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Abstract—Most cognitive diagnosis research in education has
been concentrated on individual assessment, aiming at discov-
ering the latent characteristics of students. However, in many
real-world scenarios, group-level assessment is an important and
meaningful task, e.g., class assessment in different regions can
discover the difference of teaching level in different contexts. In
this work, we consider assessing cognitive ability for a group
of students, which aims to mine groups’ proficiency on specific
knowledge concepts. The significant challenge in this task is the
sparsity of group-exercise response data, which seriously affects
the assessment performance. Existing works either do not make
effective use of additional student-exercise response data or fail
to reasonably model the relationship between group ability and
individual ability in different learning contexts, resulting in sub-
optimal diagnosis results. To this end, we propose a general Multi-
Task based Group-Level Cognitive Diagnosis (MGCD) frame-
work, which is featured with three special designs: 1) We jointly
model student-exercise responses and group-exercise responses in
a multi-task manner to alleviate the sparsity of group-exercise
responses; 2) We design a context-aware attention network to
model the relationship between student knowledge state and
group knowledge state in different contexts; 3) We model an
interpretable cognitive layer to obtain student ability, group
ability and exercise factors (e.g., difficulty), and then we leverage
neural networks to learn complex interaction functions among
them. Extensive experiments on real-world datasets demonstrate
the generality of MGCD and the effectiveness of our attention
design and multi-task learning.

Index Terms—Group-Level Cognitive Diagnosis, Multi-Task
Learning, Attention Mechanism, Data Sparsity

I. INTRODUCTION

Cognitive diagnosis (CD) has long been a crucial and

fundamental task to explore and analyze the learning status of

students in intelligent education systems, which is beneficial in

improving students’ learning proficiency. To date, most studies

focused on modeling the cognitive state of each individual

student, e.g., the student’s proficiency on knowledge concepts

[1], [2]. Nevertheless, in real-world situations, students often

accomplish their academic goals through learning in groups

(e.g., schools, classes, and study groups), which has been

proven to bring more benefits for students [3]. Moreover,

group-level teaching is still the most important and irreplace-

able teaching method at present and will continue to play a

*Corresponding Author.

critical role in the future. Therefore, it is of great value to

analyze groups’ learning states so as to assess and improve the

teaching achievements. Moving beyond the traditional task of

cognitive modeling for individuals, in this work we concentrate

on modeling cognitive ability for a group of students, known

as the group-level cognitive diagnosis (GCD).

Besides education, modeling the cognitive level of a group

is a basic task in many research fields, such as games and

medical evaluation [4], [5]. Specifically, in the educational

context, GCD aims to mine groups’ actual knowledge states.

Figure 1 shows a toy process of GCD. Generally, a group

of students first choose or are assigned to practice a set of

exercises (e.g., taking a class test) and leave responses (e.g.,

true or false). Based on the Q-matrix (an exercise-knowledge

correlation matrix labeled by educational experts) [6] and the

response logs, our goal is to mine the group’s proficiency

on relevant knowledge concepts (e.g., ’Function’). In practice,

these diagnostic reports could be further applied to many real-

world applications, such as the teaching quality assessment [7]

and the teaching plan improvement.

In the literature, there are many efforts on designing cogni-

tive diagnosis models (CDMs), such as item response theory

(IRT) [8], Multidimensional IRT (MIRT) [9], [10], Matrix

Factorization (MF) [11] and Neural Cognitive Diagnosis (Neu-

ralCD) framework [12], and most of them focus on modeling

cognitive abilities for individual students. To perform cognitive

diagnosis on the group level, a common solution is to treat

the group as a single virtual unit and then select the tradi-

tional individual CDMs for assessment. Although technically

feasible, such a straightforward solution cannot achieve good

performance due to data sparsity of group-exercise responses

(common exercises that all students in the group have prac-

ticed). Students will do different exercises according to their

own abilities in daily learning and group-exercise response

logs often come from group test evaluation. Therefore, the

group-exercise responses are usually more sparse than student-

exercise responses.

To alleviate the sparsity of group-exercise responses, an

intuitive solution is to integrate the data of student-exercise re-

sponses which provide additional information about individual

students’ cognitive abilities. Existing related works are devoted
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Fig. 1. A toy process of group-level cognitive diagnosis. The interaction data can be divided into two non-overlapping records: student-exercise responses
(dotted line) and group-exercise responses (solid line). The Q-matrix is the correlation matrix between exercises and knowledge concepts, e.g., exercise e1
contains knowledge concepts k1 and k4. The diagnostic report is visualized as a radar chart, and each point represents the mastery level of the certain
knowledge concept.

to modeling the ability of individuals in a group through their

whole response data, and then regard the group’s ability as the

average ability of all these students [13], [14]. However, the

validity of the obtained diagnosis results is greatly influenced

by the distribution of exercises practiced by each student in

a group. For instance, as shown in Figure 1, consider the

knowledge concept k1, which is contained by e1, e3, e4
according to the Q-matrix. From the group-student-exercise

interactions, we can observe that the number of exercises

practiced by each student in group 2 is unbalanced. In practice,

most traditional methods require a balance [15] in the exercise

responses of students on each knowledge concept to reduce the

overall assessment bias, but it is not practicable for complex

educational scenarios. In addition, this predefined aggregation

scheme is not suitable for adaptively modeling the correlation

between groups and individuals in different learning contexts,

where the influence weight of each student may be different.

