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Similar text search aims to find texts relevant to a given query from a database, which is fundamental in

many information retrieval applications, such as question search and exercise search. Since millions of texts

always exist behind practical search engine systems, a well-developed text search system usually consists of

recall and ranking stages. Specifically, the recall stage serves as the basis in the system, where the main pur-

pose is to find a small set of relevant candidates accurately and efficiently. Towards this goal, deep semantic

hashing, which projects original texts into compact hash codes, can support good search performance. How-

ever, learning desired textual hash codes is extremely difficult due to the following problems. First, compact

hash codes (with short length) can improve retrieval efficiency, but the demand for learning compact hash

codes cannot guarantee accuracy due to severe information loss. Second, existing methods always learn the

unevenly distributed codes in the space from a local perspective, leading to unsatisfactory code-balance re-

sults. Third, a large fraction of textual data contains various types of noise in real-world applications, which

causes the deviation of semantics in hash codes. To this end, in this article, we first propose a general unsu-

pervised encoder-decoder semantic hashing framework, namely MASH (short for Memory-bAsed Semantic

Hashing), to learn the balanced and compact hash codes for similar text search. Specifically, with a target

of retaining semantic information as much as possible, the encoder introduces a novel relevance constraint

among informative high-dimensional representations to guide the compact hash code learning. Then, we de-

sign an external memory where the hashing learning can be optimized in the global space to ensure the code

balance of the learning results, which can promote search efficiency. Besides, to alleviate the performance

degradation problem of the model caused by text noise, we propose an improved SMASH (short for denoiS-

ing Memory-bAsed Semantic Hashing) model by incorporating a noise-aware encoder-decoder framework.

This framework considers the noise degree for each text from the semantic deviation aspect, ensuring the

robustness of hash codes. Finally, we conduct extensive experiments in three real-world datasets. The ex-

perimental results clearly demonstrate the effectiveness and efficiency of MASH and SMASH in generating

balanced and compact hash codes, as well as the superior denoising ability of SMASH.
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1 INTRODUCTION

Similar text search is a fundamental information retrieval task that aims at finding texts similar to a
given query, which has been applied to many practical applications. For example, in community-

based question answering (CQA) sites like Quora,1 people can search for similar questions they
are interested in and find desired answers [2, 53, 77]. Meanwhile, in online intelligent education
systems like Khan Academy,2 students usually consolidate knowledge by finding similar exercises
based on their wrong exercises [44, 59, 70]. Since the number of collected texts is rapidly growing,
the modern industrial similar text search system follows the recall-then-rank two-stage paradigm.
Specifically, given a user query, the recall stage tends to retrieve an initial subset of relevant candi-
dates from the extensive database in low latency, which usually contains lightweight algorithms
or models assisted by some indexing structure. Then the ranking stage elaborately scores the can-
didates with more complicated algorithms or models to achieve better-sorted results [29, 41, 51].
As the bottleneck, the recall stage is non-negligible in this pipeline with the goal of effectiveness
and efficiency, i.e., to return a set of texts covering relevant texts as many as possible within a short
time-span [20].

To achieve satisfying performance in the recall stage, earlier search techniques apply various
term matching methods [81] for the cases of keyword match and build the inverted index [80] for
efficiency. However, they cannot address desired results that do not exactly match the query text
but can satisfy users’ search intent, which is also called the mismatch problem and may block the
ranking stage from relevant texts at the beginning [91]. Thus it remains a problem for semantic
retrieval [39]. With the significant progress of deep learning in various domains [28, 31, 38, 43,
45, 55, 64], representation learning, which uses embeddings to represent items, has been proven
to be a successful technique contributing to the semantic retrieval [21, 27, 68]. In the recall stage,
the application of representation learning is to use embeddings to represent queries and items.
Then it converts the retrieval problem into a nearest neighbor search problem in the embedding
space [29].
In this setting, semantic hashing [47, 61, 72], which enables a very efficient search and learns

semantic embeddings of texts (or other types of data objects [9, 57, 89]), is suitable for the recall
stage and has attracted a great deal of attention. Concretely, as shown in Figure 1(a) and (b), seman-
tic hashing projects texts in the original space into a much smaller compact Hamming space [25],
where texts are turned into binary representations of remaining semantics (e.g., question’s topic).
The binary representations are called hash codes and fall into corresponding hash buckets. On the
one hand, semantic hashing can utilize the text’s semantics to ensure candidates’ relevance. On the
other hand, it can also handle the efficiency problem on two sides. First, storing hash codes is sig-
nificantly storage-efficient. For example, suppose there are 10 million texts with 512-dimensional

