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Abstract

Recent years have witnessed the increasing interests in re-
search of crowdfunding mechanism. In this area, dynam-
ics tracking is a significant issue but is still under explo-
ration. Existing studies either fit the fluctuations of time-
series or employ regularization terms to constrain learned ten-
dencies. However, few of them take into account the inherent
decision-making process between investors and crowdfund-
ing dynamics. To address the problem, in this paper, we pro-
pose a Trajectory-based Continuous Control for Crowdfund-
ing (TC3) algorithm to predict the funding progress in crowd-
funding. Specifically, actor-critic frameworks are employed
to model the relationship between investors and campaigns,
where all of the investors are viewed as an agent that could in-
teract with the environment derived from the real dynamics of
campaigns. Then, to further explore the in-depth implications
of patterns (i.e., typical characters) in funding series, we pro-
pose to subdivide them into fast-growing and slow-growing
ones. Moreover, for the purpose of switching from different
kinds of patterns, the actor component of TC3 is extended
with a structure of options, which comes to the TC3-Options.
Finally, extensive experiments on the Indiegogo dataset not
only demonstrate the effectiveness of our methods, but also
validate our assumption that the entire pattern learned by
TC3-Options is indeed the U-shaped one.

Introduction

In recent years, crowdfunding has rapidly developed into a
popular way of financial investment. It is an emerging ap-
proach that aims to solicit funds from individuals rather than
traditional venture investors, such as angel investors and
banks. More and more people are willing to launch a project
(or named campaign on the Internet) for different purposes.
Indeed, tremendous efforts have been made by researchers
to comprehend the internal mechanism in crowdfunding.

Most of the existing works focus on analyzing factors that
affect the final results and predicting the probability of suc-
cess. However, dynamics tracking, i.e., predicting the fund-
ing progress of campaigns, is still a problem under research.
As shown in Figure 1, the funding progress of a campaign
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Figure 1: Funding series of a campaign example.

means the cumulative funding amount expressed as a per-
centage concerning the pledged goal (e.g, this ended cam-
paign reached 102% of the goal). The task concentrates on
forecasting a series of percentages for campaigns that are
still funding (e.g, in the 12th day, the future progress series
is 44.7%, 49.2%, 50.9%, ...). Actually, it is a meaningful
question for funding raisers and investors. For raisers, they
may acquire the forthcoming expectations of campaigns and
could make quick adaptations to the market. While for po-
tential backers, before making their possible backing deci-
sions, they will get more detailed advice for estimating the
following tendencies. Some methods have been explored
in the literature, including hierarchical regression (Zhao et
al. 2017b) and basis-synthesis techniques (Ren et al. 2018).
Moreover, others turn to predict the backing distribution of
campaigns through a Seq2Seq framework (Jin et al. 2019).
However, there are still challenges on funding process mod-
eling and series pattern utilization.

On the one hand, few of these works treat the dynamic
tracking as a decision-making process. Actually, the trans-
formation of campaigns and decision process of investors
affect and depend on each other, which evolves to a compli-
cated system (Xie et al. 2019). Hence, compared with view-
ing dynamics of funding series as a whole process, the in-
ner relationship between investors and campaigns that leads
to the exterior results might not be ignored. For instance,
the future tendencies of campaigns (e.g., expectation of suc-
cess) will impact on the investment decision of investors,
and vice versa. Nevertheless,while modeling the strong re-
lationship between investors and campaigns, it is difficult to
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reflect how previous backers’ behaviors affect latecomers’
choices, along with how backers make decisions based on
prior contribution performance and future estimates.

On the other hand, it is also significant to combine se-
ries patterns while tracking the dynamics in crowdfunding.
Though pattern-decomposition techniques have been inves-
tigated, in-depth implications of patterns are not reported.
Indeed, the entire pattern of funding series has been exam-
ined by Kuppuswamy and Bayus (2017), i.e., U-shaped pat-
tern. Figure 1 shows a typical example for explaining what
exactly the U-shaped pattern means. In other words, more
contributions are likely to occur at the very beginning and
ending of the funding period, as compared to the middle
time. The sharp increases in the initial stage are partly be-
cause of raisers’ social effect and partly due to the irrational
investment behaviors which can be explained by the “Herd
Effect”. While the rises in the last phase are caused by “Goal
Gradient Effect” (Kuppuswamy and Bayus 2017). Hence, to
precisely utilize the entire U-shaped pattern, automatically
switching mechanism is required to change between sub-
patterns in pace with different periods of funding cycles.

