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ABSTRACT
Crowdfunding is an emerging Internet fundraising mechanism by
raising monetary contributions from the crowd for projects or ven-
tures. In these platforms, the dynamics, i.e., daily funding amount
on campaigns and perks (backing options with rewards), are the
most concerned issue for creators, backers and platforms. However,
tracking the dynamics in crowdfunding is very challenging and still
under-explored. To that end, in this paper, we present a focused
study on this important problem. A special goal is to forecast the
funding amount for a given campaign and its perks in the future
days. Speci�cally, we formalize the dynamics in crowdfunding as
a hierarchical time series, i.e., campaign level and perk level. Spe-
ci�c to each level, we develop a special regression by modeling
the decision making process of the crowd (visitors and backing
probability) and exploring various factors that impact the decision;
on this basis, an enhanced switching regression is proposed at each
level to address the heterogeneity of funding sequences. Further,
we employ a revision matrix to combine the two-level base forecasts
for the �nal forecasting. We conduct extensive experiments on a
real-world crowdfunding data collected from Indiegogo.com. �e
experimental results clearly demonstrate the e�ectiveness of our
approaches on tracking the dynamics in crowdfunding.
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Figure 1: An example of raising-money campaign.

1 INTRODUCTION
Crowdfunding, as a particular form of crowdsourcing, is the prac-
tice of funding a project or venture by raising monetary contribu-
tions from a large number of people. Recent years have witnessed
the rapid development of crowdfunding platforms, such as Kick-
starter.com1, Indiegogo.com2. In 2015, it was estimated by Forbes
that over US $34 billion were raised worldwide in this way, com-
pared with that the venture capital industry invests $30 billion on
average each year [3].

As the most popular type of crowdfunding, reward-based plat-
forms (e.g., Indiegogo.com) enable people to create projects for
raising money they need, in return for “rewards” (o�en vowing
future products). When an individual (or a team) wants to raise
money on these platforms, she will create a campaign for her project.
Figure 1 shows the snapshot for one raising-money campaign on
Indiegogo.com. From the campaign page, we can see some basic
properties of this campaign, e.g., creator, goal, story and also the
dynamic funding progress, e.g., funded/remaining amount, remain-
ing days. A campaign o�en sets several (e.g., 10) types of “rewards”
(i.e., perks) with di�erent prices, thus backers could make di�erent
monetary contributions by selecting di�erent perks. �e funding se-
quence is shown in the green rectangle of Figure 1, which is indeed
a two-level time series, i.e., the dynamic of funding amount on perks
and dynamic of summarized-funding amount on this campaign.

In the literature, there are a number of studies on crowdfund-
ing [4, 27, 29]. Most of these existing works focus on predicting
the campaign success, i.e., reaching the �xed funding goals or

1h�ps://www.kickstarter.com
2h�ps://www.indiegogo.com
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not [22, 27, 29], with small-scale datasets. However, many plat-
forms, such as Indiegogo.com, encourage the “�exible goal” instead
of the “�xed goal” [10], where the success of a campaign is no
longer a big concern of creators. In fact, for creators, backers and
platform operators, they all want to understand and forecast the
dynamics of campaigns and perks every day, rather than just pre-
dict the �nal funding results. Speci�cally, successful forecasting of
the dynamics could bene�t all three parties: (1) creators can update
their campaigns and adjust the perk se�ings in time based on the
dynamics; (2) backers can make be�er decisions according to the
current popularities and future dynamics; (3) platform operators
can provide be�er services, such as management and recommenda-
tion of campaigns based on the dynamics. Unfortunately, less e�ort
has been made towards this goal. To this end, in this paper, we
propose a focused study on tracking and forecasting the dynamics
in crowdfunding in a holistic view. To the best of our knowledge,
this is the �rst a�empt in this area.

However, it is a very challenging task. First, there are hierarchical
dynamics in longitudinal crowdfunding data, i.e., multiple time
series of funding amount for a given campaign and its multiple
perks. How to model the hierarchical dynamics is a nontrivial
problem. Second, funding dynamics are potentially a�ected by the
visiting crowd’s decision making and various factors, such as social
features, prices, and time. To track and forecast the dynamics, how
to model the e�ects of these factors in the decision making of crowd
is very challenging. At last, the dynamics vary a lot among di�erent
campaigns, perks, and even di�erent funding phases. �us, how to
address such heterogeneity is also di�cult.

To conduct this study, we �rst collect massive real-world crowd-
funding data with detailed daily transaction information from In-
diegogo.com 3. A�er carefully exploring the data, we identify im-
portant factors that a�ect the decision making of crowd and the
dynamics of crowdfunding, and construct useful features at both
campaign and perk levels. To address the hierarchy of crowdfund-
ing dynamics, we propose a two-layer framework for modeling the
dynamics at both campaign and perk levels. Speci�c to each level,
we �rst develop a single regression model to capture the impacts of
various factors (e.g., �nancial features, social features, time) on the
decision making of the crowd (i.e., visitors and backing probability).
Further, to address the aforementioned heterogeneity of funding se-
quences, we propose an enhanced switching regression at each level.
�en we employ a revision matrix to combine the two-level base
forecasts in order to achieve an optimal �nal forecasting. Finally,
we evaluate our approaches by conducting extensive experiments
with our collected data. �e experimental results clearly demon-
strate the e�ectiveness of our proposed approaches for tracking
and forecasting the dynamics in crowdfunding. Speci�cally, the
contributions of this paper can be summarized as follows:
• We propose a focused study on tracking and forecasting the

dynamics of crowdfunding at both campaign and perk levels
using a unique dataset collected from Indiegogo.com.