1https://www.quora.com/.
2https://www.khanacademy.org/.
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Fig. 1. A showcase of similar text search in text semantic hashing. (a) and (b) show the hashing function

projects original texts into the binary Hamming space. (b) illustrates hash codes in a 4-bit Hamming space,

which can be seen as a hypercube in geometric space. Each circle represents a text in the database, and

triangles represent queries. Different colors mean a specific semantic. (c) plots the search procedure in the

Hamming space. For query A, we first set the search radius r = 0 to access bucket B0 and get four related

texts. Then we set search radius r = 1 to access buckets B1,B2,B4,B8, and get one related text and so on.

double-precision float vectors. Their representations will take over 19 GB of storage space, which
is hard to be deployed into general devices with limited memory. However, only 19 M of storage
is needed to store these texts if we use 16-bit hash codes for representations. Second, the binary
codes are used as direct indices (addresses) into a hash table to realize search efficiency, yielding
a remarkable increase in search speed compared to an exhaustive linear scan [52]. As illustrated
in Figure 1(c), we generally explore the Hamming space to acquire candidate texts by increasing
the search radius r around the query. Based on the above search procedure and according to the
different termination conditions, it introduces two kinds of problems. The first is to find exact
K texts closest to Hamming distance to a given query, namely the k-nearest neighbor (KNN)
search. The second is to find all texts within a fixed Hamming distance of a query, namely Point

Location in Equal Balls (PLEBs) search [33].
To generate effective hash codes, early works [78, 86] are developed to preserve similar struc-

tures of the original texts inspired by spectral clustering [50] and latent semantic indexing [13].
With the progress of deep learning, modern approaches typically use unsupervised encoder-
decoder architectures to retain the textual semantics [6, 8, 15, 23, 24, 63, 82]. Though this line
achieves exemplary achievements with different targets, they usually suffer from the following
three deficiencies in the practical recall system. First, compactness is a crucial factor in hash
codes [72], which means the hash codes should be as short as possible. On the one hand, short
hash codes significantly promote search efficiency. Briefly, the search cost mainly depends on the
number of lookups, i.e., the number of buckets examined, which will exponentially explode as
the code length b increases [18] (a detailed explanation is presented in Section 2.2). On the other
hand, with the explosive growth of social media and e-commerce, more and more short text data
(e.g., questions and tweets) are generated every day on the Web. It would be a colossal waste to
represent them as long hash codes [82]. Second, hash codes should ensure the property of code bal-
ance, which means hash codes are evenly spread throughout the Hamming space [25]. Specifically,
code balance is important because it helps to reduce information redundancy in hash codes, then
makes it better to preserve the original locality structure of the data [15]. In addition, code balance
narrows the search latency gap between bad cases and ordinary cases, therefore improving user
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Fig. 2. The common text noise in a similar search. These noise always leads to out-of-vocabulary words.

experience. For example, assume we want to acquire four relevant texts in the KNN search. As
shown in Figure 1(c), for query A1, we only need to access the hash bucket B0 to reach four texts.
However, we must access 6 to 11 hash buckets for query A2. The huge gap between A1 and A2

brings users a poor experience. In the PLEB search, please note that the lookups are equal for each
query in the recall stage using the same search radius r , but the number of returned candidates
impacts the ranking stage’s efficiency. For example, suppose we set search radius r = 0, still in
Figure 1(c), query A1 and query A2 will retrieve four and one candidate texts respectively. That
means, compared to A2, A1 will spend about four times as long in the rank stage to score candi-
date texts and even cost more time in sorting. It is clear that worst search cases can be minimized
if the hash buckets contain an equal number of texts in both search ways [25]. That is also the
code-balance target. Third, the hash code should keep the semantics of text as much as possible
for reliable retrieval results.
Unfortunately, there aremany technical and domain challenges to achieving the ideal hash codes