To tackle the challenges above, we first propose a model
named Trajectory-based Continuous Control for Crowd-
funding (TC3). Specifically, we adopt a Markov decision
process (MDP) to describe the interactions between in-
vestors and campaigns. To clearly indicate all factors that
influence the decisions of investors, reinforcement learning
methods, especially actor-critic frameworks are employed.
In our approach, the inner transformation of campaigns is re-
garded as an environment. While the agent, which interacts
with the environment, is the union of investors, along with
a sub-component critic to estimate future expectations. Sec-
ondly, to explicitly discriminate different sub-patterns in the
entire U-shaped pattern, we propose to subdivide the entire
pattern into fast-growing and slow-growing parts. Then, in-
spired by the idea in the hierarchical reinforcement learning
area that segmenting the states and generating corresponding
sub-policies, we propose TC3-Options to predict the funding
progress of campaigns. With the help of a options structure,
TC3-Options provides the capability of switching between
different sub-patterns automatically, which means the typi-
cal U-shaped pattern behind the funding series could be pre-
cisely utilized. Finally, we conduct extensive experiments on
a real-world dataset. The experimental results clearly vali-
date that our method can predict more accurately than other
state-of-the-art methods and can properly select sub-policies
according to different sub-patterns.

Related Work
The related works of our study can be divided into two cate-
gories: crowdfunding and reinforcement learning.
Crowdfunding. With the growing popularity of crowdfund-
ing, scholars have done much research and analysis from
different perspectives (Zhao et al. 2019; Liu et al. 2017;
Zhao et al. 2017a; Zhang et al. 2019b). Most of the pre-
vious works could be grouped into three categories: an-
alyzing the influential factors (Burtch, Ghose, and Wat-
tal 2013; Kuppuswamy and Bayus 2017; Mollick 2014;
Hoegen, Steininger, and Veit 2018), predicting the funding

results (i.e., success of failure) (Li, Rakesh, and Reddy 2016;
Lee, Lee, and Kim 2018; Yu et al. 2018; Zhang et al. 2019a;
Kaminski and Hopp 2019) and tracking the funding dynam-
ics (Zhao et al. 2017b; Ren et al. 2018), etc. Among qualita-
tive factors, what should be mentioned is that some scholars
are committed to exploring the social effects in crowdfund-
ing, especially the “Herd Effect” and the “Goal Gradient
Effect” (Shen, Krumme, and Lippman 2010; Herzenstein,
Dholakia, and Andrews 2011; Kuppuswamy and Bayus
2017), which uncovers a typical and significant pattern in
funding series, i.e., U-shaped pattern. For the success rate
prediction task, the accuracy can be improved by combining
deep learning (DL), natural language processing (NLP) and
transfer learning (TL) techniques. However, simply predict-
ing final outcomes can not reveal the detailed process in the
rest of the funding cycles. When it comes to dynamics track-
ing, Zhao et al. (2017b) employs a hierarchical regression
model that could predict funding amounts in both campaign-
level and perk-level, while other researchers adopt Fourier
transformation to capture various patterns hidden behind the
funding series (Ren et al. 2018). However, it seems that none
of these works consider the inner decision-making process
between investors and campaigns, which leads to exterior
funding results.

Reinforcement Learning. Developed from Markov deci-
sion processes (MDP) (Sutton and Barto 2018), deep re-
inforcement learning (DRL) has been proved to be a huge
success in many domains, such as games (Mnih et al. 2015;
Hessel et al. 2018), robotics (Kober, Bagnell, and Pe-
ters 2013; Haarnoja et al. 2018) and recommender sys-
tems (Chen et al. 2019; Liu et al. 2019). Existing methods
could be divided into two categories: value-based methods,
where policies are indirectly acquired according to the es-
timated value function, and policy-based methods, where
policies are directly parameterized (Sutton et al. 2000).
Gradually, actor-critic (AC) frameworks that incorporate
policy gradient methods with value estimation techniques
have become a mainstream (Degris, Pilarski, and Sutton
2012). Among AC methods, Lillicrap et al. (2015) pro-
posed Deep Deterministic Policy Gradient (DDPG) algo-
rithm, which is more effective when it comes to continu-
ous action space. While in the area of hierarchical reinforce-
ment learning, options structure is a popular framework for
temporal abstraction (Sutton, Precup, and Singh 1999). In
this framework, state, action and policy seem to respectively
have a hierarchical structure from different views. Moreover,
the option-critic architecture was proposed under the actor-
critic frameworks (Bacon, Harb, and Precup 2017).