• We develop a special regression at each level for dynamics in
crowdfunding by modeling the funding process. Further, we
introduce an enhanced switching regression to be�er handle the

3�e data is publicly available in h�p://home.ustc.edu.cn/%7Ezhhk/DataSets.html

heterogeneity of dynamics among di�erent campaigns, perks
and di�erent funding phases.

• We develop a novel two-layer framework that could capture
the intrinsic relationship between campaign-level dynamics and
perk-level dynamics, and employ a revision matrix to combine
the base forecasts at two levels for achieving be�er �nal fore-
casting of dynamics.

• We conduct extensive experiments to validate the e�ectiveness of
our method by comparing with several state-of-the-art methods,
and report some interesting �ndings.

2 RELATEDWORK
�e related work can be grouped into two categories, i.e., the work
on crowdfunding and the studies on time series forecasting.

2.1 Crowdfunding
Since crowdfunding is a recently emerging market, many prob-
lems are still under-explored in the literature. In the past, some
prior studies focused on an important issue: predicting the funding
results, i.e., success or failure of a campaign, and identifying the
in�uence factors [14, 22, 27]. For example, to predict the success
or failure of campaigns and also estimate the time of success, [22]
formulated the campaign success prediction as a survival analysis
problem and applied the censored regression approach where one
could perform regression in the presence of partial information.
Lu et al. [27] inferred the impacts of social media on crowdfund-
ing and found the social features could help predict the success
rate of project. Mitra and Gilbert [28] explored the factors which
lead to successfully funding a crowdfunding project. �ey found
the language used in the project has surprisingly predictive power
accounting for 58.56% of the variance around successful funding.
Besides the studies of predicting �nal funding results, some re-
searchers studied the fundraising dynamics for campaigns in their
complete funding durations [19]. However, these studies are mainly
from the statistical and empirical perspectives to understand the
backers’ behaviors, and are still lack of deep and quantitative explo-
rations. In fact, creators, backers and platform operators all want to
track the dynamics of both campaigns and perks every day, rather
than just to predict their �nal funding results. Unfortunately, less
e�ort has been made towards this goal.

Besides the task of predicting success, a few studies have ex-
plored the other problems in crowdfunding or the similar service,
e.g., P2P lending, from data mining perspectives, such as campaign
recommendations [30], loan recommendations [36, 38], investor
(backer) recommendations [2], market state modeling [37] and
backing motivation classi�cations [26].

2.2 Time Series Forecasting
In the literature, time series forecasting has been widely stud-
ied [5, 6]. Models for time series forecasting have many forms
and can describe di�erent stochastic processes. For example, the
autoregressive model [1, 8] and vector autoregression model [18]
assume that the current value linearly depends on the previous
values. However, conventional autoregressive models only include
the response variables without exogenous variables. To address
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Table 1: A Summary of data.
Entity Amount

Campaign 14,143 (13,227 �exible, 916 �xed Campaigns)
Perk 83,450

Member 27,721 Creators (Belong to 14,137 Teams),
211,812 Backers

Contribution 1,862,097 Counts, $ 206,151,977 Amount
Comment 172,824 Comments, 68,189 Replies

the non-linear dependency of input variables and output variables,
some other models were applied, such as support vector machine [7]
and neural networks [33, 34]. In particular, with the development
of deep learning in recent years, many studies found that the re-
current neural network (RNN) can provide satisfactory results for
nonstationary time series forecasting [9, 13]. However, most of
these methods work as a black box, and are lack of explanatory.

Indeed, developing a forecasting model could not only predict
the funding amount but also interpret the decision making of the
crowd and the factors impacting the decision, which is very needed
for crowdfunding. Unfortunately, li�le e�ort has been made to
track and forecast the dynamics of crowdfunding in this way.

3 PRELIMINARIES
In this section, we �rst introduce the working mechanism of In-
diegogo.com, and also the collected dataset from this website. �en
we introduce the constructed features from the data.

3.1 Indiegogo.com and Dataset
In crowdfunding services, there are generally three types of ac-
tors: the individual creators or teams who propose the campaigns
to be funded for their ideas, the visiting individuals (i.e., poten-
tial backers) who look for campaigns to support, and a platform
(e.g., Indiegogo.com) that brings these two parties together [12].
Based on the di�erent types of rewards for backers, crowdfund-
ing platforms can be mainly classi�ed into four categories, i.e.,
donation-based, reward-based, equity-based and lending-based plat-
forms [21]. As the most popular type, reward-based platforms
follow a mode in which a backer’s primary objective for funding
is to gain a non-�nancial reward, i.e., perk in Indiegogo.com. In-
diegogo.com also encourages the “�exible goal” instead of the “�xed
goal” and “all-or-nothing” rule [10, 36, 37] for campaigns, which is
very di�erent from other common crowdfunding platforms, such
as Kickstarter.com [2, 14, 22, 27, 30]. �at is to say, for one �exible
campaign, it is not necessary to raise a �xed amount of money in
the declared durations in order to make this campaign e�ective.
Even a less amount of fund (than the �exible goal) is collected
eventually, the funding transaction of this campaign will still be
e�ective. Also, one campaign can continue collecting fund a�er
the �exible goal is reached or over time. In other words, for the
�exible-goal campaigns in Indiegogo.com, the declared goals and
durations are only for informational purposes.

