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Collaborative Filtering (CF) models offer users personalized recommendations by measuring the relevance
between the active user and each individual candidate item. Following this idea, user based collaborative
filtering (UCF) usually selects the local popular items from the like-minded neighbor users. However, these
traditional relevance based models only consider the individuals (i.e., each neighbor user and candidate
item) separately during neighbor set selection and recommendation set generation, thus usually incurs
highly similar recommendations that lack diversity. While many researchers have recognized the impor-
tance of diversified recommendations, the proposed solutions either needed additional semantic information
of items or decreased accuracy in this process. In this paper, we describe how to generate both accurate and
diversified recommendations from a new perspective. Along this line, we first introduce a simple measure
of coverage that quantifies the usefulness of the whole set, i.e., the neighbor userset and the recommended
itemset as a complete entity. Then, we propose a recommendation framework named REC that considers
both traditional RElevance based scores and the new Coverage measure based on UCF. Under REC, we
further prove that the goals of maximizing relevance and coverage measures simultaneously in both the
neighbor set selection step and the recommendation set generation step are NP-hard. Luckily, we can solve
them effectively and efficiently by exploiting the inherent submodular property. Furthermore, we generalize
the coverage notion and the REC framework from both a data perspective and an algorithm perspective. Fi-
nally, extensive experimental results on three real world datasets show that the REC based recommendation
models can naturally generate more diversified recommendations without decreasing accuracy compared to
some state-of-the-art models.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information Search and
Retrieval—Information Filtering

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: Collaborative Filtering, Coverage, Diversity, Personalized Recommen-
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1. INTRODUCTION
Collaborative Filtering (CF) is a technique to offer users personalized recommenda-
tions based on the wisdom of crowds [Adomavicius and Tuzhilin 2005]. Specifically,

This research was partially supported by grants from the National Science Foundation for Distinguished
Young Scholars of China (Grant No. 61325010), the National High Technology Research and Develop-
ment Program of China (Grant No. 2014AA015203), the Natural Science Foundation of China (Grant
No. 61403358), the Fundamental Research Funds for the Central Universities of China (Grant No.
WK0110000042) and the Anhui Provincial Natural Science Foundation (Grant No. 1408085QF110). Qi Liu
gratefully acknowledges the support of the Youth Innovation Promotion Association, CAS.
Authors’ addresses: L. Wu’s email: wule@mail.ustc.edu.cn, Q. Liu’s (corresponding au-
thor) email: qiliuql@ustc.edu.cn, E. Chen’s email: cheneh@ustc.edu.cn, N. Yuan’s email:
nicholas.yuan@microsoft.com, G. Guo’s email: guogg@mail.ustc.edu.cn, X. Xie’s email:
xing.xie@microsoft.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c⃝ YYYY ACM 2157-6904/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.



A:2 Le Wu et al.

given the historical behavior data (e.g., browsing history, click streams or item satisfac-
tion expressed in ratings), CF usually recommends a top-N list of items that are most
relevant to the target user’s interests [Su and Khoshgoftaar 2009]. The devised models
in this research area could generally be classified into two categories– matrix factor-
ization models and neighborhood based models [Koren 2008]. In matrix factorization
models, users and items are projected into the same low latent space and the rele-
vance between each pair of them is compared directly in this space. For neighborhood
based methods, e.g., User based Collaborative Filtering (UCF), relevance between the
user and an unknown item is measured by the like-minded (relevant) neighbor users’
opinions on this item.

In this way, these traditional CF models are successful at providing accurate rec-
ommendations that match some of the user’s dominant interests. However, the recom-
mendation set/list maybe monotonous (i.e., the recommended items are highly similar
to each other) and it is hard to cover all of this user’s interests [Zhang and Hurly 2009;
Said et al. 2013]. For instance, suppose Alice is a fan of Harry Potter book series and
she is also interested in the topic of Machine Learning. She read many books written
by J.K. Rowling and another book of Pattern Recognition and Machine Learning. Using
traditional UCF, Alice’s neighbors are all fans of J.K. Rowling as these neighbor user-
s need to have a lot of overlapped liked items with Alice. However, her interests for
machine learning would be neglected in this process. Similarly, the matrix factoriza-
tion models are also good at preserving the principal components of Alice’s dominant
interests while neglecting the minor ones [Koren et al. 2009]. Correspondingly, all the
books in the recommendation set are those written by J.K. Rowling without any ma-
chine learning related reference. Alice will soon get frustrated by such homogeneous
recommendations. Thus, we have reasons to argue, a practical recommender system
should not only make relevant but also diversified recommendations to improve over-
all user satisfaction.

Indeed, the importance of diversified recommendations has been well recognized
in the literature in the past few years. Some argued that accuracy related metric-
s are far from enough for measuring recommendation quality and diversity should
be considered as an important ingredient to user satisfaction [McNee et al. 2006;
Boim et al. 2011; Said et al. 2013]. Others devised various models to improve recom-
mendation diversity. These models usually followed two steps. They first retrieved a
larger candidate recommendation set by traditional CF algorithms and then re-ranked
this candidate set by diversity-enhancing techniques. E.g., Ziegler et al. introduced
item category information to access intra-list similarity of the recommendation set
and presented a topic diversification approach to improve recommendation diversi-
ty [Ziegler et al. 2005]. A similar approach was proposed in [Hurley and Zhang 2011],
where the final recommendation results for each user was formulated as a binary
optimization problem with the trade-off between diversity and accuracy. In both ap-
proaches, the diversity was measured by the distance based metrics in this itemset.
Nevertheless, these models relied on additional category information to access item
diversity or resulted in accuracy reduction during this process, which limits the gen-
erality of these models when only the user-item preference data is available. Thus we
ask, is it possible to generate both accurate and diversified recommendations that are
applicable to common scenarios even when no semantic data of items is available?

To tackle this problem, in this paper, we look at recommendation diversification from
a new perspective. We start from the widely used UCF model and analyze why it fails
to generate diversified recommendations empirically and experimentally. In fact, dur-
ing the two steps of UCF, i.e., the neighbor set selection and the recommendation set
generation, the relevance based measures only consider individuals in each set sep-
arately without a holistic view to treat elements in this set as a complete entity. To
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this end, we first introduce a simple notion of coverage that measures the usefulness
of the whole set. We further design several variants of this measure to consider dif-
ferent factors when measuring the utility of the whole set. Specifically, we apply this
notion in both stages of UCF and define what it means for neighbor users to cover
users’ interests and the recommended items to cover diversified neighbors. Then we
propose a recommendation framework named REC that not only encourages tradi-
tional RElevance based score but also rewards the new Coverage measure. Since we
reward coverage of each user’s interests by selecting a diversified neighbor set and
each diversified neighbor better contributes to the final recommendations, it is natural
that the REC framework brings more diversified recommendations. Furthermore, we
generalize this coverage notion and introduce how to adapt it to various CF models,
including item-based collaborative filtering and matrix factorization models. In sum-
mary, we make the following contributions:

— We introduce a notion of coverage that measures the utility of the whole set in the
two steps of UCF, i.e., neighbor set selection and recommendation set generation. We
also design several variants of this measure to consider some important factors when
measuring the utility of the whole set.

— We propose a recommendation framework that encourages both traditional relevance
measure and the new coverage measure based on UCF. We prove that the problem of
maximizing both relevance and coverage is NP-hard and provide efficient algorithms
by exploiting the submodular property.

— We generalize the proposed coverage measure and the whole recommendation frame-
work from both a data perspective and an algorithm perspective. Thus our proposed
measure and the overall framework can be easily adapted to different kinds of data
and various traditional CF models.

— We evaluate our proposed models on three real world datasets. Experimental results
show that all the proposed models that incorporate the coverage measure increase
diversity results when compared to the traditional CF models. We also provide alter-
natives to further improve diversity with a small loss in accuracy. E.g., in Douban
dataset, the improvement of diversity is 12.7% with only 3.3% loss with accuracy.

Organization: We discuss the motivations and problem definition in Section 2. In
Section 3 we present the proposed REC model. Then the generalization from both the
data perspective and the algorithm perspective is discussed in Section 4. We conduct
extensive experiments in Section 5, followed by related work in Section 6. Finally, we
offer conclusions and future work in the last section.

Table I. Mathematical Notations

Notations Description
U, V userset, itemset in the recommender system
u, u′ users in the userset, u (u′) ∈ U
v, v′ items in the itemset, v (v′) ∈ V
Lu items that user u likes, Lu⊆V
Ev users that expressed likeness for item v, Ev⊆U
Nu items that user u hasn’t shown likeness
Su the selected neighbor set for user u
Tu top-N recommendations for u ( |Tu|=N , Tu⊆Nu)

2. PROBLEM DEFINITION AND PRELIMINARIES
In this section, we start from the UCF model, which assumes that an active us-
er prefers the items that are locally popular among the like-minded neighbor user-
s. This model has been widely studied in CF, and shows simplicity, robustness
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as well as superiority in explaining the Word of Mouth phenomenon for deci-
sion making [Herlocker et al. 1999; Sarwar et al. 2000a; Su and Khoshgoftaar 2009;
Said et al. 2013; tak ]. Then we present a preliminary empirical and experimental
analysis to show the insufficiency of UCF in top-N recommendation, which motivates
our research. Specifically, for each user u, given a set of items Lu liked by her, top-
N recommendation aims at retrieving a set of items Tu to u such that |Tu| = N and
Lu ∩ Tu = ∅. For ease of explanation, Table I lists some notations used in this paper.