Although reinforcement learning technique is suitable for
circumstances under which previous outputs affect the fol-
lowing inputs, leading to complex changes in series, it could
hardly be directly applied to track funding dynamics due to
the following two reasons. First, primitive objective func-
tions of reinforcement learning merely pay attention to max-
imize future rewards, while the prediction of history still
needs to be considered when forecasting funding progress.
Secondly, intra-option policy gradient theorem should be
adapted for the deterministic case.
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Figure 2: The framework of our TC3 and TC3-Options.

TC3 and TC3-Options

In this section, we first formally introduce the research prob-
lem, followed by the overview of basic TC3 model and final
TC3-Options model. Then, we introduce the technical de-
tails in both of the models.

Table 1: Main mathematical notations.

Symbol Description

Xi static features of campaign i
cit dynamic features of campaign i in day t
pit true funding progress of campaign i in day t
p̂it estimated funding progress of campaign i in day t
st state from environment in day t
at action from actor in day t
rt reward from environment in day t
ωt option chosen by actor in day t
μ(s) deterministic policy that chooses actions

Q(s, a) function that evaluates the action a in state s
π(ω|s) stochastic policy that chooses options
β(s, ω) termination probability in state s and option ω

Problem Statement

First, we assume the process of decision-making in crowd-
funding as follows. Before an investor determines whether
she would contribute or not, she is likely to watch a de-
tailed description of the campaign, including the whole
story. Along with static information, some changeable infor-
mation such as current funding progress, number of backers,
all the updates and comments are also visible. Furthermore,
the estimate of future trend is also a crucial factor that de-
served to be taken into account. Finally, if the investor makes
up her mind to support the campaign, she could select one
perk, of which funds needed and return gained vary.

Specifically, campaign i can be represented by a tuple
(Xi,Ci,P i). Precisely, Xi denotes static features which
consist of basic information of a campaign, i.e., campaign
description, perk information, a pledged goal, etc. Ci and

P i stand for dynamic features and cumulative funding
progress respectively. They are both sequential data. For ex-
ample, P i

1:T = pi1, p
i
2, ..., p

i
T , where T is the funding du-

ration that the campaign pledges. Given the previous tra-
jectory of campaign i (i.e., Ci

1:T−τ = ci1, c
i
2, ..., c

i
T−τ and

P i
1:T−τ = pi1, p

i
2, ..., p

i
T−τ ), the goal is to predict the se-

ries of funding progress in the following τ (e.g., τ = 5)
days (i.e., P i

T−τ+1:T = piT−τ+1, p
i
T−τ+2, ..., p

i
T ). Here, pit

is a percentage between 0 and 1. Moreover, the dynamic fea-
tures of campaign i (i.e., cit) in the t-th day are composed of
a comments vector vit and a day information vector dit.

An Overview of TC3 and TC3-Options

The overview of our basic TC3 is shown in Figure 2. Af-
ter modeling the problem with a MDP, our approach could
be generally viewed as two parts, namely an environment
and an agent, along with reward signals to measure the pre-
diction results. Specifically, the environment applies a GRU
layer to integrate heterogeneous feature from campaigns
while the agent includes the components of an actor and a
critic. The predictions of funding progress are the outputs
of the actor. While the critic is able to estimate future trends
that could instruct the actor and improves the accuracy of es-
timates through the reward signals. Finally, we propose the
TC3-Options to capture the U-shaped pattern, in which the
actor is specially designed with a structure of options.