According to the research of educational behavior, one of the

factors determining the influence of students in a group is

their relative abilities [16]. For example, consider students s1
and s2 with similar abilities (knowledge states) in different

groups (named as g1 and g2 respectively), if the overall ability

level of g1 is much lower than that of g2, s1 may own a

higher influence than s2. As such, to make more effective

use of student-exercise response data, another challenge is

how to model the relationship between the learning states of

individual students and the group they belong to.

In this work, we propose a general multi-task based group-

level cognitive diagnosis (MGCD) framework to handle these

challenges. Specifically, we simultaneously model the student

performance and group performance. The information from

student-exercise logs is transferred to group representations

through shared student representations, between which the

relationship is modeled with attention mechanism. Moreover,

inspired by the Neural Cognitive Diagnosis Model (Neural-

CDM) [12], we leverage neural networks with monotonicity

assumption to model the complex interactions on both student-

exercise responses and group-exercise responses. Particularly,

our MGCD is a general framework since it can be flexibly

combined with different interaction functions from individual

cognitive diagnosis models (e.g., MF, IRT, MIRT, Neural-

CDM). Finally, extensive experiments are performed on real-

world datasets to prove the effectiveness and interpretability

of our method.
In summary, our key contributions are listed as follows:

• To the best of our knowledge, this is the first comprehen-

sive attempt to apply deep learning to model the cognitive

ability for a group of students. Specifically, we propose

a novel context-aware attention network to adaptively

model the relationship between student knowledge state

and group knowledge state in different learning contexts.

• We propose a novel solution for GCD from a perspective

of multi-task learning to effectively leverage the student-

exercise response data to alleviate the sparsity of the

group-exercise response data.

• We conduct extensive experiments on real-world datasets

to validate the effectiveness of MGCD with both accuracy

and interpretability guarantee.

II. RELATED WORK

A. Cognitive Diagnosis
In educational psychology, a wide range of cognitive diag-

nostic models (CDMs) has been developed to provide fine-

grained information about students’ cognitive ability [17],

[18]. The existing research mainly focuses on individual

assessment, among which DINA [1], [19] and IRT [8] were

two of the most typical works, which characterize students

by latent traits. Specifically, in DINA, the latent trait was a

binary vector, which denotes whether a student masters the

knowledge concepts required by the problem. IRT regarded

students’ abilities as unidimensional and continuous latent

traits and used a logistic function to model the probability

that a student correctly solves a problem. MIRT [10] is an

extension of IRT, which can characterize students’ cognitive

abilities through multidimensional latent traits. In addition,

some works leveraged matrix factorization (MF) to obtain the

latent trait vectors of students and exercises by decomposing

the score matrix [20], [21]. Different from these traditional

methods which try to model the interactions between students

and exercises with linear functions, the Neural Cognitive

Diagnosis Framework (NeuralCD) [12] is a pioneer work that

incorporates neural networks to learn the complex high-order

student-exercise interactions.
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B. Group-Level Cognitive Diagnosis

In recent years, group-level cognitive diagnosis (GCD) has

received a lot of attentions and has been widely applied

in various domains. Especially in international large-scale

assessment projects (e.g. PISA and TIMSS) [22], [23], GCD is

widely used to explore the differences of group-level teaching

between different countries and areas. To our knowledge,

there are two solutions for traditional GCD tasks. The first

solution is to extend the traditional CDMS and then apply them

to assess the group ability. Traditional group-level cognitive

diagnosis models (GCDMs) were mainly developed based on

GIRT [4], [24], [25], which was an extended study of IRT

on the group level. Specifically, following an IRT-like logistic

model, the correct rate of group i answering exercise j is

P (rij = 1 | θi) = sigmoid (aj (θi − βj)), which is a typical

2-parameter logistic (2PL) model [26]. Different from IRT,

the GIRT combines matrix sampling [15], a student-exercise

sampling method, to collect group response data, so the perfor-

mance of the model is greatly affected by the sampling design.

[25] utilized GIRT to explain group differences in mathematics

achievement from an international perspective. In [4], GIRT

was applied in medical evaluation, which evaluated the quality

of health plan for different consumer groups. We should note

that the traditional GIRT method describes a group with latent

variables, which cannot provide intuitive and interpretative

results for each group. The other solution for GCD is to first

focus on modeling individual abilities, then assume that the

collective ability of a group is the average ability level of its

members [13], [14]. This solution generally assumes that the

response records of students to each knowledge concept are

evenly distributed in a group, so as to ensure the balance of

ability aggregation. However, this assumption may not hold

true in real and complex learning environments. Besides, this

method lacks the ability to adaptively model the influence

weights of students in different educational contexts, resulting

in sub-optimal assessment results.