In UCF, there are usually two steps for generating recommendations for each user
u: the neighbor set selection and the recommendation set generation. That is, it first
selects a set of most similar (relevant) users as neighbors for u, and then measures
the relevance between her and candidate items based on the neighbors’ past choic-
es. The commonly used assumptions for these two steps are [Herlocker et al. 1999;
Sarwar et al. 2000a]:

— Neighbor Set Selection: If u′ and u liked many items in common in the past, u′

could be a neighbor of u;
— Recommendation Set Generation:If most neighbors in the neighbor set liked item v,

then v is probably in the top-N recommendation set.

In the neighbor set selection step, various relevance based measures have been pro-
posed. Since the focus of this paper is not to devise more sophisticated means to calcu-
late user similarity, we choose the Jaccard measure, which performs well for the binary
preference data [Das et al. 2007]:

sim(u, u′) = |Lu ∩ Lu′ |/|Lu ∪ Lu′ |. (1)

After that, the neighbor set Su is generated by selecting top K users with the largest
similarities. Then in the recommendation set generation step, the predicted likeness
of user u to item v, denoted as r̂(u, v), is calculated by:

r̂(u, v) =
∑

v∈Nu,u′∈Su

I(u′, v)/|Su|, (2)

where Nu are the items that user u hasn’t shown likeness ( Lu∪Nu = V and Lu∩Nu = ∅).
I(u′, v) equals 1 if v ∈ Lu′ and 0 otherwise. Here, r̂(u, v) can be seen as measuring the
relevance between user u and item v indirectly based on neighbors’ past choices. Typ-
ically, the recommendation set is generated by sorting r̂(u, v)s in a descending order.
That is, the more popular an item is among the neighbor users, the more likely it would
be recommended to the target user.

As can be seen, in both steps of UCF, we need to generate a set of elements, i.e.,
neighbors and recommendations respectively. However, using relevance based mea-
sures in traditional UCF, individuals in each set are considered separately without a
holistic view to be treated as a whole [McNee et al. 2006]. Specifically, in the neighbor
set selection period, only considering the relevance between the active user and each
candidate neighbor separately would lead to incomplete coverage of her interests as
some of her minority interests may not be covered by any neighbor. The incomplete
coverage of users’ interests in the neighbor set selection would further influence the
recommendation period, making the final recommendation set contains no items that
are similar to the uncovered interests of the user; Likewise, in the recommendation set
generation step, only recommending the most popular items among neighbors would
lead to incomplete coverage of neighbors. That is, even if we have selected a diversified
neighbor set, each of which covered different interests of u, the final recommendations
would be monotonous if some neighbors contribute nothing.

For further validation, we conduct preliminary experiments on three real-world
datasets. These datasets are from different domains and all contain user-item prefer-
ence data (see Table III in Section 5 for detailed statistics). We select neighbors of each
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user based on Eq. (1) and calculate the percentage of her liked items that have been
covered by the associated neighbor set (Eq. (12)). Ideally, the coverage score equals 1,
implying each user’s interests are perfectly covered by her neighbors. However, this
score is far from satisfactory as shown in Table II, with 82.13% for MovieLens and
61.35% for Douban, thus many of users’ interests are neglected since no neighbor user
has preferences for these uncovered items. What’s worse, the uncovered items are less
popular than the covered ones, implying these unpopular items are harder to be cov-
ered in the traditional neighbor set selection period. Notice that these unpopular items
are more valuable in distinguishing the active user’s interests from other users than
those items that are liked by the crowds [Yin et al. 2012]. In this table, the popularity
of an item is proportional to users that liked it: pop(v) = log|Ev|

log|U| .

Table II. Average Coverage Score of UCF (|Su| = 10, |Tu| = 5)

Dataset
Interest
coverage

score

Popularity
of covered

items

Popularity
of uncovered

items

Neighbor
coverage

score
MovieLens 82.13% 0.6911 0.5216 93.94%
Douban 61.35% 0.5451 0.4419 83.10%
Ihou 91.90% 0.6792 0.4876 65.17%

We further calculate the neighbor coverage score (i.e., the percentage of neighbors
that contribute to the final recommendations, Eq. (14)) of the top-5 recommendation
results for UCF, which are shown in the last column of Table II. We observe that nearly
20% of the neighbors contribute nothing for the final recommendations in Douban. For
the Ihou data, even though 91.9% of users’ interests have been covered in the neighbor
set selection, there are still one third of the selected neighbors that do not contribute
to recommendation results. This phenomenon implies that even if we selected a di-
versified neighbor set and covered most interests of u, we also need to modify the
recommendation set generation step in UCF to get diversified recommendations. As
only recommending the local popular items would lead to the incomplete coverage of
neighbors, which also results in the monotonous recommendations for the active user.

In summary, there are some inherent insufficiency of traditional UCF. The funda-
mental reason is that: The relevance based metrics (similarity and predicted likeness)
in the two UCF steps are designed to treat individuals separately, and this may not
perform the best with respect to the whole set. Please note that similar problems also
exist in other traditional CF models as shown in the Introduction section. In this paper
we first focus on UCF for better illustration and then would discuss how to solve this
problem for other traditional CF models. Thus, we argue that for both selecting the set
of neighbors and the set of recommendations, the measurements should also consider
the usefulness of the set as a whole rather than a collection of individuals. In this way,
we set up the new goals in these two steps for top-N recommendation:

— Neighbor Set Selection: It is ideal that each neighbor is similar with u and that
the whole neighbor set covers as many of u’s interests as possible.

— Recommendation Set Generation:It is ideal that each recommendation is locally pop-
ular among neighbors and that the whole set of recommendations covers as many
neighbors as possible.

3. THE PROPOSED FRAMEWORK
Based on the new goals mentioned above, we first introduce a metric of coverage, which
naturally considers the utility of the whole set by encouraging diversity of individual-
s. This metric utilizes the historical preference data and it is applicable to common
scenarios when no item content is available. We define what it means for neighbors
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to cover the user’s interests and for recommendations to cover the selected neighbors.
Accordingly, we propose a two-stage framework named REC for recommendation. The
commonality of these two stages is that, for both the neighbor set selection and the
recommendation set generation, we formulate the new goals mentioned above as op-
timization problems with the dual objectives of maximizing relevance and coverage.
Fig. 1 illustrates the overall framework of the REC model. Next we introduce these
two stages in detail and show how the new goals can be achieved.

Fig. 1. The overall REC framework.

3.1. Neighbor Set Selection by Interest Coverage
For each active user, we wish to select a representative neighbor set that covers as
many of her interests as possible. Here, the interests can be a collection of items that
are liked by the active user or some higher level representations, e.g., the categories of
the items or the hidden topics learned from the item descriptions. Since it is time and
labor consuming to get the exact categories of each item, to improve the generality, we
simply refer to the collection of items that the user likes as her interests.

As shown previously, when selecting the neighbor set for user u, we should not only
ensure each neighbor has a relatively large relevance value with u. Also, this neigh-
bor set should cover as many of u’s interests as possible. In summary, two important
measures are Interest Relevance and Interest Coverage. For each user u, we model the
neighbor set selection quality as follows:

F (Su, u) = α · IRel(Su, u) + (1− α) · ICov(Su, u), (3)

where IRel(Su, u) measures the relevance (similarity) between user u and the selected
neighbor set Su. ICov(Su, u) rewards the interest coverage score by Su, and α (0 ≤ α ≤ 1)
is a trade-off coefficient balancing these two measures.

The relevance score can be interpreted as the group similarity of the neighbor set Su
to user u. Since the similarity value of each candidate to the active user does not in-
terfere with other candidates, a simple approach is to sum each candidate’s similarity
with u (Eq. (1)) in this group, thus:

IRel(Su, u) =
∑
u′∈S

sim(u′, u). (4)

As discussed before, this score is widely used as the only measure for the neighbor set
selection in traditional CF models [Herlocker et al. 1999; Sarwar et al. 2000a].

For the interest coverage score, it measures the percentage of the user’s interests
that have been covered by the neighbors. A simple form of this measure is defined as:

ICov(Su, u) =

∑
v∈Lu

cov(Su, v)∑
v∈Lu

1
=

∑
v∈Lu

1[∃u′, u′ ∈ Su&v ∈ Lu′ ]

|Lu|
, (5)
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where cov(Su, v) measures the coverage score of item v by neighbor set Su. A simple
idea is to define it as an indicator function that equals 1 if v appears in one of the
neighbors’ interests and 0 otherwise. And the interest coverage score of u is calculated
by averaging all coverage scores of her interests. Though intuitive, this naive definition
suffers from two drawbacks:

— Interest Importance: The active user’s interests for all items are treated equally
above, thus we can not distinguish the importance of certain items. E.g., the less
popular items are more important to reflect the user’s interests than popular ones.