MDP Formulation

To particularly model the influence between behaviors of in-
vestors and dynamics of campaigns, we regard the whole of
the former as one agent while thinking of the latter as an en-
vironment that can be changed by the agent. Then we apply
single-agent reinforcement learning techniques to let them
interact with each other. In particular, the environment is
simulated from true transformation of campaigns and could
be partly unchangeable (e.g., comments) and partly variable
(e.g., funding progress).Therefore, we could define reward
function from the errors between true and estimated dynam-
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ics. Specifically, we model the problem described above as
a MDP which comprises: a state space S , an action space A
and a reward function R. Without defining state transition
distribution P , we adopt model-free methods. In addition,
a policy μ is directly applied to select actions according to
states, which is also our learning goal. Formally, we define
the state, action, reward in this problem as follows.
State. Here, we use a Gated Recurrent Unit (GRU) (Chung
et al. 2014) layer to capture the information of dynamic in-
puts (i.e., day information and comments). We denote the
hidden states represented by GRU layer as ht, which is also
the defined state of the environment, i.e., st = ht. An extra
explanation is needed that only dynamic features of the cur-
rent day would be inputted and the GRU layer would aggre-
gate useful information since the first day of the campaign,
which might not contradict with the Markov assumption in
the decision-making process of investors.
Action. The possible percentages of the pledged goals make
up the action space, which is a continuous one. Due to the
unbalanced popularity of campaigns, some may rise to hun-
dreds of times of the goals while some only achieve less
than one percent. Applying deterministic policy, the output
of the actor component directly means the estimated funding
progress in the next day, i.e., at = p̂t+1. Then, to learn from
quite various results that come from a series of changes, we
replace the true funding progress pt+1 in the dynamic fea-
tures of the next day as the estimated one.
Reward. After observing state st and taking action at, im-
mediate reward rt with respect to (st, at) needs to be re-
turned, for measuring the error between the selected ac-
tion (i.e., estimated funding progress) and the optimal action
(i.e., true funding progress) in the current day. The primitive
goal of reinforcement learning is to maximize discounted
return Gt from the current t-th day to the end of funding
cycles, i.e., Gt =

∑N
τ=t γ

τ−trτ , where γ is the discounted
factor. Hence, we select a positive, continuous and differen-
tiable function that decreases monotonically as the absolute
error increases. In addition, to avoid violent fluctuation, the
moving average technique might be required.

Components of TC3 and TC3-Options

In this subsection, we will first introduce the loss functions
of the actor and critic components in the basic TC3. They are
denoted by Lactor and Lcritic respectively. Furthermore, the
actor is extended with a structure of options and Intra-option
deterministic policy gradient is derived in that sense.

Basic TC3. Here, we derive how the actor predicts the
funding progress based on the loss functions with respect to
future estimates (i.e., Lfu) and past experiences (i.e., Lpa).

Actually, the actor and critic component are both paramet-
ric neural networks. While the learning goal of our models is
exactly the policy, namely the function that approximated by
the actor, which directly maps hidden state space to action
space, i.e., at = μθ(st) where θ denotes the parameters in
the actor component. Meanwhile, the critic component eval-
uates the policy with respect to state-action pairs, denoted by
Q(s, a). Equally, it learns to estimate the future expectations
of accumulated rewards, which measures the errors between

possible and true future transformation after taking current
action. In the t-th day, while the agent receives the immedi-
ate reward r(st, at), it could be updated by minimizing the
mean square of one-step temporal differences δt, as shown
in the following equations:

δt = rt + γQ(st+1, at+1)−Q(st, at),

Lcritic = Est∼ρμδ2t .
(1)

On the other hand, taking advantage of estimated values
from the critic, the actor is partly aimed at taking actions
that could maximize discounted return Gt =

∑N
τ=t γ

τ−trτ ,
which equally means selecting actions that can minimize the
Lfu after the t-th day, where

Lfu(μθ) = −Est∼ρμ [

N∑
τ=t

γτ−tr(sτ , μθ(sτ ))]. (2)

Here, ρμ(st) means the distribution of state st under the pol-
icy μ and there is no need to compute the gradient of dis-
counted return with respect to this state distribution (Silver
et al. 2014). Due to the reward rτ is determined by the action
aτ and aτ = μθ(sτ ), the Lfu is finally with respect to the
policy μ, of which the parameters are denoted by θ.

While according to Deterministic Policy Gradient Theo-
rem (Silver et al. 2014), the actor can be improved in the
direction of the gradient of the critic, i.e.,

∇θLfu = −Est∼ρμ [∇θμθ(st)∇aQ
μ(st, at)|at=μθ(st)].

(3)
As shown in Equation 3, the gradient of Lfu is the nega-
tive expectation of the product of two gradients. While the
former is the gradient of policy μ(st) with respect to θ, the
latter is the gradient of value function Qμ(st, at) with re-
spect to action at, where at is determined by μ. Here, all
expectations are actually realized by Monte-Carlo sampling.