C. Multi-Task Learning

As a promising area in machine learning, multi-task learning

(MTL) aims to leverage useful information contained in multi-

ple learning tasks to help learn a more accurate learner for each

task [27], [28]. The superior performance of MTL has been

demonstrated in many fields, such as natural language process,

computer vision [29], and recommendation system [30], [31].

Some previous work has shown that MTL is helpful to improve

the performance of the main task by alleviating the data spar-

sity problem. [32] demonstrated that learning representations

to predict the position and shape of facial landmarks could

improve expression recognition. To improve the performance

of bundle recommendation task, [31] proposed a multi-task

neural network to share the information between two tasks

(user-item modeling and user-bundle modeling). To alleviate

the sparsity of group-item interactions, the AGREE model [30]

is proposed to effectively leverage the user-item interactions

by a MTL method.

Student Representation Group Representation

Student Ability Group Ability

Exercise One-hot

Exercise Factors

Layer 1

...

Layer n

Shared Hidden Layers

Cognitive Layer

Representation 
Layer

Prediction Layer

...

Interaction Layer 

A A

Student-Exercise 
Modeling

Group-Exercise 
Modeling

Fig. 2. Illustration of joint modeling on student-exercise response and group-
exercise response.

Our work is orthogonal to the above-mentioned works,

as we exploit the deep neural network to tackle the group-

level cognitive diagnosis task under the multi-task learning

framework. Moreover, we employ the attention mechanism to

learn group representation as well. Besides, compared with

the traditional GCDMs, our method has better interpretability,

which can obtain the groups’ mastery on the knowledge

concepts for group assessment.

III. PROBLEM FORMULATION

Following the convention, we use bold capital letters (e.g.,

X) and bold lowercase letters (e.g., x) to represent matrices and

vectors, respectively. We employ non-bold letters (e.g., x) to

denote scalars and uppercase calligraphic symbols (e.g., X)to

denote sets. All vectors are in column forms if not clarified.

Suppose there are n Students S = {s1, s2, . . . , sn},
h Groups G = {g1, g2, . . . , gh}, m Exercises

E = {e1, e2, . . . , em}, and t Knowledge concepts

K = {k1, k2, . . . , kt}. The l-th group gl ∈ G is consisted of

a set of students, i.e., group members with student indexes

Kl = {kl,1, kl,2, . . . , kl,|gl|}, where skl,∗ ∈ S and |gl| is the

size of the group.

There are two kinds of collected responses data among S , G,

and E , namely, group-exercise responses and student-exercise

responses. A student will choose some exercises for practice

in daily learning, and the student-exercise response logs F are

denoted as a set of triplet (s, e, u) where s ∈ S , e ∈ E and

u is a binary variable — 1 means that student s has a correct

response on exercise e and 0 otherwise. The group-exercise

response logs H often come from group evaluation(e.g., class

test), and we use a set of triplet (g, e, y) to denote it, where

g ∈ G, e ∈ E and y is the correct rate that group g got on

exercise e. We should note that there is no intersection between

H and F, that is, F does not include the common response

data of group students. In addition, we have Q-matrix Q =

{Qij}m×t as the prior knowledge from education experts to

guarantee interpretability(Qij = 1 if exercise ei requires skill

kj and 0 otherwise).

Problem Definition Given group-exercise response logs H,
student-exercise response logs F and the Q-matrix Q, the goal
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of our group-level cognitive diagnosis task is to mine groups’
proficiency on knowledge concepts through jointly modeling
the tasks of group performance prediction and student perfor-
mance prediction.

IV. METHODOLOGY

There are three key designs in MGCD: 1) multi-task

learning that jointly models student-exercise responses and

group-exercise responses; 2) group representation learning that

aggregates its student representations with attention mecha-

nism with group-exercise responses; and 3) cognitive layer

modeling that projects student, exercise, group representations

to interpretable factor vectors and learn their interactions with

neural networks. This section is organized to elaborate the

three parts.

A. Multi-Task Learning

In order to make advantage of the information from student-

exercise responses to overcome the sparsity of the group-

exercise responses, we propose to jointly model these two

kinds of responses in a multi-task manner.

Student Performance Prediction. As the ground-truth of stu-

dents’ knowledge states are inaccessible, we adopt the method

used in traditional cognitive diagnosis works, i.e., training the

students’ ability vectors through predicting their performances

[2]. In this work, the goal of student performance prediction

task is to predict whether a student can respond correctly to a

given exercise.

Group Performance Prediction. Similarly, the goal of group

performance prediction task is to predict the correct rate of a

group for a given exercise, and then we use the performance

of this task to indirectly evaluate the effectiveness of GCD.

The general flow of these two prediction tasks is shown in

Figure 2, we project student representation and group represen-

tation to obtain student ability and group ability respectively,

and then learn interaction function (colored as purple) to

predict student-exercise response and group-exercise response.

Specifically, the information transfer between these two tasks

are achieved by sharing student representations and exercise

factors, of which the former is then used to form the group

representation (details in Section IV-B).

B. Group Representation Learning

Due to the fact that a group is composed of its students, we

naturally obtain group representation from the representations

of its containing students. This would allow information

learned from responses transferred between the two tasks, and

therefore get better diagnostic results.