— Incremental Interest Coverage: The above interest coverage function is too strict, s-
ince if one neighbor has covered an interest v of user u (v ∈ Lu), the coverage score for
cov(Su, v) would never gain even if other neighbors would cover v later. This strong
condition would result in the imbalance of covered times between different interests,
causing some of u’s interests being covered only once or twice. Consider an extreme
case, there exists one virtual user Bob who liked all items in this system. After Bob
has been chosen in the neighbor set for user u, the coverage score is now maximized
and we only need to select other neighbors from candidate users who have the largest
similarities as traditional UCF does. Thus this naive coverage measure is frail and
we have to find an incremental interest coverage function as an alternative.
We now address each of these issues in detail. For better measuring the importance

of each interest, we can simply add a weight to each item:

ICov(Su, u) =

∑
v∈Lu

wv × cov(Su, v)∑
v∈Lu

wv
=

∑
v∈Lu

wv × 1[∃u′, u′ ∈ Su&v ∈ Lu′ ]∑
v∈Lu

wv
. (6)

As to the incremental interest coverage problem, a better idea is to assign a soft
function cov(Su, v) to replace the above strong condition. There are some intuition-
s in designing this soft function. First, when no neighbor is selected yet, cov(∅, v) e-
quals 0. Second, the interest coverage score is non-decreasing as we add more neigh-
bors to the neighbor set: cov(Su ∪ u′, v) ≥ cov(Su, v). That is, when more neighbors
are added, there are higher chances for item v to be covered. Last but not least,
the marginal gain of the coverage score decreases as we add more neighbors to u:
∀A⊆B⊆ U \ u′, cov(A+ u′, v)− cov(A, v) ≥ cov(B + u′, v)− cov(B, v). This intuition refers to
that each additional time we see a new neighbor covered item v, the reward is de-
creased with the number of neighbors that have already covered this item. Since for
a larger neighbor set B, the covered times of item v must be no less than those of a
subset set A. Fig. 2 draws an ideal shape of the coverage score function of a particu-
lar item, where the left figure depicts the strong coverage function and the right the
desired incremental function. With the increasing of the occurrences in the neighbor
set, the incremental coverage function value would gain slowly while the marginal
gain decreases at the same time (the dashed line). In contrast ,the strong coverage
function reaches 1 when this item has been covered by the first time and would never
gain any more, even if it would be covered by other neighbors later. In fact, the phe-
nomenon of decreased marginal gain is a well-understood fundamental principle of eco-
nomics, which is termed as “Law of Diminishing Returns” [Baumol and Blinder 2011].
This phenomenon happens everywhere in our everyday life. For example, Alice will be
thrilled if her parents buy an iPhone 5 as her first smartphone. However, when given
another iPhone 5 later, her satisfaction would decrease compared to the satisfaction
from owing the first iPhone. Similarly, in the interest coverage function, the marginal
gain of an item would decrease as it has been covered by more neighbors.

Actually, there are various functions satisfying the incremental coverage require-
ments (right part of Fig. 2). E.g., it is easy to truncate part of the sigmoid functions
or use simple linear transformations to meet the requirements. Here we use a simple
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Fig. 2. Interest coverage function comparison, where the left figure shows the strong coverage score and
the right depicts the desired incremental coverage score.

incremental coverage function, which is defined as:

cov(Su, v) =
cnt(Su, v)

cnt(Su, v) + 1
, (7)

where cnt(Su, v) =
∑

u′∈Su
1[v ∈ Lu′ ] denotes how many times item v has been covered

by the neighbors. In this coverage function, it reaches 0.5 as only one neighbor covers
this item and 0.9 when it has been covered by 10 neighbors. After that, the coverage
score increases slowly to the limit of 1.

Finally, we propose the following interest coverage function that combines impor-
tance (Eq. (6)) and incremental coverage (Eq. (7)):

ICov(Su, u) =

∑
v∈Lu

wv × cov(Su, v)∑
v∈Lu

wv
=

∑
v∈Lu

wv × cnt(Su,v)
cnt(Su,v)+1∑

v∈Lu
wv

. (8)

Since in the real world, it is harder to cover the unpopular items for a traditional
CF as shown in Table II, we simply set wv = 1− pop(v) = 1− log|Ev|

log|U | . That is, the more
popular an item v, the smaller the weight of it. This definition is intuitive, e.g., suppose
u liked an item v that is very popular among the crowds, then v is not informative
compared to those unpopular items liked by u.

According to Eq.(8), the interest coverage score ranges in [0, 1). To make the rele-
vance measure and coverage measure comparable,we normalize the relevance score as
follows: Rel(Su, u) =

Rel(Su,u)
C

,where C is a constant that sums up the top K users that
have the largest similarity with u. In this paper, the similarity between a pair of users
is calculated by Eq.(1). Then the value of the relevance score function also ranges from
0 to 1. It reaches 1 when α=1, meaning only considering the relevance measure in THE
neighbor set selection. At this time, our model degrades to the traditional neighbor set
generation method in UCF.

Note that these two measures characterize different aspects when selecting the
neighbor set. Using the relevance score, each neighbor in a set S should have a large
similarity with user u. Meanwhile, the neighbors are encouraged to be diversified,
such that they can cover most of the user’s interests. In summary, these two measures
can be seen as judging the individual element and the whole group of the neighbor
set respectively. Then the neighbor set selection can be reformulated as the Interest
Coverage Maximization Problem:

Interest Coverage (IntCov) Maximization Problem: Given a set of items Lu
liked by user u, identify a K neighbor set Su that maximizes the quality function:

max
Su∈U,|Su|=K

F (Su, u). (9)
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3.1.1. Properties. The IntCov Problem has several interesting properties. First, it is
NP-hard as proven in the following theorem.

THEOREM 3.1. The IntCov problem is NP-hard.
PROOF. Consider an instance of the NP-hard Weighted Maximum Coverage prob-

lem, defined by a collection of sets A = A1, A2, ..., Am over a domain of elements
E = e1, e2, ..., en and each element is associated with a weight wv. Given a number
K, the task is to find a subset A′ ∈ A such that the total weights of covered ele-
ments is maximized [Hochba 1997]. Next, we show that our IntCov can be reduced
to this problem under a special situation. Consider when α = 0, i.e., we only need
to maximize the interest coverage score of the neighbor set. For user u, we define
a corresponding collection of sets A=Lu ∩ Lu1 , Lu ∩ Lu2 , ..., Lu ∩ Lu|U|−1

. The weight of
each item corresponds to wv × cnt(v)

cnt(v)+1 , where cnt(v) denotes how many times item
v has been covered by the selected K sets. Under this situation, maximizing the
weighted coverage score is equal to finding a K element set in A and our problem
is reduced to the NP-hard Weighted Maximum Coverage Problem.

Meanwhile, F (Su, u) has some other important properties. First, F (∅, u)=0, i.e., the
quality score is zero when we do not select any neighbor for u. Second, F (B, u)≥F (A, u)
if A ⊆ B, as both the relevance and the coverage scores are non-decreasing. Third, it
is submodular which satisfies the property of diminishing returns: ∀A⊆B⊆U \ u′, F (A +

u′)−F (A) ≥ F (B + u′)−F (B). In fact, we have already designed the coverage score of a
particular interest of u, i.e., cov(Su, v) as a submodular function. Next, we will prove
the submodularity of the neighbor set quality function F .

THEOREM 3.2. The neighbor set quality function F is submodular.
PROOF. First we claim that both IRel(Su, u) and ICov(Su, u) are submodular func-

tions. For any ∀A⊆B⊆U \ u′, IRel(A ∪ u′, u)− IRel(A, u)=
sim(u,u′)

C
=IRel(B ∪ u′, u)− IRel(B, u),

where C is a constant that sums up the top K users with largest similarity scores with
u. Thus IRel(A ∪ u′, u)− IRel(A, u) ≥ IRel(B ∪ u′, u)− IRel(B, u) holds true all the time. We
conclude that IRel(S, u) is submodular.

For each v ∈ Lu, we have cov(A + u′, v) − cov(A, v) =
cnt(A+u′,v)−cnt(A,v)

[cnt(A+u′,v)+1]×[cnt(A,v)+1]
and

cov(B+ u′, v)− cov(B, v)) =
cnt(B+u′,v)−cnt(B,v)

[cnt(B+u′,v)+1]⋆[cnt(B,v)+1]
. As A ⊆B, cnt(A+ u′, v)− cnt(A, v) ≥ cnt(B+

u′, v)−cnt(B, v) and [cnt(A+u′, v)+1]× [cnt(A, v)+1] ≤ [cnt(B+u′, v)+1]× [cnt(B, v)+1],
we have cov(A + u′, v) − cov(A, v) ≥ cov(B + u′, v) − cov(B, v), which is the defining quality
of submodularity. Finally, as submodularity is closed under non-negative linear combi-
nations, the interest coverage function ICov (defined in Eq. (8)) is submodular. Thus,
function F that linearly combines IRel and ICov satisfies submodularity.

In conclusion, though maximizing the objective function F (Su, u) is NP-hard, it is a
non-negative monotone submodular function. Researchers have already shown that a
simple heuristic greedy algorithm can guarantee high performance for maximizing this
kind of functions [Nemhauser et al. 1978]. Furthermore, there are no other efficient al-
gorithms which can generate better performance guarantee unless P=NP [Feige 1998].
Specifically, this greedy algorithm starts with an empty set and incrementally con-
structs the required set S in K steps. Each time it adds a new element u′ to this set Su

which maximizes the marginal gain: u′ = argmaxu′⊆U\Su
F (Su ∪ u′, u)− F (Su, u). Following

is the well-known performance guarantee.

THEOREM 3.3. [Nemhauser et al. 1978; Cornuejols et al. 1977] For any non-
negative monotone submodular function F, let S⋆ be the K element set with the best
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performance, and S the same size set obtained by greedy algorithm, which selects an
element with maximum marginal gain each time, then F (S) ≥ (1− 1

e
)F (S⋆).

3.1.2. Scaling Up IntCov Algorithm. For each user u, the time complexity of IntCov is
O(KM) with naive greedy evaluations, where K denotes the neighbor set size S and M
the number of total users. Inspired by [Leskovec et al. 2007], we can further exploit
the submodular property to reduce time complexity for finding candidate neighbors.
In submodular functions, the marginal gain of a new node shrinks as the set becomes
larger, i.e., for each candidate neighbor u′, the marginal gain in the current iteration
can not be larger than that in the previous iteration. Thus, instead of recomputing the
marginal gain of each candidate in every iteration, we do lazy evaluations. We keep
a sorted list recording the marginal gain for each candidate neighbor of u. In every
iteration, we just need to look at the list from the top node, if it is valid then move
it to the neighbor set and go directly to the next step, otherwise recompute the gain
and insert it into the list. This lazy forward method only needs to scan all candidate
neighbors in the first step. In our experiments, from step 2 to K, the recomputation
of the top element in the sorted list will lead to a new value that is not much smaller
than the previous one. Usually simply calculating the top several elements will help
us find a newly added neighbor, and thus save computation. The whole algorithm for
IntCov is described in Algorithm 1.