Additionally, the actor should not only estimate the fu-
ture influence but also predict the funding progress based on
experienced real trajectories, namely minimizing the mean
square errors between actual funding progress pτ and esti-
mated one p̂τ before the t-th day. Considering the relation-
ship between aτ and p̂τ that aτ = p̂τ+1, this part of loss
function Lpa can be written as:

Lpa =
1

t− 1

t∑
τ=2

(p̂τ−pτ )
2 =

1

t− 1

t∑
τ=2

(aτ−1−pτ )
2. (4)

From a practical viewpoint, it could also be regarded as
a form of regularization because we want the agent to sim-
ulate future changes as closely as possible to the real ones.
In other words, the actor should be updated in the direction
with the maximum likelihood, especially in the initial stage
where the gradient direction of the critic is uncertain.

Actor with Options. Here, we introduce how the actor
component in TC3 is extended with a structure of options.
After adapting previous loss functions, a defined termination
loss function Lterm is added to the final Lactor.

In the beginning, we provide an informal intuition on uti-
lizing the entire U-shaped pattern under the framework of
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Figure 3: Actor with a structure of options.

options. After judging the stage where a campaign is in, the
actor will take a sub-policy to capture those fast-growing
sub-patterns (i.e., gain an optimistic prediction) if the cam-
paign is in the beginning period or the ending period but
close to the goals. On the contrary, it will switch to another
sub-policy to capture slow-growing sub-patterns (i.e., obtain
a smoother result) if the campaign is in the phase where the
increase is gentle. To that end, primitive policy μ defined in
the previous subsection is diversified with separate parame-
ters and a high-level policy π is needed to select proper μ.

Formally, an option ω could be represented by a tu-
ple (Iω, μω, βω). Specifically, Iω , μω and βω denote initial
states, low-level policy and termination function of option ω
respectively. The set of initial states with respect to option
ω is a subset of the state space. In this work, we follow the
assumption that all states are available to every option (Ba-
con, Harb, and Precup 2017). The primitive policy μω(s) is
the deterministic low-level policy, opposite to the stochastic
high-level policy π(ω|s). The termination function decides
the probability whether the agent will quit the current option.

As shown in Figure 3, in the t-th day, the observation is
the state st and the option of last day ωt−1. If terminating,
the agent would select a new option ωt according to stochas-
tic high-level policy π(ω|st), otherwise ωt = ωt−1. Then,
the action to be taken is determined by μωt

(st). With next
state st+1 received, the agent terminates this option in the
next day with the probability of βωt(st+1).

Under specific circumstances where low-level policy μ is
stochastic, Intra-Option Policy Gradient Theorem has been
derived (Bacon, Harb, and Precup 2017). However, we em-
ploy a deterministic one here. The corresponding loss func-
tions should be modified. The basic idea behind the follow-
ing equations is that state-option pair (s, ω) now performs
as an extension of the primitive state. Hence, Q(s, a), μω(s)
and βω(s) are adjusted to Q(s, ω, a), μ(s, ω) and β(s, ω)
respectively.

We first modify the loss function of Q(s, ω, a). The idea
of one-step temporal-difference is still effective, only if the
probability of termination with respect to the current op-
tion ωt and the next state st+1 is considered. Specifically,
U(ωt, st+1) is introduced to compute one-step estimated
values. If the termination does not happen, the original es-
timated value Q(st+1, ωt, at) can be directly applied. How-

ever, if terminating, the greedy approach is employed to es-
timate through the maximum of all options, i.e.,

U(ωt, st+1) = (1− β(st+1, ωt))Q(st+1, ωt, at)

+ β(st+1, ωt)max
ω̄

Q(st+1, ω̄, at+1).
(5)

As a result, Lcritic could still be represented by the mean
square error of modified δt:

δt = r + γU(ωt, st+1)−Q(st, ωt, at),

Lcritic = Est∼ρμδ2t .
(6)

When it comes to Lfu, analogous to Equation 3, deter-
ministic form of Intra-option (i.e., low-level) policy gradient
with respect to the extended state (s, ω) could be written as:

∇θLfu = −E(st,ωt)∼ρμ [∇θμθ(st, ωt)∇aQ(st, ωt, at)],
(7)

where the gradient of Q with respect to a should be com-
puted in the case of at = μθ(st, ωt).

Finally, we follow the Termination Gradient Theo-
rem (Bacon, Harb, and Precup 2017) to formulate the loss
of the termination function, i.e.,

A(st+1, ωt) = Q(st+1, ωt, at+1)−max
ω̄

Q(st+1, ω̄, at+1),

Lterm = β(st+1, ωt)A(st+1, ωt),

where the one-step evaluation Q(st+1, ωt, at+1) from the
critic indicates an update margin of the termination func-
tion, with the baseline reduction technique (Schulman et al.
2015) applied for stability.