Indiegogo data contains a variety of heterogeneous information
about all entities as shown in Table 1. Entities of each type include
various information in the form of unstructured data, such as image,
video, and text, and structured data, such as geo-spatial, numerical,
categorical, and ordinal data. From these entities, we can obtain
the hierarchical dynamics (e.g., daily funding amount time series)
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Figure 2: Overview of our solution.

for both campaigns and perks, and also construct various features
including both static and time-varying ones.

3.2 Constructed Features
From this dataset, we construct 24 features for campaigns and 30
features for perks. A summary of them is shown in Table 2.

3.2.1 Campaign Features. �e campaign features can be grouped
into 4 categories, i.e., campaign pro�le, social media, perk summary
and funding progress. �e features of campaign pro�le and social
media are extracted from campaign entities. �e features of perk
summary, i.e., Perk Option, Claimed Num, are extracted from the
corresponding perk entities of a campaign. �e features of funding
progress and also Available Num are extracted from contribution
entities, which are time-varying.

�ese features are very heterogeneous, including both numer-
ical, categorical data and also text. For consistency, we represent
all features as numerics or numerical vectors [25]. Speci�cally, for
the categorical data with less than 10 dimensions, such as Type,
Owner Type, Currency, and Veri�cation, we adopt the one-hot en-
coding [36], i.e., converting a categorical variable with n categories
into a n-dimensional binary vector, in which only the value in the
corresponding category is set to one and the other values are set
to zero. For the categorical data with more than 10 dimensions,
such as Category and geo-spatial data, i.e., Country, City, we use
the count encoding, i.e., replacing the variables by the respective
count frequencies of the variables in the dataset. For text data, such
as Title, Story, we adopt a doc2vec tool [20] to convert them into
numerical vectors. Speci�cally, the numerical vector for title is
10-dimensional and the vector for story is 100-dimensional.

3.2.2 Perk Features. �e perk features can be grouped into three
categories, i.e., perk pro�le, funding progress and the features from
its campaign. In particular, the funding dynamic of a perk is highly
related to its campaign features. �us, we also include the features
of the corresponding campaign as a part of each perk’s feature.
We preprocess them in the same way as introduced for campaigns,
except the perk description is represented by a 10-dimensional
numerical vector.

4 PROBLEM AND METHOD OVERVIEW
In this section, we �rst introduce the problem of tracking the dy-
namics in crowdfunding, and then overview our proposed method.
For be�er illustration, Table 3 lists the mathematical notations used
in this paper.
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Table 2: �e description of features.
Feature level Category Feature Type Feature Description

Campaign
Feature

Campaign
Pro�le

Static

Title Title of the campaign
Story Detailed description of the campaign in text

Team Size Number of members in the crowdfunding team
Type Flexible or �xed goal

Duration Declared funding duration of the campaign
Goal Amount the campaign wants to fund

Country Country of the creator
City City of the creator

Category Category of the campaign, such as Technology, Education
Owner Type Purpose of the campaign, such as business, individual, non-pro�t

Currency Currency for paying the perks, such USD

Social or
Media

Image Num Number of images provided by the campaign
Video Num Number of videos provided by the campaign

Social Exposure Number of exposure places, e.g.,Facebook, Twi�er, Youtube, website
Friend Num Number of friends of funding team in Facebook
Veri�cation Whether the campaign was veri�ed in Facebook

Perk
Summary

Perk Option Number of perk options
Claimed Num Total claimed number of perks
Available Num Total available number of perks

Funding
Progress

Time-varying

Backer Num Number of backers who has contributed to the campaign
Funded Amount Amount the campaign has collected

Funded Percentage Percentage the campaign has funded
Comment Num Number of comments the campaign received

Reply Num Number of replies the creator has made

Perk
Feature

Perk
Pro�le Static

Description Short description of the perk
Featured Whether this perk is recommended by the campaign

Price Unit price of the perk
Claimed Num Claimed number of the perk

Funding
progress Time-varying Sales Num Number of perks have sold

Available Num Available number of the perk
Campaign - Campaign Features All the features of the campaign which this perk belongs to

Table 3: Mathematical notations.
Symbol Size Description
Y c (Y p ) I (K ) ×T Daily funding amount matrix for I campaigns (K perks), T funding days;
B I ×T Daily backer number matrix for I campaigns;
X
c (Xp ) I (K ) ×T ×Mc (Mp ) Campaign (perk) covariant/feature tensor, Mc (Mp ) is the length of covariant/feature vector;
Z

p K ×T × J Unobservable cluster tensor for perks, J is the cluster number of perk sequences;
f p (.) (f c (.)) 1 Base forecasts in SR for perks (campaigns);
f p (f c ) J (J ′) × 1 Base forecasts in SWR for perks (campaigns), f p = {f pj (.) |j ∈ {1, ..., J } }, f c = {f cj′ (.) |j

′ ∈ {1, ..., J ′ } };
Ri (Ki + 1)2 Revision matrix for campaign i and its Ki perks.

4.1 Problem Statement
For I campaigns with T funding days4, we have the daily funding
amount time series Y c = (Y c (i, t ))I×T , backer number time series
B = (B (i, t ))I×T , and the campaign features Xc = ((Xc (i, t ))I×T .
Ki represents the number of perks of i-th campaign, and ki ∈
{1, ...,Ki } represents the ki -th perk of this campaign. For all the K
(K = ∑I

i=1 Ki ) perks, we also have their daily funding amount time
series Yp = (Yp (k, t ))K×T , and perk features Xp = (Xp (k, t ))K×T .
Each Y c (i, t ) or Yp (k, t ) represents the funding amount of i-th
campaign or k-th perk at its t-th funding day.