We associate student sj with an embedding rsj , directly

projecting student one-hot vector xsj to the latent space.

rsj = xsj ×R, (1)

where R is a trainable matrix. Next, we aggregate the student

embeddings in a group to obtain the group’s embedding.

Before introducing our method, we first recapitulate some

common aggregation strategies.

Input Layer

Embedding Layer

Pooling Layer

Output Layer

Group One-hotGroup Members

Context-aware Attention Network

Fig. 3. Illustration of the student embedding aggregation component based
on neural attention network.

There are several predefined strategies in neural networks to

aggregate embeddings, such as max pooling, average pooling,

and min pooling [31]. In general, these aggregation strate-

gies are also known as heuristic strategies, where they first

predict the students’ proficiency scores on specific knowledge

concepts, and then aggregate those predicted scores of each

member in a group via the strategies to obtain the group’s

proficiency. These aggregation strategies can be explained

from the cognitive ability level of the group. For example,

the max pooling strategy tries to maximize the greatest ability

of a group by choosing the highest proficiency score among

its members on each knowledge concept.

We argue that these heuristic aggregation strategies are

not sufficient to model the relationship between students and

groups due to the inflexibility in adjusting the weights of mem-

bers in the group. It should be noticed that the role of a student

in a group is highly related to the student’s characteristic

(e.g., knowledge state), and the importance might be different

according to trait of the group context (e.g., cooperative) [33].

For example, two students with similar abilities in different

groups may have different influences due to the diversity of

learning contexts. Toward this end, we design an adaptive

weighted sum operation which is inspired by the attention

mechanism in neural networks [30], [34]. Let rgi be the

representation for group gi, we obtain it by:

rgi =
∑
j∈Gi

λjrsj , (2)

where λj denotes the influence weight of student sj . To

dynamically model the influence weight of students in dif-

ferent contexts, we design a novel context-aware attention

mechanism to learn the weights from the historical data of

group exercise responses:

oj = hT tanh
(
WKrsj +WQci

)
,

λj = softmax (oj) =
exp(oj)

∑
j′∈Gi

exp(oj′)
, (3)

where ci is the group-level context vector of gi and can

be obtained by multiplying the one-hot vector of gi with a

trainable matrix WC , i.e., ci = xgi ×WC . WK and WQ

are the key matrix and query matrix of the attention network
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respectively that convert student embedding and group-level

context vector to hidden layers, respectively. We use tanh

as the activation function, and then project it to a score oj
with a weight vector h. Lastly, we normalize the scores with

a softmax function, which makes the attention network a

probabilistic interpretation.

Figure 3 illustrates our design of the student embedding

aggregation component. With such a soft attention mechanism,

we allow individually modeling the influence of students,

where the weights depend on students’ latent characteristics

and the group’s context property, which are learned from

the data of group-exercise responses and student-exercise

responses (to be discussed in Section IV-C).

C. Cognitive Layer Modeling

The goal of cognitive layer modeling is to obtain explainable

student abilities and group abilities, and model the complicated

interactions among students, groups and exercises. Details are

introduced as below.

Group Ability. After obtaining a group’s representation, the

next target is to model the cognitive ability of the group,

which can characterize the group’s traits and affect the group’s

response to exercises. Specifically, We use a cognitive ability

vector hg to characterize a group:

hg = sigmoid (rg ×A) , (4)

where hg ∈ (0, 1)1×K and A is a trainable matrix.

Student Ability. our proposed framework need to co-train

student performance prediction task and group performance

prediction task, so we model students’ cognitive ability to

predict student-exercise responses. Similarly, We use a vector

hs to represent the student’s cognitive ability:

hs = sigmoid (rs ×A) , (5)

where the matrix A is shared in MGCD framework.

Exercise Factors. For a group-level cognitive diagnosis sys-

tem, exercise factors is another important element to be

considered [17], which characterize the traits of exercises. In

this work, the exercise factor we first consider is exercise-

related knowledge concepts Qe to ensure the interpretability

of our model. In cognitive diagnosis tasks, Q-matrix is given

as the prior knowledge from education experts for denoting

which knowledge concepts are needed for each exercise, so

the Qe can be obtained by:

Qe = xe ×Q, (6)

where Qe ∈ {0, 1}1×K , xe is the one-hot vector of exercise

e. In addition, we also consider other two exercise factors:

the knowledge difficulty hdiff and the exercise discrimination

hdisc, which are widely used in CDMs for more effective

diagnosis. hdiff indicates the difficulty of each knowledge

concept related to a given exercise, given by:

hdiff = sigmoid (xe ×B) , (7)

where B is a trainable matrix. hdisc refers to the ability

to distinguish groups or students with different knowledge

proficiency, which can be obtained by:

hdisc = sigmoid (xe ×D) , (8)

where D is a trainable matrix.

Interaction Function. Many choices of interaction function

explored in traditional cognitive diagnosis models can be

applied here, such as inner product used in MF methods

and item response functions used in IRT and MIRT methods.