Training Strategy

While the final Lcritic in the TC3 and TC3-Options are di-
rectly described in the Equation 1 and 6 respectively, the
Lactor in both of our models are composed of different parts.

Considering another obvious prior that the funding
progress of a campaign increases monotonously, we add the
following restriction:

Lreg =

T∑
t=2

(p̂t − p̂t−1)
2I[p̂t<p̂t−1], (8)

where the square errors of adjacent predicted funding
progress are penalized only when p̂t−1 is greater than p̂t.

As a result, when it comes to Lactor in the basic TC3,
the losses of future estimates, i.e., Lfu and past experiences,
i.e., Lpa are combined, along with Lreg:

Lactor = Lfu + λ1Lpa + λ2Lreg. (9)

While Lactor in the TC3-Options still needs to integrate the
loss of termination function, i.e., Lterm:

Lactor = Lfu + λ1Lpa + λ2Lreg + λ3Lterm. (10)

Here, we do not prescribe how to acquire high-level policy
pi since many approaches could be utilized such as prim-
itive policy gradient, planning or temporal difference up-
dates. However, computing Q(s, ω, a) in addition to π(ω|s)
seems to be wasteful. Therefore, we obtain π according to
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Q(s, ω, a), with adaptive epsilon greedy policy adopted to
keep the balance between exploration and exploitation.

Some other tricks may need to be explained. The first
one is copying the actor and critic network to the target
ones. While the update of parameters in the target networks
is delayed (Lillicrap et al. 2015). Secondly, we store com-
plete trajectories in the experience replay (i.e., H1:T =
s1, a1, r1, s2, a2, r2, ..., sT , aT , rT ) instead of one-step in-
teractions (i.e., Ht:t+1 = st, at, rt, st+1) (Heess et al. 2015).
The common purposes are for learning more stably in addi-
tion to accelerating the convergence.

Experiments
In this section, we first introduce the dataset we collect from
Indiegogo. Then, the detailed experimental setup follows.
Finally, the results of experiments are demonstrated, espe-
cially the validation of the U-shaped pattern.

Dataset Description

We collect a real-world dataset from Indiegogo, which is
a famous reward-based crowdfunding platform. The dataset
includes 14,143 launched campaigns from July 2011 to May
2016, soliciting over 18 billion funds from 217,156 backers.
In addition, there are totally 98,923 perks and 240,922 com-
ments, along with 1,862,097 backing records. According
to the statistics, in our dataset, 62.54% of campaigns have
pledged funding duration between 30 and 60 days. However,
there are still 7.14% of campaigns whose funding duration
is between 15 and 25 days.

Table 2: The information of features

Level Features Type

Static

campaign description textual
perk description textual

campaign’s category categorical
creator’s type categorical

funding duration numerical
pledged goal numerical

number of perks numerical
number of comments numerical

max/min/avg price of perks numerical

Dynamic

comments textual
number of day started numerical

number of day left numerical
current schedule numerical

Experimental Setup

Parameter Setting. For the static features of campaigns,
we adopt one-hot encoding for categorical features and
word2vec embedding (Mikolov et al. 2013) for textual
features (each with a 50-dimensional vector). Finally, all
kinds of static features are concatenated to 182-dimensional
vectors. While for the dynamic features, they are 19-
dimensional vectors composed of textual comments (16-
dimensional by word2vec embedding), day information (2-
dimensional) and current funding progress. Specially, all
kinds of features are scaled by Min-Max normalization.

Additionally, considering the shortest funding duration of
campaigns in our training data and testing data is 15, we set
the length of days to be predicted to be 6, 7, 8, 9, 10 re-
spectively. With respect to the coefficients of regularization
terms, we set λ1, λ2 and λ3 to be 100, 1 and 1 respectively.
Evaluation Metrics. First we randomly select 10% of
all campaigns in our dataset as the testing set. Then,
considering the task is to predict the series of funding
progress for campaigns in the future, we adopt the fol-
lowing three metrics to evaluate the performance, i.e., root
mean square error (RMSE), mean absolute error (MAE)
and mean absolute percentage error (MAPE). Specifically,
for campaign i with pledged duration of T days, given
its series of real funding process in the final τ days (i.e.,
pi
T−τ+1, p

i
T−τ+2, ..., p

i
T ) and the series of predicted fund-

ing process (i.e., p̂i
T−τ+1, p̂

i
T−τ+2, ..., p̂

i
T ), the performance

could be measured by:

MAE =
1

I ∗ τ
I∑

i=1

τ∑
k=1

∣∣piT−τ+k − p̂iT−τ+k

∣∣ , (11)

RMSE =

√√√√ 1

I ∗ τ
I∑

i=1

τ∑
k=1

(piT−τ+k − p̂iT−τ+k)
2, (12)

MAPE =
100%

I ∗ τ
I∑

i=1

τ∑
k=1

∣∣∣∣∣
piT−τ+k − p̂iT−τ+k

piT−τ+k

∣∣∣∣∣ . (13)

Benchmark Methods.

• VAR (Vector Autoregression) (Sims 1980) models gener-
alize the univariate autoregressive (AR) model by allow-
ing for more than one evolving variable.

• RFR (Random Forest Regression) is one of the ensemble
methods that could balance different regression results of
all decision trees.

• SWR (Switching Regression) (Zhao et al. 2017b) is a vari-
ant of regression model that combines campaign-level and
perk-level regression results.

• MLP Multi-layer Perceptron (Bengio and others 2009) is
a kind of artificial neural network that performs well in
dealing with high-dimensional features.

• SMP-A (Jin et al. 2019) is a variant of Seq2Seq model
that using an encoder to track the history dynamics and
a decoder to predict the future dynamics, along with the
monotonously increasing prior.

• TC3 is our proposed basic model to utilize actor-critic
architecture to simulate decision-making process between
investors and campaigns.

• TC3-Options is the complete model that combine basic
TC3 with a structure of options to utilize the U-shaped
pattern in crowdfunding.

Experimental Results

Performance on Funding Progress Prediction. Here, we
demonstrate the performance comparisons on the funding
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Table 3: Performance on Funding Progress Prediction.

Test Length Metric VAR RFR SWR MLP SMP-A TC3 TC3-Options

6-day
MAE 0.1245 0.1392 0.1104 0.0648 0.0372 0.0234 0.0201

RMSE 0.1935 0.2115 0.1695 0.1368 0.0927 0.0681 0.0435
MAPE 41.23% 40.23% 35.03% 22.54% 12.82% 11.72% 9.05%

7-day
MAE 0.1668 0.1533 0.1365 0.0990 0.0399 0.0258 0.0237

RMSE 0.2790 0.2535 0.2046 0.1671 0.0963 0.0771 0.0495
MAPE 52.65% 46.15% 36.21% 26.97% 13.66% 12.27% 9.27%

8-day
MAE 0.1515 0.1443 0.1317 0.0921 0.0420 0.0267 0.0252

RMSE 0.2574 0.2401 0.1989 0.1542 0.1080 0.0792 0.0504
MAPE 47.84% 43.63% 35.65% 23.82% 12.58% 11.26% 8.76%

9-day
MAE 0.1494 0.1437 0.1257 0.0960 0.0414 0.0258 0.0249

RMSE 0.2466 0.2268 0.1944 0.1581 0.0942 0.0759 0.0483
MAPE 44.84% 40.96% 34.15% 24.69% 11.91% 10.37% 8.18%

10-day
MAE 0.1467 0.1338 0.1209 0.0987 0.0408 0.0249 0.0237

RMSE 0.2394 0.2197 0.1905 0.1647 0.1011 0.0741 0.0465
MAPE 42.38% 38.73% 32.20% 25.91% 11.31% 9.71% 7.60%

Figure 4: The first 5 days performance of TC3 (left) and
TC3-Options (right) (Test length = 10).

progress prediction task. Table 3 provides the results on
RMSE, MAE, MAPE metrics, testing through last 6, 7, 8, 9,
10 days respectively. Overall, it could be observed that both
of our proposed models (TC3, TC3-Options) outperform
the other baselines in all cases, which indicates that mod-
eling the decision process between investors and campaigns
might be helpful when tracking the dynamics in crowdfund-
ing, especially when future tendencies are specially consid-
ered. Secondly, compared with TC3, TC3-Options performs
better, which suggests that utilizing a well-learned pattern
would improve the accuracy of prediction. However, im-
provements between TC3 and TC3-Options are more evi-
dent in RMSE and MAPE metrics instead of MAE metrics.
It is possible that the RMSE metric decreases because of
the smoother distribution of errors while the MAPE met-
ric falls due to the more accurate prediction when it comes
to campaigns with fewer contributions. Thirdly, neural net-
work models (MLP, SMP-A, TC3, TC3-Options) outper-
form the regression-based models (VAR, RFR, SWR) in a
whole, which confirms that this kind of methods could bet-
ter deal with high-dimensional features.