Our goal is to learn a model F(.) which can be used to forecast
the daily funding amount, i.e., Y c (i, t + h),Yp (ki , t + h), for i-th
campaign and its perks in next h days, when given their funding
4For be�er presentation in matrix, we use a notation T to represent the
funding days for all campaigns though their durations may be di�erent.

amount sequences, i.e., Y c (i,τ ), B (i,τ ) in previous τ days before t
and their current featuresXc (i, t ) andXp (ki , t ), whereτ represents
(t − τ : t ). Please note that, we do not use the previous-days series
of funding amount and backer number on perks, i.e., Yp , Bp , as
the input variables even though they are available in our data. �e
reason is that the time series of funding amount and backer number
on perks are sparser compared with those on campaigns. More
importantly, according to the crowdfunding mechanism, all the
backers of perks come from their campaign visitors. �e rationality
will be demonstrated in the experiments. Formally, the task can be
formulated as:




Ŷ c (i, t + h)

Ŷp (1, t + h)
...

Ŷp (Ki , t + h)




= F(Y c (i,τ ),B (i,τ ),Xc (i, t ),Xp (ki , t )) + ϵ ,

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

628



where ki ∈ {1, ...,Ki } and ϵ is the error vector. To forecast the
time series in next h days, we �rst focus on predicting the values at
current day t and the estimations in following days t + h can also
be derived by taking the current estimations as input variables.

4.2 Method Overview
Since the dynamics in crowdfunding are two-level time series, we
propose a hierarchical model F(.) for fully considering the character-
istics of hierarchy and making full use of the available information.
Speci�cally, F(.) contains the campaign-level base forecasts (i.e.,
f c (.), f c ), the perk-level base forecasts (i.e., f p (.) or f p ), and a
combination of them using a revision matrix R. Figure 2 shows
the overview of our method. Speci�cally, we �rst independently
learn the base forecasts for campaigns (gray shapes) and perks
(white shapes). At each level, we propose two kinds of structures
for the base forecasts, i.e., Single Regression (denoted as SR, f c (.)
and f p (.)) and SWitching Regression (denoted as SWR, f c and
f p ) based on the understanding of decision making of the crowd
(visitors and backing probability) and assumptions on funding se-
quences. �en for a target campaign (purple) and its perks (blue),
we use a revision matrix to get the �nal results by combining the
estimations of these two-level forecasts.

5 STRUCTURES OF BASE FORECASTS
In this section, we de�ne the structures of base forecasts: the single
regression model, i.e., f c (.) and f p (.), and the switching regres-
sion model, i.e., f c and f p . Speci�cally, we de�ne the structures
of base forecasts by exploring the mechanism of crowdfunding
and modeling the decision making of “crowd”. �e two-level base
forecasts have the similar forms. �us, we detail the structures of
perk-level base forecasts, and then directly give the structures of
campaign-level base forecasts.

5.1 Single Regression Model, f p (.), f c (.)
In SR, we suppose the funding amount time series of campaigns or
perks can be modeled by a single model. Speci�cally, at perk level,
SR has the form of f p (.). In fact, SR can explore the previous-days
funding dynamics and also capture the impacts of time-varying
covariants (perk features) and time by an inbuilt parametric Hazard
function [11, 23].

Di�erent from other conventional time series problems, crowd-
funding is a �nancial service in which a complete funding activity
contains two processes, i.e., user visiting and visitor backing. �at
is, a campaign may obtain more contributions if it can a�ract fre-
quent visits. Also, not all the visitors will contribute her visiting
campaigns. A visitor of campaign i will contribute to this campaign
only if her evaluation on this campaign is higher than a threshold.
If so, this visitor will back this campaign by selecting a perk based
on her evaluation and comparison of perks. �erefore, in f p (.), we
try to model the funding process by two components, i.e., current
visitors, and backing probability of selecting a perk.

5.1.1 Modeling Visitors. We assume the current visitors of a
campaign come from two ways: infected by previous backers, and the
spontaneous visitors. �e visitors of a perk are essentially the current
visitors on its campaign, because all users �rst access campaigns
rather than perks.

Infected Visitors. �e intrinsic objective of crowdfunding is to
a�ract massive contributions from the “crowd”, thus the propaga-
tion is crucial for a campaign. Crowdfunding mechanism encour-
ages the backers to share their backed campaigns to their friends
via virtual social relations, e.g., Facebook, Twi�er, or real-life rela-
tions, and indeed, backers are also willing to do that. What’s more,
researchers have found that the prior fundings on a campaign have
great e�ects on its dynamics in the following durations [32]. �us,
previous backers in�uence the current and following propagation of
a speci�c campaign and also its current underlying visitors. Specif-
ically, we model the infected visitors PU i

t at current time t by the
propagation of the backers in previous τ days on campaign i as:

PU i
t = (αp )T · B (i,τ ), (1)

where αp is the coe�cient vector to weight the propagation in�u-
ences of backers in previous τ days.