In this work, We opt for the Neural Cognitive Diagnosis

Model (NeuralCDM) [12] for two reasons: 1) NeuralCDM

is more flexible in designing multiple nonlinear layers to

learn complex interaction functions, which allows us to seam-

lessly incorporate student-exercise responses modeling into the

group-exercise model; 2) NeuralCDM is a neural network

architecture, being suitable to perform end-to-end learning

on both embeddings (that represent students, exercises, and

groups) and interaction functions (that predict student-exercise

and group-exercise responses). The first layer of the interaction

layers is formulated as:{
xg = Qe ◦ (hg − hdiff )× hdisc

xs = Qe ◦ (hs − hdiff )× hdisc
, (9)

where ◦ is element-wise product. Then shared hidden layers

are used to capture the nonlinear and higher-order correlations

among students, groups, and exercises.⎧⎪⎪⎨
⎪⎪⎩

z1 = φ (W1x+ b1)
z2 = φ (W2z1 + b2)

· · ·
zh = φ (Whzh−1 + bh)

, (10)

where φ is the activation function. Finally, the output of the

last hidden layer zh is transformed to a prediction score via:{
ŷlj = φ (Wh+1zh + bh+1) , if x = xg

ûij = φ (Wh+1zh + bh+1) , if x = xs
, (11)

where ŷlj and ûij represent the prediction for a group-exercise

response pair (gl, ej) and a student-exercise response pair

(si, ej), respectively. It is worth mentioning that we have

purposefully designed the prediction of the two tasks share

the same hidden layers and matrix A. This is because that

the group embedding is aggregated from student embeddings,

which makes them in the same semantic space by nature.

Here, in order to ensure that the diagnostic results of student

ability vector hs and group ability vector hg are reasonable,

we utilize the monotonicity assumption to guarantee the inter-

pretability of the cognitive layer, which is used in some IRT

and MIRT models [10], defined as follows:

Monotonicity Assumption. When the proficiency of any
knowledge concept increases, the probability of correct re-
sponse to the exercise also increases.

Specifically for GCD, the assumption means that the group’s

correct rate for an exercise increases as any dimension of the

cognitive ability vector increases, which places limits on the

mathematical forms considered for the interaction function.

For example, in traditional methods, the logistic is widely

used as the interaction function, which can easily be proved

to satisfy the monotonicity assumption due to the inherent

monotonic characteristics.

In this work, we simply restrict each matrix of the interac-

tion function to be positive to satisfy the monotonicity assump-

tion (details in Section V-B). Moreover, during model training,
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the Q-matrix is used to control the change of each dimension

of the ability vector. Finally, the obtained ability vector will

be interpretable, which can represent the proficiency on each

knowledge concept.

Joint Training. We use the cross-entropy loss function for

this student performance prediction task as follows:

Lstudent = −
n∑

i=1

∑
j∈Fi

(ûij log uij + (1− ûij) log (1− uij)) ,

(12)

where Fi denotes all exercises responded by student si. The

group performance prediction task aims to predict groups’

correct rate for a given exercise, so we choose the mean square

error loss function for this prediction task as follows:

Lgroup =
1

T

h∑
i=1

∑
j∈Hi

(ŷij − yij)
2
, (13)

where T represents the total number of student-exercise re-

sponses in the training data and Hi denotes all exercises

responded by group gi. The final objective function for the

joint model is the sum of the two tasks’ objective functions:

L = Lstudent + Lgroup. (14)

After training, the value of hg is what we get as diagnosis

result, which denotes the group’s proficiency on each knowl-

edge concept.

Generality of Cognitive Layer.
As mentioned before, many traditional methods can be

applied to modeling the interaction among group ability,

student ability, and exercise factors. Specifically, in order to

keep MGCD as a general framework, the cognitive layer we

deliberately designed can cover many traditional interaction

functions. The extendibility over representative models are

illustrated as follows:

IRT. Take the typical formation: y = σ ((hg − hdiff )× hdisc)
as the example of IRT, where hg , hdiff and hdisc denote

group ability, exercise difficult and discrimination respectively.

To extend from IRT, in the cognitive layer, we project group

embedding rg and exercise one-hot xe to unidimensional hg

and hdiff respectively, and set Qe ≡ 1 and hdisc as additional

trainable parameters. As for the shared hidden layers, we

directly replace them with the sigmoid function.

MIRT. MIRT is a multidimensional extension of IRT [35]:

y = σ (Qe · (hg − hdiff )), where Qe is the one-hot index

vector of related concepts for exercise e. To extend from MIRT,

we just compute the sum of elements in xg (Eq. (9)) and

choose sigmoid as the activation function to get the model

prediction result without additional shared hidden layers.

MF. According to [12], MF can be treated as a special case

of the NeuralCDM model where hdiff ≡ 0 and hdisc ≡ 1. In

particular, we can implement MF by factoring score matrix to

get hg and Qe, i.e. y = Qe ·hg . Therefore, extending from MF

is straightforward, all the shared hidden layers need to sum up

the values of each entry in xg .

It is noteworthy that interaction functions are shared in

our multi-task learning framework. Therefore, these traditional

TABLE I
DATASET SUMMARY.