Furthermore, as the length of test days to be longer, the
metrics do not show the monotonous increasing tendency,

which does not agree with intuition. To further explore this,
we specially measure the everyday performance of our pro-
posed TC3 and TC3-Options (the number of option is 2)
from the 1st to the 5th day when the test length is 10 days.
The results are shown in the Figure 4, which demonstrates
that the error of the first and second day are smaller than the
other days evidently. A likely explanation may be that since
the length of test days is over one week, most campaigns are
going through the gentle raise phrase at the beginning of the
test period. As a result, smaller fluctuations seem to make
it easier for the algorithm to predict. Actually, the MAPE
of the first 5 days is 5.62%, compared with the following 5
days of which the value is 9.54%.

Table 4: Influence of #Options.

#options 1 2 3 4 5

MAE 0.0234 0.0201 0.0237 0.0246 0.0261
RMSE 0.0681 0.0435 0.0468 0.0531 0.0582
MAPE 11.72% 9.05% 10.40% 11.52% 11.06%

Parameters Effects. In this subsection, we conduct a
group of experiments to test the influence of numbers of
options, where other parameters (length of test day, learn-
ing rate, training steps et al.) are kept the same. It should
be reminded that when the number of option is 1, the TC3-
Options model degenerates to the basic TC3 model. The
results are shown in Table 4. It is obvious that our model
performs best when the number of options is 2. However,
the model does not learn better when the number increases,
despite it still outperforms the basic TC3 model. A likely
explanation is that the model is forced to learn more sub-
patterns hidden behind the data, while the data would not be
complicated enough for so many patterns, hence, the model
could be confused to select the proper option.
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(a) (b)

Figure 5: (a) Backing distribution from Dataset. (b) Termi-
nation value learned.

U-shaped Verification. Before we validate the learned U-
shaped pattern, we conduct a statistical experiment to show
the U-shaped pattern hidden behind the dataset. Concretely,
we divide the whole funding cycle into eight parts accord-
ing to the trajectory length and then calculate the mean per-
centage of the contributions. The results are shown on the
Figure 5a, in which U-shaped pattern is obvious.

Finally, we verify whether or not the pattern learned by
our model is the U-shaped pattern when the number of op-
tions is 2. Ideally, a well-trained high-level policy could se-
lect proper options according to input states, in addition to
the termination function could instruct the appropriate prob-
ability to terminate in the current option. Significantly, it is
not in every step that the high-level policy would select the
option. Hence, a more effective approach is to observe the
values of the termination function in every step. Owing to
the experimental setting, the options would terminate with
the probability of 1−β(s, ω). If the termination value of the
current option is low, the model is more likely to terminate
and select a new option in the next day.

The average values of β(s, ω1) and β(s, ω2) in differ-
ent periods are shown on the Figure 5b. The partition of
the whole funding cycle is the same as above. Obviously,
the results illustrate that the first option has high termina-
tion probability in the start and end stages while the second
option shows relatively high termination value in the mid-
dle phase, which implies that the low-level policy μ of the
first option learns from the fast-growing sub-patterns while
the policy of another option learns from the slow-growing
sub-patterns. This could also be proved by the average dif-
ference of outputs between the two sub-policies described in
the other y-axis, which discloses that mean outputs from μ
of Option 1 are all greater than those from μ of Option 2.

Conclusions

In this paper, we presented a focused study on forecasting
dynamics in crowdfunding with an exploratory insight. In-
spired by techniques of reinforcement learning, especially
hierarchical reinforcement learning, we first propose a ba-
sic model which could forecast the funding progress based
on the decision-making process between investors and cam-
paigns. Then, through observing the typical U-shaped pat-
tern behind the crowdfunding series, we design a specific
actor component with a structure of options to fit for vari-
ous sub-patterns in different stages of funding cycles. As a

result, we validated the effectiveness of our proposed TC3
and TC3-Options models by comparing with other state-of-
the-art methods. Moreover, extra experiments are conducted
to demonstrate the entire pattern learned by TC3-Options is
exactly the U-shaped one.

In the future, we will generalize this framework to capture
dynamic pattern-switching process in other tasks that could
be modeled as sequential decision-making processes.
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