Spontaneous Visitors. Besides the visitors infected by the
propagation of previous-days backers, there are also some spon-
taneous visitors arriving at any funding days of a campaign. �e
spontaneously arriving visitors may be a�racted by the properties
of a campaign. Speci�cally, we suppose that the spontaneous visi-
tors on campaign i at time t , SU i

t , follow a Poisson distribution [23]
as follows:

Pois (SU i
t =m |λi ) =

exp(−λi )λi
m! , (2)

where λi is the parameter for mean visiting in a unit time. As
described above, to capture the impacts of time-varying covariants
of perks, we allow parameter λi to be a function of the time-varying
campaign covariants Xc (i, t ) [23]:

λi = (ξp )T · Xc (i, t ), (3)

where ξp is the coe�cient vector to weight the covariants. �us,
the spontaneous visitors of a campaign SU i

t can be computed as:

E(SU i
t ) =

∫ ∞
0

Pois (SU i
t ) d (SU

i
t ) = λi . (4)

In summary, we can infer the underlying visitorsU i
t of campaign

i at time t by:

U i
t = E(PU i

t + SU
i
t ) = (αp )T · B (i,τ ) + (ξp )T · Xc (i, t ). (5)

A�er modeling the current visitors of one campaign, in the
following, we will introduce the second factor which in�uences the
funding dynamics, i.e., backing probability of selecting a perk.

5.1.2 Backing Probability of Selecting a Perk: д(.). In this study,
we explore the Hazard model [11, 23] to approximate the back-
ing probability of crowd, i.e, д(t ,x ), where x is the abbreviation
of Xp (ki , t ). Hazard function is widely-used in COX of survival
analysis, which is the instantaneous rate of occurrence of the event.
Speci�cally, we explore the density function, i.e., д(t ,x ), for the
probability of event. In our study, the event refers to the backing
behavior [23]. �e reason for exploring proportional Hazard to
approximate the backing probability is that Hazard can re�ect the
impacts of both time and features on event which are all important
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in the dynamics of crowdfunding. In survival analysis, the proba-
bility density function can be derived from the de�nition of Hazard
model h(t ):

h(t ) = lim
∆t→0

P (t ≤ Tb ≤ t + ∆t |Tb ≥ t )

∆t
=

д(t )

1 −G (t )
=
д(t )

S (t )
,

where Tb is the random variable which represents the time until
the event occurs, i.e., backing the campaign by selecting a speci�c
perk, and д(t ),G (t ), S (t ) are respectively the probability density
function, cumulative distribution function and survivor function of
Tb. Speci�c to perk ki of campaign i at time t , Hazard function has
the following form:

h(t |x ) = h0 (t ) exp((βp )T · Xp (ki , t )), (6)

where h0 (t ) is a baseline function, which is perk independent and
a function of time. Hazard function can capture the impacts of
both time and time-varying covariants by the baseline function
and the risk proportion. A campaign and its perks share a same
h0 (t ) function since they conform a same funding timeline. Term
exp((βp )TXp (ki , t )) is the proportional risk associated with the
covariates. �e baseline function is arbitrary nonnegative perk-
independent of time for parameter functions. In our study, we adopt
a Gompertz distribution form [17, 31]:

h0 (t ) = exp (γ0 + γ1t ). (7)

A�er de�ning the form of proportional Hazard model h(t ), the
density function, i.e., д(t ,x ), can be derived. �e details of deriva-
tion are shown in Appendix A. In summary, we can get the form of
the base forecast, i.e., f p (.), as follows.

Ŷp (ki , t ) = f p (B (i,τ ),Xc (i, t ),Xp (ki , t ) |Θ
p ) + ϵ

p
t

= pki ((α
p )T B (i,τ ) + (ξp )TXc (i, t ))д(t |Xp (ki , t )) + ϵ

p
t ,

where pki is the unit price of perk ki , Θp = (αp, ξp, βp,γ ). Pa-
rameters Θp can be learned by maximum likelihood estimation or
equally least square when the error follows Gaussian distribution:

L (Θp ) = arg min
Θp

1
2

I∑
i=1

Ki∑
ki=1

T∑
t=τ

(Yp (ki , t ) − Ŷp (ki , t ))
2

+ λp | |Θp | |2,

(8)

where λp is a regularization parameter and | |.| |2 denotes the L2
norm, which is used to avoid over��ing.

Now, we have given the speci�c structure of f p (.). Similarly, we
de�ne the structure of base forecast f c (.) for campaign level as:

Ŷ c (i, t ) = f c (Y c (i,τ ),Xc (i, t ) |Θc ) + ϵct

= ((αc )TY c (i,τ ) + (ξ c )TXc (i, t ))д(t |Xc (i, t )) + ϵct .

Please note that, in the campaign-level modeling, there is not
a declared price for each campaign. �us, for consistency, we use
the funding amount observation Y c (i,τ ) rather than the backer
number observation B (i,τ ) in f c (.).

5.2 Switching Regression Model
According to our observations, di�erent campaigns and perks have
great heterogeneities, and even for one campaign or perk, its fund-
ing dynamic at di�erent funding phases may vary a lot. �us,
training a single model, i.e., f c (.) or f p (.) is inadequate. Also,
some studies have found that the time series have the clustering
characteristics, that is, the sequences in the same cluster have the
similar growth pa�ern [24]. �us, in this subsection, we introduce
an enhanced switching regression model, i.e., SWR, based on a
more reasonable assumption, i.e., funding amount sequences of
campaigns and perks respectively form di�erent clusters in which
sequences have di�erent dynamic pa�erns. We also take the perk-
level base forecasts f p = { f

p
j (.) |j ∈ {1, ..., J }} as examples to intro-

duce SWR, where f
p
j (.) is the base forecast for j-th perk sequence

cluster and J is the number of clusters. f pj (.) has the similar form
with f p (.) in SR, but each f

p
j (.) has its own parameters.