Algorithm 1 Overall flowchart of IntCov Algorithm
Input: user u, neighbor size K

Output: u’s neighbor set Su

1: Initialize S0
u = ∅, C = U \ u, SL = ∅;

2: for each u′ ∈ C do
3: compute δSk

(u′) = F (u′, u);
4: SL.insert([u′, δSk

(u′)]) with the descending order of δSk
(u′)

5: end for
6: [u′, δ(u′)]=SL.pop(); S1

u = S0
u ∪ u′

7: for k = 2; k <= K; k ++ do
8: [u′, δ(u′)]= SL.pop()
9: recompute the marginal gain of u′: δSk

(u′) = F (S
(k−1)
u ∪ u′, u)− F (S

(k−1)
u , u)

10: while δSk
(u′) < SL.top.values() do

11: SL.insert([u′, δSk
(u′)])

12: [u′, δ(u′)]= SL.pop()
13: recompute the marginal gain of u′: δSk

(u′)
14: end while
15: Sk

u = S
(k−1)
u ∪ u′

16: end for
17: Return Sk

u.

3.2. Recommendation Set Generation by Neighbor Coverage
Following the proposed neighbor set selection criteria, a natural idea for recommenda-
tion set generation is that, we should not only recommend items with large predicted
likeness scores by neighbors (Neighbor Relevance), but also ensure each recommended
item better covers different neighbors (Neighbor Coverage), such that each diversified
neighbor better contributes to the final recommendations. In a word, for each user u,
we model the recommendation quality G(Tu, u) as follows:

G(Tu, u) = β ·NRel(Tu, u) + (1− β) ·NCov(Tu, u), (10)
where the relevance score NRel(Tu, u) measures the predicted likeness of the whole
recommendation set Tu to user u, which is the sum of each single recommendation’s
predicted likeness (i.e., Eq. (2)):
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NRel(Tu, u) =
∑
v∈Tu

r̂(u, v). (11)

The neighbor coverage score NCov measures the percentage of the neighbors that
have contributed to the final recommendations Tu. It can be simply defined as follows:

NCov(Tu, u) =

∑
u′∈Su

cov(Tu, u
′)∑

u′∈Su
1

=

∑
U′∈Su

1[∃v, v ∈ Tu&v ∈ Lu′ ]

|Su|
, (12)

where cov(Tu, u
′) is a binary valued coverage function that equals 1 if neighbor u′

has contributed to the final recommendation and 0 otherwise. This simple method
would not differentiate neighbors that contribute many recommendations and that
contribute only once or twice. Since if a neighbor has contributed a recommendation
v (v ∈ Tu), the coverage score of the neighbor cov(Tu, u

′) turns from 0 to 1 and that score
would never gain even if u′ has covered other recommendations later. Inspired by the
idea of “Incremental Interest Coverage”, we can similarly adapt the strong coverage
function to the Incremental Neighbor Coverage:

cov(Tu, u
′) =

cnt(Tu, u
′)

cnt(Tu, u′) + 1
, (13)

where cnt(Tu, u
′) denotes how many recommended items have been covered by the

neighbor u′. Combining Eq. (12) and Eq. (13), we get the final incremental neighbor
coverage function:

NCov(Tu, u) =

∑
u′∈Su

cov(Tu, u
′)∑

u′∈Su
1

=

∑
u′∈Su

cnt(Tu,u′)
cnt(Tu,u′)+1∑

u′∈Su
1

. (14)

Thus the neighbor coverage score ranges from [0, 1), and it gets larger values as
the neighbors cover more items of the final recommendations. β is a coefficient bal-
ancing NRel and NCov. To make the neighbor relevance score and the neighbor cov-
erage score comparable, we also normalize the predicted likeness score as follows:
NRel(Tu, u) =

NRel(Tu,u)
C

, where C is a constant that sums up the top N items with the
highest predicted ratings of u. Then the value of the likeness score function also ranges
from 0 to 1.

Similarly, these two measures characterize different aspects of selecting the top-N
recommendation set. Using NRel, each item in set Tu should have a relatively high pre-
dicted ranking. Using NCov, the recommended items should be diversified for covering
different neighbors. In summary, they can be seen as judging the individual element
and the whole group of the recommendation set respectively. Then the recommenda-
tion set generation step, can be reformulated as the neighbor set coverage problem:

Neighbor set Coverage (NeiCov) Problem: Given the neighbor set Su for each
user, identify a set of N items that maximize the score:

max
Tu,|Tu|=N

G(Tu, u). (15)

The NeiCov problem shares the same property as the IntCov problem, which is a
non-decreasing submodular function. Users could refer to Section 3.1.1 to get simi-
lar results. Thus we can use the same lazy forward greedy algorithm and scaling up
technique (Algorithm 1) to solve NeiCov. In summary, by pushing the coverage mea-
sure into the two steps of IntCov and NeiCov of the REC framework, the diversity of
recommendations is reached naturally.

4. GENERALIZATION AND DISCUSSION
In the previous section, we detailed the way of incorporating the coverage measure
into the two UCF steps to generate diversified recommendations. The proposed REC
framework is described mainly on a binary user-item preference dataset without any
item content. However, when more kinds of data are available, is it easy to incorpo-
rate the content information, e.g., the categories of these items, into the proposed
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framework? In addition, though UCF is used by earlier recommender systems, the
data sparsity and scalability issues have limited the widespread usage of this algo-
rithm in today’s real world recommender systems. With this in mind, can the coverage
measure and the REC framework also be applied to more advanced CF algorithms,
such as item based collaborative filtering [Deshpande and Karypis 2004] and matrix
factorization models [Koren et al. 2009]? In this section, we would like to answer these
questions. We would explore the possibility of generalizing the proposed coverage mea-
sure and the whole recommendation framework from both a data perspective and an
algorithm perspective.

4.1. Generalization of non-binary data and content information
4.1.1. Generalization of non-binary data. Recall that in the two stages of the REC frame-

work, we formulated the goals in both steps as optimization problems with the dual
objectives of maximizing relevance and coverage. The input of the REC framework is
the binary preference values of users, with 1 standing for likeness and 0 for dislike. For
some websites, users’ preferences for items are expressed as explicit ratings, where the
larger values denote higher appreciation. For ease of explanation, we use rij to denote
user i’s explicit rating for item j. In fact, these explicit ratings can be incorporated into
both the relevance measure and the coverage measure in the REC framework.

Specifically, in the neighbor set selection period, instead of relying on Jaccard simi-
larity to calculate the Interest Relevance (Eq. (4))for a neighbor userset, we can devise
more measures to calculate the similarity between a pair of users, e.g., the cosine sim-
ilarity measure:

sim(u, u′) = cos( ⃗r(u, ), ⃗r(u′, )) =
< ⃗r(u, ), ⃗r(u′, ) >

|| ⃗r(u, )||2F ∗ || ⃗r(u′, )||2F
, (16)

where <,> is the inner product of two vectors. ⃗r(u, ) denotes a V dimensional vector of
user u’s rating records and the j’s element of this vector is ruj . Also, we can incorporate
the detailed rating values into the Interest Coverage (Eq. (8)) measure in the neighbor
set selection. With the interest coverage measure, interest importance is a necessary
factor. One possible solution is to embed the detailed rating values into the interest
importance factor of the interest coverage measure. For each user u, if item v has a
larger rating value than v′ (r(u, v) > r(u, v′)), then interest v must weigh more than
v′ (wv > wv′) in u’s opinion. E.g., for user u, a simple intuition is to set wv ∝ r(u, v).
Note that under this circumstance, the interest importance wv is personalized and
varies among people. In summary, the detailed rating values can be incorporated into
both measures during the neighbor set selection period.

Similarly, in the recommendation set generation period, we can extend the detailed
rating values into the Neighbor Relevance measure (Eq.(11)). Specifically, the predicted
likeness r̂u,v of user u to item v can be calculated as:

r̂(u, v) =
∑

u′∈Su

r(u′, v)/|Su|, (17)

where r̂(u, v) equals 0 if user u does not rate item v and the real rating value if u
rates v. Thus, the REC framework can be easily adapted to non-binary data in both
the neighbor set selection and recommendation set generation period.

4.1.2. Generalization of content information. In the previous section, we assumed that no
item information was available and each user’s interests were expressed as the set of
items that she likes. In fact, we can also characterize each user’s interests with some
higher representations, e.g., the categories of the items. In the real world, when the
categorization of items is available (such as genres and tags), we can group items into
categories and each user’s interests are mapped to the categories based on the items

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.



Relevance meets Coverage: A Unified Framework to Generate Diversified Recommendations A:13

that she likes. Then in the interest coverage measure of the neighbor set selection pe-
riod, instead of calculating how many liked items of u are covered by the neighbor set,
we measure how many categories liked by user u are covered by the neighbor users.
Under this circumstance, the interest coverage score would increase if more of the us-
er’s liked categories are covered by neighbors. After the neighbor set selection, since
the interest coverage measure does not interfere with the neighbor coverage measure,
the proposed NeiCov algorithm for recommendation set generation in the REC frame-
work can be applied directly to generate more diversified recommendations. Thus it
is easy to generalize the coverage measure and the REC framework by characterizing
users’ interests with the available item information.

