, we present the comparison

results of MCNE-F, MCNE-A, and MCNE in Figure 5. And we can

obtain the following conclusions:

First, Compared with MCNE-F, MCNE-A achieves better per-

formance on two datasets, which proves the effectiveness of our

proposed binary mask layer. And we visualize the last binary mask

mk+1
c for each behavior in Figure 4. Then we can observe that the

learned masks filters out the relevant embedding dimension for

each behavior to obtain the conditional network representation, and

utilize the overlapping dimensions to share relevant information.

Second, From the comparison results of MCNE-A and MCNE, we

can illustrate that the proposed attention network can effectively

models the weighting relationships of multiple behaviors between

social users, and make the users with more similar behaviors closer

in the conditional vector space. Besides, we can infer the reason

for formation of edges between users according to the weighting

distribution obtained by the attention network, which can enhance

the interpretability of embedding learning algorithm. And we will

visualize learned weight values and integrate them into model’s

interpretable part in further work.

5.3 Further Experiments
In this section, we will introduce the conditional network embed-

ding visualization and transfer learning for MCNE , in order to

illustrate the interpretability and robustness of our proposed model.

5.3.1 Conditional Network Embedding Visualization. An important

application of network embedding is to generate visualizations of

a network in a two-dimensional space, so that we can intuitively

observe the relevance between nodes in the network. To conduct

the visualization task, we randomly select 1000 users in the Ciao

dataset. Then we project their multiple conditional node embed-

dings learned by MCNE into a two-dimensional space by the widely

used visualization tool t-SNE[14]. We represent each conditional

node embedding in different colors and mark the corresponding

behavior name at the center of each conditional node embedding.

And the visualization result is shown in Figure 6.
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Figure 5: Comparison Results of MCNE Variants on Ciao and Epinions Datasets.

Figure 6: Visualization of Conditional Network Representa-
tions on Ciao Dataset.

From Figure 6, we can observe that there is an obvious distance

between different conditional network embeddings. It demonstrates

that the multiple conditional embeddings learned by MCNE are dis-

criminative, so they can represent different similarities of users on

multiple behaviors. Meanwhile, there is a small amount of coverage

between conditional network embeddings. This result can illustrate

there is a certain correlation between conditional node embeddings.

Through Figure 4 and Figure 6, we can further demonstrate the

effectiveness of our proposed binary mask layer and explain the

correlation between conditional network embeddings.

5.3.2 Transfer Learning for MCNE. In this section, we want to in-

vestigate whether MCNE can transfer to a new task and achieve the

satisfactory performance. In order to conduct this experiment, we

add two user behavior records from the Ciao and Epinions datasets,

and compare with the most competitive baseline PinSage. Specifi-

cally, we remove the attention network in MCNE and regenerate

the corresponding real-valued mask variables for the new task.

Then we directly use the fixed model parameters of trained MCNE,

and only update the real-valued mask variables. According to the

experimental setting introduced in Section 5.1, we finally illustrate

the performance of new task in Table 3.

From Table 3, we can observe that MCNE achieves the better

performance than PinSage, which proves MCNE can effectively cap-

ture multi-aspect similarities between users, and robustly transfer

to the new task. Besides, different from PinSage that must retrain all

the model parameters on the new task, MCNE only need to update

a small number of real-valued mask variables, which can greatly

improve the efficiency and applicability of our model.

Table 3: Results on Transfer Learning for MCNE

Datasets Ciao Epinions

Tasks Restaurant Sports

Metrics Recall@5 NDCG@5 Recall@5 NDCG@5

PinSage 28.18% 25.97% 36.41% 31.17%

MCNE 31.20% 27.55% 38.03% 32.69%

5.4 Parameter Sensitivity
We investigate the sensitivity of our model parameter in this sec-

tion. Specifically, we mainly evaluate how the dimension of node

embeddingd and neighbors sample size |Ni | affect the performance.

We conduct this experiment on two datasets and obtain the similar

trend. So we only report the results on the Ciao dataset for brevity.

Impact of the dimension size d : We vary the dimension size

of embedding from 50 to 250 by in increment of 50, and present

the experimental results on multiple behavior tasks in Figure 7(a).

From the figure, we can observe that the performance raises when

the size d of dimension increases. This is because more dimensions

can encode more useful information. However, the performance

decreases when the dimension size dk continuously increase. The

reason is that too large size of dimensions may introduce more

spareness and noises which will reduce the performance.

Impact of the sampling neighbors size Ni : In order to con-

duct this experiment, we fix the number of sampling neighbors

Ni in each layer to the same size, and change the number from 10

to 50. Then we illustrate the performance and runtime on beauty

task in Figure 7(b). As the number of sampling neighbors increases,

the margin of experimental performance gradually decreases, and

the runtime of algorithm increases rapidly. Therefore, we often set

the number of sampling neighbors as 20, which can balance the

performance and runtime of MCNE well.

6 CONCLUSION
In this paper, we proposed an end-to-end framework named MCNE

to learn multiple conditional network representations for each user

of social network. We designed a novel binary mask layer to sepa-

rate the single node embedding to multiple conditional node embed-

dings for different behaviors. Thenwe introduced attention network

to model the complex interactions among users’ multiple aspects

of similarity. And we proposed the adapted multi-aspect similarity

message sending and receiving operation, in order to aggregate
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Figure 7: Parameter Sensitivity w.r.t the dimension of em-
bedding d and size of sample neighbors |Ni |
multi-aspect preference information from high-order neighbors.

Furthermore, we utilized the Bayesian Personalized Ranking loss

function to learn the users’ preference similarity on each behavior,

and jointly learn the multiple conditional node embeddings through

multi-task learning framework. Compared with the-state-of-art

baselines, MCNE can not only achieve significant performance im-

provements, but also illustrate the interpretability and robustness

of learned conditional representations. In further work, we will

attempt to combine the nodes’ attribute information to improve

the performance and interpretability of MCNE.
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