Besides the observable variables, i.e., Y c ,Yp ,B,Xc ,Xp , in f p ,
we also assume there are some unobservable cluster indicator vari-
ables, such that Zp = (Zp (k, t ))K×T , where Zp (ki , t )) can be
abbreviated as z and z = (z1, ..., z J ). Speci�cally, zj ∈ {0, 1}
and |z | = 1, where zj = 1 means the funding amount sequence
(Yp (ki ,τ ),Yp (ki , t )) of ki -th perk at time slice t belongs to the j-th
sequence cluster of perks, and vice versa. �at is to say, a funding
sequence at a given speci�c time only belongs to one speci�c clus-
ter. Please note that, the clustering object is sequence segments
rather than complete funding sequences of perks so that a perk
may belong to di�erent clusters in di�erent time slices. �us, for
perk ki at time t , we have:

Ŷp (ki , t ) =

J∏
j=1

f
p
j (B (i,τ ),X

c (i, t ),Xp (ki , t ) |Θ
p
j )

zj + ϵ
p
t , (9)

where Θ
p
j are the parameters learned from the sequence segments

in j-th cluster. Similarly, we can also get the campaign-level base
forecasts f c .

6 MODEL LEARNING AND FORECAST
In this section, we �rst detail the learning process for f p , in the
same way, f p (.), f c (.), f c can also be learned. �en, for a given
target campaign and its perks, we propose to revise the forecasts
by an optimization combination of the two-level base forecasts for
the �nal forecasting.

6.1 Learning Base Forecasts in SWR
Because Zp in f p is unobservable, we can learn Θ

p
j and cluster

the sequence segments simultaneously by an EM-process. Since
the clusters are hard restraint, we can achieve learning through
two steps, i.e., estimating the cluster variablesZp , optimizing the
parameters Θp

j with currentZp .
EstimatingZp . Donate Θp

j (o) as the parameters in o-th iteration.
In each iteration, we estimateZp , i.e., let each zj = 1 i�:

j = arg
J

min
j′=1
|Yp (ki , t ) − f

p
j′ (.|Θ

p
j′
(o)) |. (10)
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Optimizing Θ
p
j . A�er estimating Zp , we optimize the current

parameters Θp
j (o). In each iteration, the loss function L (Θp

j (o )) is
de�ned as:

L (Θ
p
j (o)) = arg min

Θ
p
j (o )

1
2

I∑
i=1

Ki∑
ki=1

T∑
t=τ

J∑
j=1

zj (Y
p (ki , t ) − Ŷp (ki , t ))

2

+ λ
p
j | |Θ

p
j (o) | |2.

(11)

For optimizing the above function, we adopt the alternating least
squares (ALS) [39]. ALS is a popular optimization method with
accurate parameter estimation and fast convergence rate, which
computes each parameter by �xing the other parameters when
minimizing the object function. Speci�cally, the updating rules for
some representative parameters in L (Θp

j (o )) are as follows:

α
p
j (o) ← α

p
j (o) − ηα

∂L

∂α
p
j (o)
, ξ

p
j (o) ← ξ

p
j (o) − ηξ

∂L

∂ξ
p
j (o)

,

γ (o) ← γ (o) − ηγ
∂L

∂γ (o)
, β

p
j (o) ← β

p
j (o) − ηβ

∂L

∂β
p
j (o)
,

where Θ
p
j (o) = (α

p
j (o), ξ

p
j (o),γ (o), β

p
j (o)) are the parameters in

o-th iteration, and η = (ηα ,ηξ ,ηγ ,ηβ ) are the learning rates. �e
details of gradients are given in Appendix B. Repeat these two steps
until convergence.

6.2 Revise Forecasts by Optimal Combination
We have learned the campaign-level and perk-level base forecasts,
i.e., f c and f p , respectively. Next we introduce how to get the �nal
forecasting for given target campaign i and its Ki perks by combin-
ing the independent estimations of the two-level base forecasts.

In the literature, researchers have proposed some combination
strategies, such as “bo�om-up” and “top-down” strategies for hi-
erarchical time series data [15]. Speci�cally, bo�om-up strategies
a�empt to produce forecasts at the lowest level and aggregate them
to the upper levels of the hierarchy, while top-down methods pro-
duce forecast at the top level and then disaggregate to the lower
levels using proportions. �ese two types of strategies are not
suitable for the problem in crowdfunding, because processing base
forecasts at lower (perk) level su�ers the sparsity while processing
base forecasts at campaign level will not consider the relations of
perks in a same campaign. To this end, we propose to produce
independent forecasts at both campaign and perk levels, and then
use a revision matrix to get the �nal estimations. �e proof of
optimality of this combination strategy can be found in [15, 16].

Speci�cally, we denote (Ŷ c (i, t ), Ŷp (1, t ), ..., Ŷp (Ki , t ))
T as Ŷ (i, t )

which represent the estimations for target campaign i and its perks
at t by the base forecasts. Ỹ (i, t ) are the �nal estimations for them
a�er the revision. �at is,

Ỹ (i, t ) = Ri Ŷ (i, t ), (12)

where Ri is the revision matrix for campaign i and its perks which
can provide an optimal combination of the independent estimations
of base forecasts. Speci�cally, Ri has the following form:

Ri =
1

Ki+1




Ki 1 1 · · · · · · 1
1 Ki -1 -1 · · · -1
1 -1 Ki -1 · · · -1
...

...
. . .

. . .
. . .

...