described above. First, it is difficult to ensure effectiveness when the hash code is short because of
information loss, which is also called the few-bits hashing problem [82]. Second, generating uni-
formly distributed hash codes with the code-balance target are virtually impossible in a large-scale
dataset. For example, some works [15, 63] notice the code-balance problem, but they optimize it
from a local perspective, which means they only include very few hash codes to estimate the dis-
tribution. (e.g., in a training batch). For this reason, they cannot ensure code balance in the entire
space encountering a large-scale dataset. It essentially limits their performance on efficiency for
bad search cases. Last but not least, as illustrated in Figure 2, a large fraction of textual data contains
various types of noise in real-world applications [3, 22, 40], such as misspelling, non-standard ab-
breviations, and E-speak & new words. For example, Cucerzan et al. [11] report that the frequency
of misspelling occurs in 10%–15% of search engine queries. Besides, current social communities
(e.g., Quora) contain frequent use of non-standard abbreviations (e.g., “du” for “do you”, “abt” for
“about”) or E-speak & new words (e.g., “PS5” for “PlayStation 5”). The text noise creates legal or
legitimate words not presented in standard dictionaries, which are also called out-of-vocabulary
words (OOVs) [79]. The out-of-vocabulary words in queries will cause the semantics’ deviation in
their hash codes, leading to undesired search results. Thus, ensuring the robustness of hash codes
against text noise brings us a critical challenge for designing a semantic hashing model in practice.
To address the first two more general challenges, we propose a Memory-bAsed Semantic

Hashing (MASH) model for deep semantic hashing. InMASH, we aim at achieving both efficiency
and effectiveness in hash codes. Specifically, MASH follows the encoder-decoder framework in an
unsupervised manner, where the encoder generates the hash codes from texts, and the decoder
reconstructs the texts on their own. To tackle the few-bits hashing problem, we first propose a
novel relevance propagation objective in the encoder to use the relevance constraints among in-
formative high-dimensional representations to guide the short hash code learning for retaining
semantic information. Then, to achieve the code-balance target in the entire Hamming space, we
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An Efficient and Robust Semantic Hashing Framework for Similar Text Search 91:5

introduce an external memory to store all hash codes in the training procedure. Besides, we design
a strategy to select representative hash codes stored in the external memory to precisely adjust
the distribution of new hash codes.
Furthermore, to generate robust hash codes with noisy texts in real-world applications, we ex-

tendMASH and propose a denoiSingMemory-bAsed SemanticHashing (SMASH) framework.
Specifically, we incorporate a noise-aware encoder-decoder framework into our model. The basic
idea is to reconstruct the corrupted text as the clean one in the encoder-decoder framework. Con-
sidering the various semantic deviation in each corrupted text, we assign latent weights to them for
generating more robust hash codes. Besides, we design an adaptive noise rate generation strategy
to release the manual setting and improve the generalization ability in our framework.
Finally, we conduct extensive experiments and evaluate both MASH and SMASH frameworks

on three real-world datasets. The experimental results in both general and noise scenarios demon-
strate the effectiveness and efficiency of the two proposed frameworks in large-scale recall systems.

2 RELATEDWORK

Similar search aims at searching similar data from a large-scale database, which is fundamental in
many information retrieval applications [4, 19, 49, 76, 87, 92], such as searching similar questions
in community-based question answering (CQA) sites [2, 53, 77] and finding similar exercises
in online intelligent education systems [44, 59, 70]. A similar search system usually comprises re-
call and ranking stages to respond to users’ requests in real-time. In this article, we mainly focus
on similar text search methods in the recall stage, which aims at proposing a small set (such as
hundreds to thousands) of relevant candidates with the goal of effectiveness and efficiency. In the
early years, people usually used word matching methods like the well-known BM25 model [60]
with the inverted index [80] for textural data. Due to the limitation of the semantic match, some
deep learning methods [30, 32, 42, 48, 54] use the embedding to represent data. Meanwhile, ap-
proximate search [1, 34, 36, 61, 67] has been incorporated into this field for fast search, where
semantic hashing [61] can achieve both effectiveness and efficiency by learning semantic binary
representation. This section summarizes related works in the following categories, including se-
mantic hashing and characteristics of hash codes for the reader to better understand our work.

2.1 Semantic Hashing

The most representative class for similarity search is hash, which projects the data from the orig-
inal space into Hamming space. In the past, Locality Sensitive Hashing (LSH) [12] is a conve-
nient and popular hashing method with complete theoretical guarantees [74]. However, it is data-
independent, which is unable to capture the semantics of texts. To tackle this problem, semantic
hashing [47, 61, 72] has been proposed to leverage machine learning or deep learning techniques
to learn data-dependent hashing functions. It aims at generating semantic hash codes that main-
tain the text’s structure. Then the nearest neighbor search on hash codes leads to a search result
similar to the nearest neighbor search on the original text space.
In general, semantic hashing methods can be broadly classified into supervised and unsuper-

vised methods. In supervised methods [37, 46, 73, 75], scholars try to use relevance labels to learn
hashing function and achieve better performance. However, such supervised methods suffer from
human-annotated costs. They are not suitable for similar search systems nowadays that contain
millions of textual resources. Therefore, unsupervised hash approaches learn hashing functions
without any supervised signal, which are more feasible for large-scale corpora.