4.2. Generalization of other CF models
In traditional CF, there are usually two kinds of approaches: neighborhood based mod-
els and Matrix Factorization models (MF) [Koren 2008]. Neighborhood based models
can be further divided into user-based (UCF) and item-based (ICF) collaborative filter-
ing. We previously detailed how to apply the coverage notion and the REC framework
to UCF. However, the scalability and data sparsity issues limit the applicability of UCF
in today’s real world recommender systems. Next we would like to discuss several al-
ternatives to generalize this coverage measure and the whole REC framework to ICF
and MF models.

4.2.1. Generalization of ICF. ICF assumes that a user would probably prefer items that
were liked by her in the past. Thus, instead of finding similar users in UCF, ICF first
selects the neighbor itemset of each item and then makes recommendations based on
these item neighbors. Here, we present a simple idea to extend the coverage measure
into ICF. In the first step, similar to ICF, we calculate the neighbors of each item based
on the user-item preference matrix. That is, for each item v, the Jaccard similarity
between it and v′ is calculated as:

sim(v, v′) =
|Ev ∩ Ev′ |
|Ev ∪ Ev′ | , (18)

where Ev denotes the users that like v. Then the neighbor itemset of v, denoted as Sv,
is generated by selecting top K items that have the largest similarities to v. After the
neighbor item selection period, for each user u, the predicted likeness of user u to item
v, denoted as r̂(u, v), is calculated by averaging the target user’s preferences over the
item neighbors:

r̂(u, v) =
∑

v∈Nu,v′∈Sv

I(u, v′)/|Sv|, (19)

where I(u, v′) is equal to 1 if v′ ∈ Lu and 0 otherwise.
However, in contrast to ICF, for each user u, instead of selecting the top ranked can-

didate items that have the largest predicted ratings for recommendation, we consider
the union of items that are neighbors of each item liked by u as the candidate recom-
mendation set. That is, the candidate recommendation set Cu for each user u can be
denoted as Cu = ∪v∈LuSv, where Lu are the items that u likes and Sv is the selected
neighbor itemset of item v by Eq.(18). Thus, u’s interests are fully covered by the candi-
date recommendation set after the first step of neighbor itemset selection. During the
second step of recommendation set generation, for each user u, our goal is to generate
a recommendation set Tu from the candidate recommendation set Cu. Instead of rec-
ommending the most relevant items that have the largest predicted ratings (Eq.(19)),
we incorporate the neighbor coverage measure to ensure that the recommendations
cover more of those items that are neighbors of u’s liked items. A simple form to define
the neighbor coverage score for recommendation set generation is:

NCov(Tu, u) =

∑
v∈Lu

cov(Tu, v)

|Lu|
=

∑
v∈Lu

1[∃v′, v′ ∈ Tu&v′ ∈ Sv]

|Lu|
, (20)
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where Tu⊆Cu is the final recommendation set for u, cov(Tu, v) is an indicator function
that is equal to 1 if at least one recommended item in the recommendation set Tu

is a neighbor item of v and 0 otherwise. This neighbor coverage measure encourages
more of the items that are similar to a user’s interests would contribute to the final
recommendations. By combing both the neighbor relevance (Eq.(19)) measure and the
neighbor coverage (Eq.(20)) measure, we formulate a similar recommendation quality
function that balances maximizing these two measures, which is introduced in Eq.(10)
of Section 3.2.

In summary, to incorporate the coverage measure and the REC framework into the
ICF, we could enrich the candidate recommendation set Cu for each user u after the
neighbor selection step, ensuring that the user’s interests to be fully covered by the
candidate recommendation set. Then in the recommendation generation step, the final
recommendation set Tu for each target user u better covers more of the user’s interests,
encouraging diversified recommendations compared to ICF.

4.2.2. Generalization of MF. To solve the data sparseness problem and improve scala-
bility, various MF models have been proposed. A basic idea of MF is that attributes or
preferences of users are determined by a small number of factors, thus both user-
s and items can be projected into a low latent space from the historical record-
s [Mnih and Salakhutdinov 2007; Koren et al. 2009]. That is, given a user-item pref-
erence matrix R|U|∗|V |, MF models try to infer the low latent D dimensional represen-
tations of users U |U|∗D and items V |V |∗D as accurate as possible. Various models have
been proposed to solve this problem based on the data type of the user-item prefer-
ence matrix R. E.g., probabilistic matrix factorization performs well if the preference
matrix consists of ratings [Mnih and Salakhutdinov 2007] and Bayesian personalized
ranking model is suitable for ranking evaluations with a binary preference matrix in-
put [Rendle et al. 2009]. Since we focus on generalizing the REC framework to MF
models, we assume that we have already got the low latent representations of users
and items, i.e., U and V , from some state-of-the-art MF models (e.g., probabilistic ma-
trix factorization). We’ll introduce how to adapt the results to the REC framework. The
basic idea is that, in the neighbor set selection period, instead of calculating the rel-
evance scores by using the traditional measure that considers how many overlapped
items are liked by a pair of users in UCF (Eq.(1)), we determine the similarity between
a pair of users from the low latent representations of them as:

sim(u, u′) = cos(Uu, Uu′) =
< Uu, Uu′ >

||Uu||2F ∗ ||Uu′ ||2F
, (21)

where Uu is the D dimensional low latent representation of user u from U |U|∗D. We
adopt the same interest coverage measure as introduced in Eq.(8). Then we follow
the similar neighbor set selection step as proposed in IntCov for diversified neighbor
selection and further generate recommendations with NeiCov.

In all, the whole recommendation framework for the generalization of MF is still
based on the two-stage REC framework that consists of neighbor set selection by Int-
Cov and recommendation set generation by NeiCov. The only difference is that, instead
of calculating the interest relevance measure based on the sparse preference data of
users, we apply the low latent representations of users for better interest relevance
measure calculation. Thus we can take advantage of the reduced latent space repre-
sentations of users for better neighbor selection. Indeed, the dimension reduction tech-
nique showed good performance by some previous works when the data is extremely
sparse [Liu et al. 2011; Zhang and Hurley 2009].

Actually, we should notice that another possible way to generalize the REC frame-
work to MF is to extending the coverage measure directly to the low latent repre-
sentations of users and items. However, as the coverage measure is mainly based on
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binary inputs in this paper, we leave the problem of how to adapt it to any value type
efficiently and effectively in our future research plan.

5. EXPERIMENTAL RESULTS
We evaluate the proposed REC framework on three real-world datasets. Specifically,
we demonstrate: (1) the effectiveness of our models in covering users’ interests and
neighbors, (2) how the accuracy and diversity values change with the controlling pa-
rameters, (3) the efficiency of the proposed models and (4) the overall performance of
our models compared with baselines. Though we mainly focus on the performance of
the REC related models in this paper, we would also give the experimental results of
generalizing the coverage measure to other CF models as introduced in Section 4 when
performing overall comparison.

5.1. Data Description
We use the following three datasets for our experiments:

MovieLens-1M dataset: MovieLens-1M is a public available dataset collected by
the GroupLens research1. It contains 1 million movie rating records with ratings rang-
ing from 1 to 5. There are 18 movie genres and on average each movie belongs to 1.65
genres. Since we focus on recommending a set of items that the target user probably
likes, similar as other works [Liu et al. 2012; Adomavicius and Kwon 2012], we select
ratings that are larger than threshold 3 as the records that are liked by users.

Douban-Book dataset: Douban2 is a popular social-based website in China that
allows users to rate movies, books and music. In this experiment, we crawled a large
part of users’ rating history of books through its public APIs. This initial dataset con-
tains 23,000 users’ book ratings ranging from 1 to 5 star scale. We first take similar
filtering steps as described above and then filter out the users that have less than 5
rating records. There are 7 categories of these books, namely literature, popularity,
culture, life, business&economics, technology and others. Each book belongs to one of
these categories.

Ihou dataset: Ihou3 is a popular online karaoke website owned by iFlytek Co., Ltd,
a leading provider of speech and language technology in China. Users are encouraged
to sing songs in this platform and others can listen to these songs and express their
feelings about the user’s performance. This initial dataset is provided by Ihou and
contains users’ singing records during July 2011 to Sep 2012. To reduce noise, we only
keep users and songs that appeared more than 5 times. This initial dataset has no
category information and nearly all of these songs belong to the popular genre, we turn
to the original singer as the category of each song 4. We further filter out the singers
that have less than 10 songs in this dataset and finally get 15 singers (categories) and
555 songs. Table III shows the details of each dataset.

Table III. General statistics of the three datasets

DataSet Domain Users Items Records Avg items per user Sparsity Categories
MovieLens Movie 6,038 3,533 575,281 95.28 97.30% 18

Douban Book 17,840 36,226 1,000,039 56.05 99.845% 7
Ihou Music 14,793 555 139,307 9.42 98.30% 15

1http://www.grouplens.org/node/73
2http://www.douban.com/
3http://ihou.com
4Usually music has quite a broad range of genres, e.g., classical, jazz. However, it requires professional

training to sing these and most Chinese prefer to sing popular songs for leisure.
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5.2. Evaluation Metrics and Baselines
5.2.1. Evaluations Metrics. We evaluate the proposed models from two aspects: accuracy

and diversity. The detailed metrics are listed as follows:
Accuracy Metric: We use the widely adopted Precision for measuring the ranking

accuracy of recommendation results in collaborative filtering. Specifically, given the
recommendation set Tu for u, Precu measures the fraction of recommendations that
are really liked by the user:

Preu =
|Tu ∩ TTu|

|Tu|
=

|Tu ∩ TTu|
N

,

where TTu is the itemset that are liked by u in the test data.
Diversity Metric: As discussed, each user has unique ranges of interests, with

some focus on a few topics while others may encompass a wide range of interest, thus
the diversification level in the recommendation set should be adapted to u’s own inter-
est level. As there is no universal standard on how to measure the diversity level of
each recommendation set, we borrow the category information of items for evaluation.
For each user, the diversity level Divu is measured as follows:

Divu =
|C(Tu) ∩ C(Lu)|

|C(Lu)|
,

where C(Lu) denotes the categories that u likes in the training data while C(Tu)∩C(Lu)
are the categories that also appear in the recommendation set. Please note that to im-
prove the generality of our model and make it applicable to common recommendation
scenarios even when no item information is available, the category information is only
used to measure the diversity level of each model in the evaluation process.