Dataset Math NIPS Edu ASSIST2012

# Students 12,853 4,430 1,495
# Groups 1,716 634 97

# Exercises 7,997 18,701 13,342
# Knowledge concepts 1,566 356 162

AVG. group size 7.49 6.98 15.41
AVG. #responses for a student 45.58 81.25 66.24
AVG. #responses for a group 37.12 10.24 9.02

methods introduced above are also suitable for modeling

student-exercise response.

V. EXPERIMENTS

In this section, we conduct extensive experiments on three

real-world datasets aiming to answer following research ques-

tions and validate our technical contributions.

RQ1 How is the generality of our proposed framework? Can it

be applied to different cognitive diagnosis models and obtain

better performance?

RQ2 How is the effectiveness of our designed attention net-

work? Can it perform better than other predefined aggregation

strategies?

RQ3 Can multi-task learning framework improve the perfor-

mance of group-level cognitive diagnosis? Can it alleviate the

sparsity of group-exercise responses?

RQ4 How about the interpretation of MGCD on mining group

knowledge states for group-level cognitive diagnosis?

A. Dataset Description.

We experimented with three real-world datasets, i.e., Math,

NIPS Edu, and ASSIST2012. the Math dataset is collected

from a widely-used online learning system1, which contains

the response logs of high school students to mathematical

exercises. The NIPS Edu dataset is from a diagnostic ques-

tions competition: The NeurIPS 2020 Education Challenge2

[36], which provides students’ response logs to mathematics

questions in two school years (2018-2020). The ASSIST2012

dataset is provided by ASSISTment online tutoring platform3

and is widely used for cognitive diagnosis tasks.

All these datasets contain group labels, and students from

the same group belong to the same class. Each dataset contains

two records that do not overlap: student-exercise responses and

group-exercise responses. Specifically, for each group-exercise

response, we calculate the correct rate of this group of students

on the exercise as the response result. We filter out groups

with less than 5 group-exercise response logs in each dataset

to guarantee that each group has enough response data for

diagnosis. The statistics of datasets are shown in Table 1.

B. Experimental Setup

1) Evaluation metric: For performance evaluation, each

group-exercise response dataset is randomly split into two

parts: 80% as the training set and 20% as the test set. In this

1https://www.zhixue.com
2https://competitions.codalab.org/competitions/25449
3https://sites.google.com/site/assistmentsdata/home/

2012-13-school-data-with-affect

215

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 12,2022 at 08:21:20 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II
EXPERIMENTAL RESULTS ON VERIFYING THE GENERALITY OF MGCD.

Model Math NIPS Edu ASSIST2012
RMSE MAE RMSE MAE RMSE MAE

IRT 0.2400 0.1999 0.2977 0.2582 0.3055 0.2730
IRT-AVG 0.2347 0.1898 0.2683 0.2401 0.2805 0.2637

MGCD-IRT 0.2215 0.1744 0.2430 0.2211 0.2654 0.2305
MIRT 0.2175 0.1645 0.2693 0.2202 0.2695 0.2564

MIRT-AVG 0.1912 0.1501 0.2349 0.2197 0.2731 0.2637
MGCD-MIRT 0.1866 0.1442 0.2311 0.2011 0.2238 0.2231

PMF 0.2835 0.2276 0.2963 0.2524 0.2945 0.2681
PMF-AVG 0.2843 0.2216 0.2835 0.2431 0.2967 0.2637
MGCD-MF 0.2411 0.2085 0.2564 0.2241 0.2563 0.2102
NeuralCDM 0.2059 0.1558 0.2675 0.2102 0.2610 0.1945

NeuralCDM-AVG 0.1823 0.1421 0.2427 0.1984 0.2517 0.2113
MGCD 0.1787 0.1293 0.2236 0.1761 0.2106 0.1561

work, the effectiveness of group-level cognitive diagnosis is

indirectly validated by the group performance prediction task.

Therefore, considering the task is to predict the correct rate

of a group for a given exercise, we adopt two metrics for

regression task to evaluate the performance, i.e., root mean

square error (RMSE), mean absolute error (MAE).

2) Framework Setting: The dimensions of the hidden layers

(Eq. (10)) are 128, 64, 1 respectively, and the activation

function of the last layer is sigmoid and that of the other layers

is tanh. Indeed, we empirically set the number of the shared

hidden layers to 3, which has achieved good results in the

experiments. Too many layers may increase noise irrelevant

to the group-level cognitive diagnosis task, and too few layers

may not be conducive to modeling the complex interaction

among students, groups, and exercises. Moreover, we use

the tower structure for hidden layers and leave the further

tuning on the structure as future work. In order to satisfy the

monotonicity assumption to regularize the model, we restrict

the parameters of each matrix (in Equation 10) to be positive.

A simple implementation scheme is to map the parameters

of each matrix to a non-negative number through the relu

function during forward propagation, and then perform the

corresponding matrix multiplication operation.

3) Training Details: All models are implemented by Ten-

sorflow using Python, and all experiments are run on a Linux

server with four 2.0GHz Intel Xeon E5-2620 CPUs and a Tesla

K20m GPU.