There are many notable unsupervised shallow-hashing methods [16, 26, 50, 78, 86] in early
works. For instance, Spectral Hashing (SPH) [78] can be viewed as an extension of spectral
clustering [50]. It aims at learning hash codes that preserve the global similarity structures of the
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original text. Self-Taught Hashing (STH) [86] has the objective of preserving the local similari-
ties between samples found via a k-nearest neighbor search. However, this is done by computing
the bit vectors by considering text connectivity without learning text features. From the aspect of
quantization loss, Spectral Hashing (SphcHash) [26] learns compact hash codes by solving the
Eigenvector problem, which achieves significant performance. However, it strongly assumes that
the data points are uniformly distributed in a hyper-rectangle, limiting its application potential. On
the other hand, Spherical Hashing (SpheHash) [26] employs hypersphere-based partitioning to
achieve better and more coherent quantization. Furthermore, Iterative Quantization (ITQ) [16]
additionally minimizes the quantization error to generate hashing functions that better preserve
the original locality structure of the input data. However, these shallow models are linear and
cannot be applied to real-world high-dimensional datasets.
With the increasing attention of deep learning, many research efforts [6–8, 15, 23, 24, 63, 82, 90,

94] have been devoted to deep semantic hashing methods that display remarkable performance im-
provements. In this article, we focus on text-based unsupervised deep methods since they are suit-
able for large-scale text collections. For example, Chaidaroon et al. [8] propose the first work in this
direction, named Variational Deep Semantic Hashing (VDSH). They employ variational au-

toencoders (VAE) [58] framework to learn hash codes in an unsupervised way. Later, Chaidaroon
et al. [6] expanded their model and proposed NbrReg. It forces the hash codes to be able to recon-
struct uniquewords occurring in both the text and its neighbors in the original text space (found us-
ing BM25 [60]). Both of them achieve improvement but cannot generate hash codes end-to-end. To
obtain hash codes directly, Neural Architecture for Semantic Hashing (NASH) [63] proposes
an end-to-end trainable semantic hashing framework. NASH adopts a similar variational autoen-
coder architecture as VDSH but models the hash codes as Bernoulli latent-variable. Because this
binarization is discrete and thus not differentiable, a straight-through estimator [83] is used when
optimizing the model. Analogously, Doc2hash [90] is proposed to solve the gradient problem using
the Gumbel-Softmax trick instead of using the straight-through estimator. Similar to NbrReg and
STH, some recent works [23, 24] take advantage of neighborhood knowledge.Ranking-based Se-

mantic Hashing (RBSH) [23] incorporates pseudo labels learned from weak supervised into the
hash code generation. Before long, the authors of RBSH propose Semantic Hashing with Pairwise

Reconstruction (PairRec) [24] to improve it by using a pairwise reconstruction object. Consid-
ering the relationships between documents, node2hash [7] first incorporate graph context into
hash modeling to achieve better performance. Recently, Few-bits Semantic Hashing (WISH) [82]
notices the severe information loss on short hash codes and leverages auxiliary implicit topic vec-
tors to address it. The above works are based on a variational autoencoder architecture. Some
of them [24, 63] use the Bernoulli latent variable to achieve code balance. While in [15], the au-
thors employ an adversarial training procedure to the encoder-decoder framework to ensure code
balance. However, current deep models achieve code balance from a local perspective, which is
ineffective in large-scale databases.
Our work improves such studies for text-based semantic hashing as follows. First, different

from [82] implicitly employing topic vectors to save information, we propose an explicit propa-
gation relevance regularization to transfer the correlations among informative high-dimensional
space to compact Hamming space, which sufficiently addresses the information loss with a
clear goal. Second, we aim at maintaining code balance from a global perspective to generate
highly efficient hash codes in large-scale corpus rather than local preserve like previous mod-
els [15, 23, 24, 63]. Third, text noise often occurs in practical applications, which seriously dam-
ages the performance of hash codes. However, most present works ignore this problem. Thus we
introduce a noise-aware encoder architecture to extend the basic model and generate more robust
hash codes.