These two kinds of metrics characterize different aspects of recommendation quality.
The accuracy metric tries to measure the individual level of recommendation results,
assuming that the recommendation set is good if each element is accurate. However,
even though each recommendation is accurate, the user would feel frustrated if the
recommendations are too similar to each other and lack diversity [McNee et al. 2006].
Thus a more diversified recommendation set that covers different ranges of users’ in-
terests is preferred [Said et al. 2013]. The diversity measure defined above reaches
this goal since it focuses on the whole utility of the recommendation set, regarding it
as a complete entity rather than simple aggregations of individuals under accuracy
metrics.

5.2.2. Baselines. We compare our model with both traditional collaborative fil-
tering models and some recent representative techniques for diversified recom-
mendations. For traditional CF models, we choose UCF [Herlocker et al. 1999],
ICF [Deshpande and Karypis 2004] and BPR [Rendle et al. 2009], which are represen-
tatives in neighbor based models and matrix factorization models in CF. These models
are designed to improve accuracy of recommendation results and perform very well
in practice. For the diversity metric, we implement TDiv [Ziegler et al. 2005], WDi-
v [Hurley and Zhang 2011] and AsDiv [Vargas and Castells 2013] model. These three
models are designed to encourage diversity of recommendation results. The details of
these benchmarks are listed as follows:

— UCF: UCF is a typical neighborhood based method in CF, which tries to predict the
target user’s preference by suggestions of other liked-minded users. It can be seen as
a special case of our proposed model when α=β =1.

— ICF: ICF is also a popular neighborhood based approach in CF. Instead of calculating
user similarities in UCF, it tries to predict the target user’s preference by suggestions
of similar items.
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— BPR: This is a popular matrix factorization model that is designed for implicit
feedbacks in recommender system and is suitable for the binary preference da-
ta [Rendle et al. 2009]. This model was directly optimized for ranking and showed
good performance in many benchmark datasets and competitions. We implement-
ed it with the MyMediaLite Recommender System Library provided by the au-
thors [Gantner et al. 2011].

— TDiv: This work introduced the intra-list similarity to access the topic diversification
level of recommendations and designed a model to balance accuracy and diversity. In
this experiment, for fair comparison with other models in the training process, we
turn to Eq.(18) to calculate the similarity between items.

— WDiv: The authors formulated the trade-off between diversity and accuracy as a
quadratic optimization problem with binary constraints and proposed models to solve
this problem efficiently.

— AsDiv:It is an adaption of the search result diversification algorithm
xQuAD [Santos et al. 2010]. The authors considered the different aspects of each
user’s interests directly and developed the diversity component by marginalizing the
probabilities over an explicit set of user need aspects.

As to our own two-stage REC framework, the related strategies proposed in this
article include the following:

— ECov: This model considers the equal importance of user interests and strong cover-
age function as shown in Eq.(5) and Eq.(12).

— EICov: This model considers the equal importance of user interests but with incre-
mental coverage functions as shown in Eq.(7) and Eq.(14).

— WICov: This model combines both the weighted importance of user interests and
incremental coverage functions as shown in Eq.(8) and Eq. (14).

Besides, we have briefly introduced how to incorporate the coverage measure into
ICF and matrix factorization models. We would also like to include the following cov-
erage based models proposed in the generalization part:

— ICFCov: It is an extension of adapting the coverage measure to ICF as introduced
in Section 4.2.1. The comparison between this method and ICF shows whether it is
effective to incorporate the coverage measure into ICF.

— MFCov: It is an extension of adapting the REC framework to matrix factorization
models as introduced in Section 4.2.2. The latent representations of users are learned
from the baseline BPR directly.

Since we mainly focus on introducing the coverage measure into UCF, in the follow-
ing we would first introduce the influence of various parameters in the REC framework
and then compare the various models mentioned above. There are several parameters
in these comparison models, we will only report the optimal performance with tuned
parameters for fair comparision. For each user, we split the latest 20% of her record-
s for test and the remaining earlier records for training. As each user has at least 5
records, this splitting ensures each user appears at least once in the test data.

5.3. Effectiveness of the Coverage Measure
As discussed in Section 3, the main contribution of our work is to naturally diversi-
fy recommendation results by the coverage measure. Before detailed comparison with
other models, we now investigate whether the proposed REC related models are effec-
tive in selecting neighbors that cover more of users’ interests and generating recom-
mendations that cover more neighbors.
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Fig. 3 and Fig. 4 show the interest coverage scores and neighbor coverage scores with
different neighbor set size K on the three datasets. The neighbor size ranges from 10
to 100 with an increment of 10. We set the controlling parameters as α = β = 0.5 to
balance relevance and coverage. In each stage, we calculate both the strong coverage
score and the incremental coverage score, where the strong coverage score is shown
with open interior marker and the corresponding incremental coverage score of this
method is shown with the same marker but with solid interior. For simplicity, the
strong coverage score is abbreviated as “Str” and the incremental coverage score as
“Inc” in these two figures.
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Fig. 3. The interest coverage score comparison with respect to different neighbor set size K.
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Fig. 4. The neighbor coverage score comparison with respect to different neighbor set size K.

5.3.1. The interest coverage measure. As depicted in Fig. 3, first we observe that with-
out coverage based measures, both the strong interest coverage value (Eq. (5)) and
incremental interest coverage value (Eq. (7)) in UCF are far from satisfactory. E.g.,
with K = 10, the strong coverage score is 0.54 and the incremental coverage score is
0.37 for Douban, thus nearly half of users’ interests are not covered. With the increase
of the neighbor set size, the coverage scores of UCF increase but there are still gaps
compared to the proposed models that consider the coverage measure. Second, when
looking at the strong interest coverage scores (open interior in this figure), they all sat-
urate quickly as we increase the size of neighbor set. E.g., in MovieLens and Ihou, the
strong coverage score reaches 1 for all models that consider coverage measure even
when K = 10. As to the sparser Douban data, this score reaches 1 when K = 30.
The reason is that the strong coverage score only considers whether an item has been
covered or not. If it has been covered, this score would never gain even if it would
be covered later. Thus after reaching the value 1, the remaining neighbors in ECov
are selected from those users that have the largest similarities with the target user
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without considering the coverage measure. Third, with the increase of the neighbor
set size, the incremental coverage scores of all models get larger and slowly approach
the perfect score 1 as this measure also takes the covered times into consideration.
Please note that the values of strong coverage score and incremental coverage score
can not be compared directly. Since even with the same number of selected neighbors,
the strong coverage measure would get much higher score than the incremental mea-
sure. Last but not least, under both interest coverage measures, the WICov performs
a litter better than EICov, then ECov ranks the third and UCF always has the lowest
scores. Thus we conclude that the incremental coverage measure in EICov is more ef-
fective to improve the coverage score than the pure strong coverage measure in ECov.
And considering the importance of items further improves performance. The improve-
ment on the sparsest Douban data is the most prominent. On average, WICov, EICov
and ECov improve the incremental interest coverage score of UCF over 14%, 23% and
26% respectively.

5.3.2. The neighbor coverage measure. Similarly, we plot the performance of the strong
neighbor coverage score (Eq. 12) and incremental neighbor coverage value (Eq. 13)
in Fig. 4. We set the recommendation size N = 5 as commonly done in top-N recom-
mendation. When we do not consider the coverage measure, the neighbor coverage
scores are quite low as shown in the results of UCF. The strong neighbor coverage
scores are only 0.71 for Douban and 0.65 for Ihou, indicating about one third of the
neighbors do not contribute for final recommendations. However, our proposed mod-
els can solve this problem to some extent, covering about 90% neighbors for Douban
data and 83% for Ihou data. In fact, if we decrease the controlling parameters to s-
maller values (α = β = 0.5 in this experiment), the coverage score would increase
as we rely more on coverage measures. We would discuss the details of the impact of
controlling parameters in the next subsection. With the increase of neighbor size, the
neighbor coverage scores of all models decrease. As when more neighbors are involved,
it is harder to cover all of these neighbors. But the models that consider the coverage
measure still get higher coverage scores than UCF under all situations, indicating the
superiority of incorporating neighbor coverage measure in recommendation process.
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Fig. 5. The impact of neighbor set size for accuracy of UCF on different datasets.

5.4. Sensitivity to controlling parameters
Before the detailed experiments on the final recommendation quality with different
controlling parameters, we need to select the neighbor set size K. Fig. 5 shows the
accuracy results of UCF with different neighbor size on these three datasets. These
three sub figures share the same trends for accuracy. As we increase the neighbor
set size at the beginning, the accuracy increases quickly since more neighbors are
available to provide recommendations. After the K value exceeds 150, the results drop
in all these datasets as we introduce noise when K is rather large. The best K values
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Fig. 6. Precision and diversity with regard to control parameters. The x-axis shows control parameters (α
and β). For each dataset, the top part shows accuracy and bottom part diversity.

for accuracy range in [50, 150] for these datasets. Thus in the following experiments the
neighbor set size is set to be 100.