To set up training process, we initialize all network param-

eters with Xavier initialization strategy [37]. Each parameter

is sampled from U
(
−√

2/ (nin + nout ),
√

2/ (nin + nout )
)

,

where nin and nout denote the numbers of neurons feeding

in and feeding out, respectively. We used the Adam optimizer

for all gradient-based methods, where the mini-batch size and

learning rate were searched in [32, 64, 128] and [0.001, 0.005,

0.01, 0.05, 0.1], respectively. All models are evaluated with 5-

fold cross validation.

C. Baseline Approaches.

To show the effectiveness of our method, we compared it

with the following models.

• IRT [8]: IRT is a cognitive diagnosis method modelling

students’ latent trait and the parameters of exercises like

difficulty and discrimination.

• MIRT [10], [38]: MIRT is an extension of the unidimen-

sional IRT models that seek to explain an item (exercise)

response according to a student’s standing across multiple

latent dimensions.

• PMF [39]: probabilistic matrix factorization is a latent

factor model projecting students and exercises into a low-

dimensional space.

• NeuralCDM [12]: NeuralCDM is a novel neural cog-

nitive diagnosis model, which can leverage multi neural

layers for modeling complex interactions between stu-

dents and exercises.

Among all the above-mentioned baselines, only the Neural-

CDM is interpretable for the diagnostic result. As for all the

other models, there are no clear correspondence between their

latent features and knowledge concepts. In order to facilitate

subsequent interpretability experiment, inspired by [40], [41],

we extend MIRT and PMF by integrating Q-matrix to improve

the explanatory power. Moreover, all the above-mentioned

baselines are single-task models, which regard each group as

a virtual unit, and then mine the group’s cognitive ability by

group-exercise response data.

D. Performance Comparison (RQ1)
In order to verify the generality of MGCD framework, we

use different interaction functions based on our framework, in-

cluding IRT, MIRT, PMF, and NeuralCDM, and then compare

the performance with the corresponding baseline respectively.

In addition, to avoid data unfairness between single-task

learning and multi-task learning, we further choose the second

solution (introduced in section II-B) as the control experiment.

Specifically, we first leverage the baseline methods to diagnose

the knowledge state of individual students through all the

response data and then regard the group ability as the average

ability of the students, and the effect is measured by the

group performance prediction task. To distinguish from those

baselines, we add the suffix ‘-AVG’ to their names.
As shown in Table 2, we can see that co-training the

group-exercise and student-exercise responses perform better
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Fig. 4. The performance comparison of different fusing strategies.

in different interaction functions, which verifies the generality

of MGCD. Moreover, we can observe that even if the student-

exercise response data is additionally used, the performance

of the second solution is still suboptimal, which could be

caused by the uneven distribution of ability and response logs

in the group. This further proves that multi-task learning can

make better use of student-exercise response data. Besides, the

performance of neural network-based interaction is superior

to other methods, demonstrating the superiority of neural

networks, especially their great ability in modeling the high-

order interactions among students, groups, and exercises.

E. Effect of Attention (RQ2)
In order to investigate the effectiveness of the attention

network, we compare it with other predefined aggregation

strategies, including min pooling, max pooling, and average

pooling. As shown in Figure 4, compared with other aggrega-

tion strategies, the attention network achieves a relative perfor-

mance improvement on all datasets with respect to both met-

rics. Experimental results show that the attention aggregation

module has strong representation power in complex learning

contexts, which provides evidence on the effectiveness of the

attention network.

In addition, in order to prove that the context-aware attention

network can model the influence weights of students in differ-

ent learning contexts, we randomly select two groups (group

a and group b) for visualization. We first calculate the average

of the ability vectors of a and b in all dimensions respectively.

Then we reduce the representation vector dimension of each

student in the two groups to two-dimension space using the T-

SNE method [42] and draw a scatter figure. From Figure 5 (a)

we can see that although the ability distribution of students in a

group is extensive, the similarity between students in the same

group is still higher than that among different groups, which

indicates the commonness among group members. We select

two students (a1 and b1) in Figure 5 (a) with similar abilities

who belong to a and b respectively. We then randomly select

another 4 students from a and normalize the attention weights

for visualization, and the same method for group b. As shown

in Figure 5 (b), we can observe that different students (e.g., a1
and a2) in the same group have different weights. Although the

abilities of a1 and b1 are similar, since the overall proficiency

of a is lower than b, a1 may have a higher influence in a,

which causes a different weight in Figure 5 (b).

F. Effect of Multi-task Learning (RQ3)
To investigate whether multi-task learning improves the

model performance and alleviates the sparsity of group-

Fig. 5. Visualization for attention weights.

Fig. 6. Experimental results with different test ratios.

exercise responses, we vary the proportion of the group-

exercise responses training set and compare the performance of

our model with baselines. The experimental results are shown

in Figure 6. We have the following observations: 1) The multi-

task learning model we proposed can perform better than these

single-task learning models, which verifies that the insufficient

response data between group and exercise limits the model

performance. More importantly, with the increasing of the

sparsity of the training data (training data ratio declines from

80% to 20%), the superiority of our method becomes more

and more significant. 2) Compared with the Math dataset, as

shown in Table 1, the group-exercise responses of the other

two datasets are sparser, and our model has more obvious

performance improvements.