1 -1 · · · -1 Ki -1
1 -1 · · · · · · -1 Ki




.

�us, the �nal estimations for campaign i and perk ki are:

Ỹ c (i, t ) =
1

Ki + 1 (KiŶ
c (i, t ) +

Ki∑
ki=1

Ŷp (ki , t )),

Ỹp (ki , t ) =
1

Ki + 1 (Ŷ
c (i, t ) −

∑
k ′i

Ŷp (k ′i , t ) + KiŶ
p (ki , t )),

where k ′i = {1, ...,ki−1,ki+1, ...,Ki } represent the other perks of
the target campaign except current perk ki . We can see that, the
matrix revises the �nal estimations by considering both perk-perk
and perks-campaign relations. �e revision optimizes the �nal
estimations especially when the individual base forecasting for
target campaign or perk performs bad. We will empirically examine
that in the experiments.

7 EXPERIMENT
In this section, we construct experiments with the collected dataset
to evaluate the performances of our approaches.

7.1 Experimental Setup
We partition the dataset into subsets based on the declared funding
durations of campaigns and construct experiments mainly on two
subsets whose durations are 30 and 60 days. Speci�cally, for 30-days
campaigns and perks, we construct observations and features in
their duration (30 days) and the following 15 days a�er that. Simi-
larly, for 60-days campaigns and perks, we construct observations
and features in their durations (60 days) and the following 30 days.
For each subset, we partition the data into a training set and a test
set, i.e., we randomly select 20% elements from Y c as the test set.
Consequently, the other variables in the corresponding places, e.g.,
B, Xc , Xp , will also be selected. �e remaining elements are used
for training. We process each subset �ve times in this way. �e
reported results are averaged over �ve-round tests. Table 4 shows
one-round data partitioning.

Table 4: Data partitioning.

Sub sets #Training Sequences #Test Sequences
Campaign Perk Campaign Perk

30 days 8,000 88,663 2,000 23,204
60 days 8,000 93,986 2,000 22,984

7.1.1 Comparison Methods. We compare the following meth-
ods on forecasting the dynamics, i.e., daily funding amount, for
campaigns and perks.
• SwitchingRegressionwithRevision (SWR+R): training switch-

ing regression models (i.e., f c , f p ) for campaigns and perks
independently and then using the revision matrix to combine
them for the �nal results. Empirically, the cluster numbers for
campaigns and perks are respectively set as 4 and 8.

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

631



Funding Days
10 20 30 40

200

400

600

800

1

2

3

4

Daily Funding Amount

Daily Backer Number

(a) Campaign 30days

Funding Days
10 20 30 40

20

40

60

80

0.1

0.2

0.3

0.4

Daily Funding Amount

Daily Backer Number

(b) Perk 30days

Funding Days
20 40 60 80

300

600

900

2

4

6

Daily Funding Amount

Daily Backer Number

(c) Campaign 60days

Funding Days
20 40 60 80

30

60

90

0.2

0.4

0.6

Daily Funding Amount

Daily Backer Number

(d) Perk 60days
Figure 3: Funding series display.

• Switching Regression (SWR): training switching regression
models (i.e., f c , f p ) for campaigns and perks independently. �e
se�ings of SWR are the same as those in SWR+R.

• Single Regression with Revision (SR+R): training single re-
gression models (i.e., f c (.), f p (.)) for campaigns and perks inde-
pendently and then using the revision matrix to combine them
for the �nal results.

• Single Regression (SR): training single regression models (i.e.,
f c (.), f p (.)) for campaigns and perks.

• Random Forest (RF): training random forest regressions for
campaigns and perks, in which the input variables are the same
as those in SR and SWR.

• AutoregressiveModel (AR): training autoregressive models [1,
8] for campaigns and perks using the daily funding observations.

• Average (AVE): using the averages of funding amount in previ-
ous τ days to predict the current funding. In these methods, the
parameters τ are all set as 5.
7.1.2 Evaluation Metrics. To evaluate the forecasting perfor-

mances, here we select two widely-used metrics, i.e., the Root
Mean Squared Error (RMSE) [34] and Mean Relative Squared Er-
ror (MRSE) [8] for evaluation. Speci�cally, their de�nitions are:

RMSE =

√∑N
i=1 (yi − ŷi )

2

N
, MRSE =

1
N

N∑
i=1

(
ŷi
yi
− 1)2,

where N is the number of predictions, yi is the i-th real observation
value and ŷi is the corresponding estimated value.

7.2 Experimental Results
We �rst plot the funding time series and analyze the characteristics,
and then report the forecasting results.

7.2.1 Funding Series Analysis. We mainly have two types of
time series observations, daily contributions (backer numbers), and
daily funding amount for both campaigns and perks. �e funding
time series of campaigns and perks are shown in Figure 3. From
these �gures, we can see that: 1) the adjacent daily funding amount
is highly correlated, so that we exploit the variables in previous
days (e.g., Y c (i,τ ) and B (i,τ )) in our approaches; 2) the series of
both campaigns and perks at di�erent funding time have di�erent
dynamic pa�erns, e.g., 30-days campaigns and perks have observ-
able peaks at the end of their declared durations, 60-days campaigns
and perks have observable peaks at both the end and middle of

Table 5: �e running time (seconds).
Methods SWR+R SWR SR+R SR RF AR AVE
Training 1,860 1,860 254 254 1.52 9.69 -

Test 0.73 0.18 0.59 0.12 0.25 0.09 0.05

their durations. Besides, in the start-up days, the funding amount
is relatively small and grows slowly, while a�er the declared dura-
tions, the funding time series decays over time. �ese inspire us to
explore the time e�ect (i.e., h0 (t )) and cluster the time series at the
granularity of sequence segments rather than the complete series
of campaigns and perks.