As discussed, REC diversifies recommendations through IntCov and NeiCov, each
with a controlling parameter, i.e., α and β respectively. In both steps, the larger the
controlling parameters, the more we rely on individual values, which is thought to
increase accuracy while deteriorate diversity [Ziegler et al. 2005; McNee et al. 2006;
Said et al. 2012]. To clearly show the balance between accuracy and diversity, Fig. 6
presents the accuracy and diversity results of these three datasets on top-5 recom-
mendation. The x-axis shows the diversity results and the y-axis depicts the accuracy.
The controlling parameters are set from α = β = 1 to α = β = 0.1 with a step of 0.1
decrease each time. The UCF results are shown on the left on each figure that do not
change with those parameters. The righter the results, the better the diversity. The
upper the results, the better the accuracy. There are several findings. First, when look-
ing at the ECov model, it ranges to the rightmost of this figure with small values of
parameters, indicating it reaches the highest diversity compared to other REC related
models. However, the accuracy is deteriorated at this time, since there is a downward
trend of the ECov curves of all datasets. On these three datasets, the accuracy results
of ECov are worse than UCF when α = β = 0.7. When turns to EICov and WICov,
EICov curves are usually in the upper right position of UCF and WICov in the upper
position of EICov, indicating that EICov outperforms UCF on diversity while at least
has comparable accuracy to UCF. And considering the weight of interests in WICov
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further improves both accuracy and diversity compared to EICov. To sum up, ECov
has the largest improvement on Div, then the WICov ranks the second, followed by
EICov. UCF always ranks the last on this metric. E.g., the improvement over UCF on
the diversity metric reaches 12.6%, 6.1% and 7.3% for ECov, EICov and WICov respec-
tively on Douban data with α = β = 0.2.

Combining both the results of accuracy and diversity, we summarize several guide-
lines for selecting models and the controlling parameters. If we put more emphasis on
accuracy, then the WICov model seems to be the best choice as it provides better accu-
racy and diversity than pure UCF. On these three datasets, the WICov always has the
largest accuracy values when the controlling parameters (i.e., α and β) is set to be the
same value. The controlling parameters can be set as α = β = 0.2 since it generates the
best results of these two measures with regard to all datasets. On the densest Movie-
Lens dataset, the improvements of accuracy and diversity are about 0.7% and 3.4%
respectively. On the sparest Douban dataset, the improvements are prominent, with
0.2% for accuracy and 7.3% for diversity. However, if the system values more on diver-
sity, then ECov model seems to be a better choice as it reaches the highest diversity
with only a small loss on accuracy. As shown in the figure, when α=β=0.1, ECov gets
the best individual diversity score of 0.491 on Douban, which has 12.7% improvement
on diversity with only 3.3% loss on accuracy compared to UCF.

5.5. Time Efficiency of REC Framework
In the proposed framework, we discussed how to speed up the REC related framework
and we will compare the actual runtime of these models. The experiments are conduct-
ed on a Core i7 2.94 GHz machine with Windows 8 and 8 GB memory. Fig. 7 shows the
time efficiency of the proposed models for each user compared to UCF and some naive
algorithms, including the exhaustive search and the naive greedy algorithm. First we
observe that, the proposed lazy forward algorithm greatly improves the time efficiency
compared to naive algorithms. In fact, REC needs less than 2 seconds to select neigh-
bors and generate top-5 recommendations on all these datasets even when K = 100.
Second, the actual runtime of all the proposed models divided by that of UCF are far
lower than the neighbor size K due to lazy evaluations. In practice, WICov and EICov
cost about 2 times as much as UCF even when K = 100. However, the ECov model
costs about 2 time as much as UCF when K = 10 and about 5 times when K = 100.
This is because when more neighbors are involved, the lazy forward algorithm in ECov
needs more iterations to find a suitable neighbor to cover the user’s uncovered inter-
ests. While in EICov and WICov, the incremental coverage measure would need fewer
steps for selecting neighbors when the neighbor set is relatively large, thus has less
runtime than ECov. When applied to real applications, the neighborset size is usually
chosen in a relatively small value to avoid noise, thus our models have comparable
time complexity to UCF.
5.6. Overall Comparison with Other Models
In this section, we compare the overall recommendation results of our models to oth-
er baselines with different recommendation set size. Our models include various REC
based models and the generalization of adapting the coverage measures and the rec-
ommendation framework into other traditional CF models. The accuracy results are
shown in Fig. 8 and diversity in Fig. 9. For better illustration, all our proposed models
are marked with dashed lines, the traditional CF models are plotted with black solid
lines and the remaining baselines of diversity-enhancing models are shown by colored
solid lines. The largest recommendation set size is set to be 20 as users are unwilling
to receive too many recommendations in the recommender system. For both metrics,
the larger values the better performance.
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Fig. 7. Runtime comparison with different K for each user.

We first compare the results of our models with regard to other traditional CF mod-
els. Among these three traditional CF models, UCF always outperforms over these
two metrics. In fact, other researchers also observed that UCF performed better with
regard to accuracy when compared to other traditional CF models for top-N recom-
mendation [Gantner et al. ]. BPR performs better than ICF on MovieLens and Ihou
dataset. However, it has worse performance than ICF on Douban dataset. A possible
reason is that the Douban dataset is very sparse (99.845% sparsity) and the number of
items are larger than that of users in this dataset. In the learning process, BPR need-
s to create all pairs between liked items and each unknown item for each user. This
limited available data lowers the final accuracy results. Compared to traditional CF
models, all of our REC based models show comparable accuracy and much better di-
versity than UCF under all recommendation set size. E.g., our model WIDiv improves
about 12% diversity than UCF with slightly better accuracy on Douban data. The im-
provement is even larger when compared to ICF and BPR. Similarly, ICFCov, which
pushes the coverage measure into ICF, shows improvement on the diversity metric
with a little loss of accuracy compared to the ICF model on all these three datasets. As
to the MFCov, the experimental results on both accuracy and diversity are much bet-
ter than BPR. And the accuracy results are even better than UCF on MovieLens and
Ihou dataset, indicating it is more effective to calculate the relevance between users
with the dimension reduction technique. In summary, the above results show that it
is effective to incorporate the coverage measure into any traditional CF model. The
diversity results are largely improved with comparable performance of accuracy.

Then we compare our models with other diversity-enhancing models, i.e., TDiv, WDi-
v and AsDiv. Note that all these models need to generate a candidate recommendation
list by traditional CF models in the first step. For fair comparison, we choose the top 50
recommendation results of UCF as the candidate set since UCF outperforms other tra-
ditional CF models. We first observe that all these diversity-enhancing models increase
the diversity results. Among all these models, our models always perform the best, fol-
lowed by TDiv on all these three datasets. On average, our models improve about 2%
to 10% diversity over these diversity-enhancing models. Our models also have better
accuracy results than these baselines since they lose a small amount of accuracy for
promoting diversity directly from recommendation candidates. Note that, besides the
widely used precision measure for accuracy comparison, we have also measured the
recall values of different models and we found the overall trend for the performance of
various models is the same as the trend of precision measure on these three datasets.
Therefore, for the simplicity of result discussion, we do not report the detailed results
of recall values.

For a better understanding of the correlations of recommendation results, Fig. 10
provides the Jaccard similarity of different models with top-5 recommendations. The
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Fig. 8. The overall accuracy comparison of all models with different recommendation size.
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Fig. 9. The overall diversity comparison of all models with different recommendation size.
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Fig. 10. Jaccard similarity of different models.

darker the color between two models, the smaller similarity of recommendation results
between them. It is clearly that ICF has a recommendation list that is very different
from others, followed by BPR. We empirically conclude that traditional CF models
would generate rather dissimilar results based on their different assumptions. Among
all the diversity-enhancing models, AsDiv produced the most dissimilar results as it
needed an additional step to model user’s aspect preference from predicted preferences
learned by tradition CF models. Then it generated recommendations based on user’s
aspect preference. The remaining diversity-enhancing models only needed to balance
diversity and the predicted preferences learned from traditional CF models directly. In
contrast, our proposed REC framework implicitly achieves diversity by incorporating
the coverage function at each step naturally. Thus our models have about 70% overlap
with UCF on these three datasets.
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Table IV. Two example users and the Top-5 Recommendations
A typical user in Douban DataSet

14 training records. Popularity: 10, 7 are written by Junji Ito; Technology:2, mainly about web design;
Culture:2, including Emotional Design,which is also related to web design

Interested in comics written by Junji Ito and web design related books
UCF Recommendations TDiv Recommendations WICov Recommendations

Precision:40%,Diversity: 33.33% Precision:20%, Diversity: 33.33% Precision:40%, Diversity: 66.67%
The Hanging Ballons (Pop) The Elements of User Experience (Economics) The hanging Ballons (Pop)

Forbidden Fruits (Pop) Uzumaki (Pop) The Elements of User Experience (Economics)
Gyo 2 (Pop) Forbbidden Fruits (Pop) The Long Tail (Economics)

Uzumaki (Pop) Bad Kids (Pop) Uzumaki 2 (Pop)
Gyo (Pop) The Hanging Ballons (Pop) The Design of Everyday Things (Culture)

the recommended 5 books four books belong to popularity, all two comics written by Junji Ito, the remaining books
are written by Junji Ito are written by Junji Ito are related to web design and internet economics

A typical user in MovieLens
23 training records, Action: 10, Drama:9, Thriller:9, Sci-Fi:5, Comedy:3, Mystery:1, Adventure:1, War:1, Horror:1, Western:1, Crime:1

The user has a wide range of interests
UCF Recommendations TDiv Recommendations WICov Recommendations

Precision:0%,Diversity: 18.19% Precision:0%, Diversity: 27.27% Precision:20%, Diversity: 63.64%
Grandfather (Drama) Toy Story 2 (Comedy|Animation|Children) Shakespeare in Love (Comedy|Romance)

Shakespeare in Love (Comedy|Romance) Grandfather (Drama)|Comedy|Sci-Fi) Star Wars (Action|Adventure|Romance|Sci-Fi|War)
Fight Club (Drama) Doors (Drama|Musical) Braveheartn (Action|Drama|War)

Toy Story 2 (Comedy|Animation|Children) Out of Africa (Drama|Romance) Being John Malkovich (Comedy)
Bug’s Life (Comedy|Animation|Children) Elizabeth (Drama) Frequency (Drama|Thriller)
the recommendation set only covers these recommendations also only cover cover most of the user’s interests, including

the user’s interests for comedy and drama the user’s interests for comedy and drama action, drama, thriller, Sci-Fi and so on.