G. Interpretation of the Diagnosis (RQ4)
To assess the interpretability of MGCD framework (i.e.,

whether the diagnostic result is reasonable), we further conduct

the following experiments.

1) Ranking Performance Evaluation: Intuitively, if group

a has a better mastery than group b on knowledge concept

k, then a is more likely to get better performance to answer

exercises related to k. We adopt Degree of Agreement (DOA)

[40] metric to evaluate this ranking performance.

Particularly, for a specific knowledge k, the DOA result on

k is defined as:

DOA(k) =
1

Z

m∑
j=1

Ijk

h∑
a=1

h∑
b=1

δ (Fak, Fbk) ∧ δ (yaj , ybj)

δ (Fak, Fbk)

(15)

where Z =
∑h

a=1

∑h
b=1 δ (Fak, Fbk). Fak is knowledge

proficiency of group a on knowledge concept k. yaj (denoted
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Fig. 7. DOA results of models.

in Eq. (13)) is group a’s response on exercise j. δ(x, y) is

an indicator function, where δ(x, y) = 1 if x > y. Ijk is

an another indicator function, where Ijk = 1 if exercise e
contains knowledge concept k. The DOA value ranges from

0 to 1 and the larger the better. Furthermore, we average

DOA(k) on all knowledge concepts for measuring the overall

quality of diagnostic result.

As mentioned before, we have integrated the Q-matrix to

expand MIRT and PMF to ensure the interpretability of the di-

agnosis results (Section V-C). Besides, to prove the importance

of monotonicity assumption, we design a simplified model

(denoted as MGCD-Monotonocity), in which monotonicity

assumption is removed by eliminating the positive restriction

on the shared hidden layers.

As shown in Figure 7, we can obtain that MGCD has

better performance than other baseline methods in the met-

ric of DOA, which further demonstrates that the groups’

knowledge state obtained by our method is reasonable. When

the monotonicity assumption is removed, the DOA result

of MGCD-Monotonocity drops significantly. To satisfy the

interpretability of MF, the latent trait of exercise here only

considers the exercise-related knowledge concept Qe (Eq.

(6)), and the interaction between group ability and exercise

feature is modeled through the inner product form, which is

not enough to mine the complex high-order group-exercise

relationship, thus obtaining a lower DOA result.

2) Case Study: We present an example of the diagnosis

results of a group of students on each knowledge concept

in Dataset Math using NeuralCDM and MGCD. Here, we

evaluate the interpretability based on whether the diagnostic

proficiency of groups is reasonable with the additional student-

exercise response data. In order to show the knowledge state

of groups more intuitively, we visualize the diagnosis results,

which are shown in Figure 8.

The lines in Figure 8 (a) show the correct rate of the

exercises related to each knowledge concept and we con-

sider the group-exercise responses and the student-exercise

responses respectively. Figure 8 (b) shows the diagnostic result

and each point on the radar diagram represents the mastery

level of the certain knowledge concept. We can observe that

both methods can obtain interpretatively meaningful diagnosis

results. However, we can notice that there are some differences

Fig. 8. Diagnosis results for a group of students

in the results of these two methods, e.g., the proficiency of

‘Inequality’ diagnosed by MGCD is higher than that obtained

by NeuralCDM. From the line chart, we can observe that the

correct rate of ‘Inequality’ obtained by the student-exercise

responses is higher than that of the group-exercise responses.

Therefore, the single-task model is likely to get suboptimal

diagnostic results due to the lack of sufficient response data.

From the results, we can see that owing to the effective use

of student-exercise response data, which provides additional

information about students’ abilities in a group, MGCD is able

to provide a better interpretable insight on diagnosing group

knowledge states for GCD.

VI. CONCLUSION AND FUTURE WORK

In this paper, we focused on the problem of cognitive

diagnosis for a group of students from the perspective of multi-

task learning. Specifically, to mitigate the sparsity of group-

exercise response data, we jointly modeled student-exercise

response and group-exercise response to share the information

of two tasks. Then, we designed an attention network to

aggregate the student embeddings in a group to obtain the

group’s representation. Moreover, in order to mine the latent

characteristics of students, exercises, and groups, we modeled

student ability, group ability, and exercise factors respectively,

and then we leveraged neural networks to learn the compli-

cated interactions among them. Extensive experimental results

on three real-world datasets clearly demonstrated the effective-

ness, generality and interpretability of MGCD framework. We

hope this work could lead to further studies.

This paper provides a novel solution for group-level cogni-

tive diagnosis. The research area is still in its infancy, and we

anticipate that more techniques will be developed in the future.

Specifically, we plan to find more reasonable metrics on group

assessment. Besides, if an exercise can only be considered

as a group’s response when all members of the group have

practiced, it will limit the practicality of the diagnostic model,

so we will try to design an efficient sampling algorithm in

the future. Meanwhile, we’d like to apply our method to other

fields, such as team ability assessment in the game field [5].
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