7.2.2 E�iciency Results. Table 5 records the running time (sec-
onds) of di�erent methods for training and test on all the con-
structed datasets. We can see that our models need more time than
others for training. However, in tests, our two-level base forecasts,
i.e., SWR and SR, run faster than RF.

7.2.3 Forecasting Performances. For be�er training and forecast-
ing, we scaled the time series variables using ln(.) function, i.e.,
Y c (i, t ) = ln(Y c (i, t ) + 1). Figure 4 shows the forecasting perfor-
mances with respect to the predicting days, i.e., h. Overall, our
methods, i.e., SWR+R, SWR, SR+R, SR and the ensemble method,
i.e., RF, perform signi�cantly be�er than AR and AVE which lose
the predicting abilities with the accumulation of errors over time.
Second, in the campaign-level tests, SWR+R performs best; while in
the perk-level tests, SWR performs best. �e possible reason is that
the base forecasts SWR (also SR) predict more accurately for perks,
i.e., perk-level base forecasts work be�er than campaign-level ones
(the perk instances for training are much more than campaigns’), so
that, a�er revising, the performances on campaigns become be�er
while performances on perks turn to a li�le worse. Even so, clearly,
both SWR+R and SWR have the satisfactory performances com-
pared with other methods, e.g., the values of RMSE or MRSE are
reduced by more than 50% in most cases. �ird, from the compar-
isons of SR and SWR, we can see the e�ectiveness of clustering for
funding sequences. Finally, our methods perform much be�er for
perks while AR and AVE have worse results for perks. �at is be-
cause the time series of perks are much sparser and more unstable
so that it is more di�cult to predict for AR and AVE in which only
the response variables are taken into consideration. Di�erently, our
models explore the relations of perks and campaigns so that they
work well for perks.

7.2.4 Parameter E�ects. We also test the e�ects of the common
parameter, i.e., τ , of the corresponding methods. We report the
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Figure 4: Forecasting performances.
results when forecasting the dynamics only in next one days in
Figure 5. In most cases, all methods will achieve be�er results,
i.e., smaller RMSE and MRSE, as τ becomes larger. Please note
that, in all cases, our model, i.e., SWR, has the best performances.
�e comparison results between SR, SWR, RF, AR and AVE clearly
demonstrate the robustness of SWR and also the importance of our
constructed features on tracking and forecasting the dynamics of
funding time series in crowdfunding.

8 CONCLUSION
In this paper, we presented a focused study on tracking and fore-
casting the dynamics in crowdfunding in a holistic view. For con-
structing this study, we �rst collected massive real-world crowd-
funding data with detailed daily transaction information from In-
diegogo.com and generated various features at both campaign and
perk levels. We then formalized the problem as the prediction
with hierarchical time series and proposed a two-layer solution
framework. Speci�cally, for both campaign and perk levels, we
developed two regression models, i.e., SR and SWR, by exploring
the decision making of crowd and the clustering characteristic of
funding sequences. For a given target campaign and perks, we
employed a revision matrix to combine the independent estima-
tions of two-level base forecasts. Finally the experimental results
on our collected data clearly demonstrated the e�ectiveness of our
solutions, especially SWR and the combination.

In the future, we will test other combination strategies for the
two-level base forecasts, e.g., bo�om-up strategies, which produces
forecasts at the perk level and aggregates them to the campaigns.
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Figure 5: E�ects of parameter τ .
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Appendix A. Derivation for д(.) From the de�nition of pro-
portional Hazard model, we have: д(t |x ) = h(t |x )S (t |x );
also, from [23, 35], we know: S (t |x ) = exp(−

∫ t
0 h(tx |x ) d (tx ));

thus, д(t |x ) = h0 (t ) exp((βp )TXp (ki , t )) exp((−
∫ t

0 h(tx |x ) d (tx )).

Appendix B. Gradients for parameters in f
p
j (.)

∂L

∂α
p
j (o )

= −

I∑
i=1

Ki∑
ki =1

T∑
t=τ

J∑
j=1

AB (i, τ )C +
λpj α

p
j (o )

| |Θ
p
j (o ) | |2

,

∂L

∂ξ
p
j (o )

= −

I∑
i=1

Ki∑
ki =1

T∑
t=τ

J∑
j=1

AXc (i, t )C +
λpj ξ

p
j (o )

| |Θ
p
j (o ) | |2

,

∂L

∂γ0 (o)
= −

I∑
i=1

Ki∑
ki =1

T∑
t=τ

J∑
j=1

ACDE +
λpj γ0 (o)

| |Θ
p
j (o ) | |2

,

∂L

∂β
p
j (o )

= −

I∑
i=1

Ki∑
ki =1

T∑
t=τ

J∑
j=1

ACDEx +
λpj β

p
j (o )

| |Θ
p
j (o ) | |2

;

where

A = zj (Y p (ki , t ) − Ŷ p (ki , t ))pki ,

C = exp (γ0 + γ1t + (βp )T x −
1
γ1

exp (γ0 + (βp )T x ) (exp (γ1t ) − 1)),

E = 1 − 1
γ1

exp (γ0 + (βp )T x ) (exp (γ1t ) − 1),

D = (αp )T B (i, τ ) + (ξp )T Xc (i, t ).
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