5.7. Case Study
We present the top-5 recommendation results of two typical users in Table IV. For
better illustration, we only list the best baselines in the previous experiment (TDiv)
and UCF. We list the user’s category preferences in the training data without details of
each record. We can clearly see that, our REC related model WIDiv captures the target
user’s interests better and recommends a more diversified recommendation set. Take
the typical user in Douban for example. From the user’s reading history, this user is a
fan of the Japanese horror manga artist Junji Ito as more than half of his liked books
are written by this author. Meanwhile, we guess this user’s work is closely related to
web design as he has read many books related to this topic. Our model WIDiv is able to
recommend diversified results by covering the user’s interests for both comic and web
design. However, in UCF, only the user’s major interests for Junji Ito were captured,
and thus UCF can only recommend highly homogeneous recommendations of comics
drawn by Junji Ito. However, in TDiv four books in the recommendation list are comics
written by Junji Ito and only one book pertains to web design.

6. RELATED WORK
We summarize the related work in this section. In general, the related work can be
grouped into the following four categories, namely traditional relevance based CF mod-
els, results diversification in information filtering, coverage measure and its applica-
tions, and the last category belongs to submodular optimization and applications.

Traditional relevance based CF models: CF suggests personal-
ized recommendations to users based on the wisdom of crowds. This
area has enjoyed much attention from both academia and industry dur-
ing the last decade [Adomavicius and Tuzhilin 2005; Koren and Bell 2011;
Su and Khoshgoftaar 2009; Zhu et al. 2014]. Given the historical preference data
of users, CF models usually recommend a top-N list of items that are most relevant
to the target user’s previous interests. Thus the accuracy metrics, such as MAE
and RMSE in rating prediction tasks, precision and recall in ranking related tasks
dominated traditional CF evaluations [Herlocker et al. 2004; Herlocker et al. 1999;
Bell and Koren 2007b; Sarwar et al. 2000b]. Generally speaking, traditional models
in this area can be classified into two categories: neighborhood based models and
matrix factorization models [Koren 2008; Gu et al. 2010]. Neighborhood based models
tried to infer the relevance between the active user and each candidate item based on
similar users’ decisions [Breese et al. 1998; Sarwar et al. 2001; Herlocker et al. 1999;
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Bell and Koren 2007a]. In contrast, matrix factorization models projected both users
and items into the same low latent space and the relevance between them were direct-
ly comparable in this latent space [Koren et al. 2009; Mnih and Salakhutdinov 2007;
Zheng et al. 2012]. Researchers further combined these two models to improve the
accuracy of recommendation results [Koren 2008]. In a word, traditional CF models
were mainly driven by the accuracy goals and many efforts were devoted to designing
more sophisticated means to calculate the relevance between users and items with the
available sparse preference data.

Result diversification in information filtering: Recently some researcher-
s argued that accuracy was far from enough for measuring recommenda-
tion quality and we should turn to user-centric means to measure the
overall quality of recommendation results [McNee et al. 2006; Said et al. 2013].
Among them, diversification has been accepted as an indispensable part
for sensing users’ satisfaction in both recommendation and search result
presentation [Ziegler et al. 2005; Zhang and Hurley 2008; Hurley and Zhang 2011;
Boim et al. 2011; Drosou and Pitoura 2012; Campochiaro et al. 2009]. In fact, both of
these two applications serve as filtering tasks to mitigate information overload.
Users are more willing to see diversified and informative results than highly ho-
mogeneous results. Most models for result diversification were based on multi-
objective optimization, where the final results were balanced between accuracy
and diversity. In practice, diversity metrics were defined in various means. User-
s can refer to [Vargas and Castells 2011] for a formal framework that summa-
rized several state-of-the-art metrics. Some were directly based on the similari-
ty measure, where the similarity between items was based on the semantic in-
formation of items or borrowed from the user-item preference history. Then the
diversity of an recommendation set was defined as the average intra list dis-
similarity of all pairs of items in that set ([Bache et al. 2013; Ziegler et al. 2005;
Hurley and Zhang 2011; Boim et al. 2011]). While others argued novel items were a
means to enhance diversity ([Oh et al. 2011; Yin et al. 2012; Cremonesi et al. 2011]).
Among them, Said et al. showed that UCF usually generated recommendations that
lacks diversity [Said et al. 2012]. Besides, there are several works that are closely
related to ours [Ziegler et al. 2005; Hurley and Zhang 2011; Zhang and Hurley 2009;
Vargas and Castells 2013]. For instance, [Ziegler et al. 2005] introduced item catego-
ry to access intra-list dissimilarity of items and presented a topic diversification model
to improve recommendation diversity. [Hurley and Zhang 2011] formulated a binary
optimization problem with a control parameter that explicitly tuned the tradeoff be-
tween accuracy and diversity. These two models can be seen as re-ranking a larger
candidate recommendation set from traditional CF models. [Zhang and Hurley 2009;
Vargas and Castells 2013; Boim et al. 2011] argued that users’ preferences have differ-
ent sides, thus considering the subsets of the target user’s interests was a natural idea
for diversified recommendations. Usually the subsets can be obtained by pre-defined
semantic information of items or some distance based clustering algorithms. Then the
final diversified recommendations can be achieved by combining the partial recom-
mendations based on users’ sub profiles. The authors in [Vargas and Castells 2013]
also claimed that extracting users’ sub profiles in recommender systems is close
to query aspects representation for reducing query redundancy in information re-
trieval [Santos et al. 2010]. Our work has explicit distinctions from these works. The
diversified recommendations are reached naturally through the coverage measure and
we do not need any category information of items. Thus our model can be easily applied
to various recommendation scenarios even when no item information is available.

Coverage and its applications: The coverage measure has been extensively stud-
ied in document summarization related tasks. These tasks treated the summarization
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problem as finding a low-cost subset that covers as much information in the documen-
t as possible [Lin and Bilmes 2011; Sipos et al. 2012]. Some researchers also extended
this idea for recommending news related tasks with the text information of these item-
s is available [El-Arini et al. 2009; Yue and Guestrin 2011; Pennacchiotti et al. 2012].
However, in the real world, most typical CF systems do not carry such information,
e.g., it is hard to extract the content of music [Adomavicius and Tuzhilin 2005]. This
limits the generality of previous works. Recently, Hammer et al. argued that instead of
recommending the best sellers, one should maximize the probability that a customer
makes a purchase [Hammar et al. 2013]. They proposed to use the maximum coverage
to select K products that cover the most consumers. However, the recommendations
were non-personalized and identical for all users. To the best of our knowledge, we are
the first to extend the coverage measure into CF tasks where only user-item preference
data is available.

Submodular optimization and its applications: Our work is also relat-
ed to submodular optimization. Submodularity represents an intuitive diminish-
ing returns property, stating that adding an element to a smaller set helps more
than adding it to a larger set. This property has been widely used in applica-
tions such as social influence maximization [Kempe et al. 2003], outbreak detec-
tion [Leskovec et al. 2007] and document summarization [Lin and Bilmes 2011]. Users
can refer to [Krause and Guestrin 2011] for its various applications in optimized infor-
mation gathering. The fundamental result of greedy algorithms for maximizing sub-
modular functions goes back to [Nemhauser et al. 1978]. Then [Leskovec et al. 2007]
proposed to further exploit the submodularity to do lazy evaluations for further opti-
mization. Though it has been widely studied, few have attempted to exploit submodu-
larity for recommendation tasks.

Nevertheless, our proposed model is motivated by various previous works. And we
believe this new perspective to look at recommendation opens a door for further re-
search in this area.

7. CONCLUSIONS AND FUTURE WORK
In this paper we proposed a unified framework to generate diversified recommenda-
tions for top-N recommendation. Specifically, we first showed the insufficiency of tradi-
tional CF models. We argued that most models in this area were driven by the accuracy
metrics that lacked diversity for recommendation results. We then proposed a coverage
measure that considers the usefulness of the whole set. We detailed how to incorporate
the coverage measure into the two steps of UCF for diversified recommendations. Fur-
thermore, we generalized the coverage measure and the proposed recommendation
framework from both a data perspective and an algorithm perspective. Experimental
results on three real-world datasets showed the superiority of our proposed models.

In the future, we would like to continue this research from two directions. First, in
this paper, the generalization of MF models is still mainly based on the REC frame-
work, we would like to explore how to extend the coverage measure to the low dimen-
sional representations of users and items from MF models directly. Second, as diversity
is a rather subjective feeling of people, we leave the problem of how to better evaluate
the diversity of recommendations from users’ perspective as a future research plan.
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