ACM Transactions on Information Systems, Vol. 41, No. 4, Article 91. Publication date: March 2023.
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2.2 Characteristics of Hash Codes

Compared with other types of data structures like the kd-tree [65], hash codes usually achieve
significant improvement in storage and search efficiency [25], whose speed is almost independent
of the number of data points [52]. In the similar search task, most related works [6, 8, 15, 23, 24,
63, 82] use a brute-force linear scan of all the hash codes to find desired results. While the highly
efficient Hamming distance enables large-scale search using linear scans [62], significantly faster
alternatives exist for the recall stage. A quick way to find all r-neighbors of a hash code query
is to use a hash table and examine all hash buckets whose indices are within r bits of the query.
For hash codes of b bits, the number of hash buckets to be examined is called lookups and can be
formulated as

lookups (r ,b) =
r∑

k=0

(
b

k

)
. (1)

A major drawback of this method is that the search efficiency will break down for long hash codes
since the lookups will explosion with the code length b increases [18]. One way to solve this
problem is restricting a search to exact matches (i.e., r = 0), thus avoiding the need for Hamming
ball exploration [25]. However, it is not a standard method for semantic hashing because it ignores
the semantics between nearby hash codes. Another way is to use multi-index hashing [52], which
splits the hash codes into m substrings and builds hash tables for each substring. This way can
significantly reduce the lookups but is also related to code length b:

lookups (r ,b,m) ≤ m2H ( r
b
) b
m , (2)

whereH (a) ≡ −aloд2a− (1−x )loд2 (1−a) is the entropy of a Bernoulli distribution with probability
a. Whenm increases, we must consider the candidates’ test time, which is practically equivalent
to ranking stage cost time in our scenario. For example, if we setm = b, the returned texts will
include the entire database, making the search procedure ineffective. Thus we cannot infinitely
increasem. When fixingm and increasing the code length b, it still leads to a rapid expansion of
lookups. Therefore, generating compact hash codes with short bits is a crucial target for semantic
hashing in practical applications [72].

Besides, code balance is a desired characteristic for hash codes to promote search efficiency in
bad cases. To illustrate the importance of code balance on both search problems more clearly, we
conducted experiments using simulation data. Figure 3(a) and (b) depict two concrete examples for
both KNN search and PLEB search in the simulation data. We use ζ , the standard deviation of the
number of texts in all hash buckets, to reflect the degree of code balance. In general, the smaller
the standard deviation ζ , the higher the degree of code balance, which means the more uniformly
distributed texts are in the Hamming space. Figure 3(a) illustrates the average and worst lookups
(the accessed number of hash buckets) in different data distributions to reach exactK texts in KNN
search. The result demonstrates that the worst-case lookups are 15 times more than the average
case in a poor code balance situation. Such a huge gap between the worst and average cases will
bring users a bad experience, even when the average lookups decrease. In the PLEB search, each
query has the same lookups using the same search radius. However, the number of returned texts
greatly impacts the ranking stage. Figure 3(b) illustrates the average and worst returned texts in
PLEB search in different search radius r . We find that code balance reduces the returned texts of
worst and average cases, alleviating the time complexity of the ranking stage. Thus code balance
is a crucial factor for generating efficient hash codes.

3 PRELIMINARIES

In this section, we formally present our problem of semantic hashing and similar text search prob-
lem in the recall stage.

ACM Transactions on Information Systems, Vol. 41, No. 4, Article 91. Publication date: March 2023.
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Fig. 3. A synthetic example of 409,600 (100 × 212) data points assigned to 4,096 (212) hash buckets in 12-bit

Hamming space. We use the standard deviation ζ of the number of texts in all hash buckets to evaluate the

degree of code balance. A search procedure is conducted on the synthetic data with KNN search and PLEB

search, respectively. (a) plots the average and worst number of access hash buckets in KNN search. (b) shows

the average and worst number of returned texts in the PLEB search. This result shows that efficient hash

codes should achieve code balance to mitigate bad search cases.

3.1 Semantic Hashing

In general, there is a text database X = {x1,x2, . . . ,xN } where xi is the ith text and N is the num-
ber of texts. Semantic hashing aims at learning a hashing function f (x ) : x → s , which can be
implemented by complex algorithms ormodels, to project the original text x into a binary represen-
tation s . We term the representation s ∈ {−1, 1}b as hash code, and it falls into a corresponding hash
bucket, where the notation b is the dimension (or cardinality) of the hash code s . Then Hamming
distance is used as the distance metric to evaluate the similarities between two hash codes, which
is defined as the number of different bits between two codes:

dHamminд (s1, s2) =
b∑
i=1

1s1,i�s2,i = SUM (s1XOR s2). (3)

Since learning a discrete-output function f (x ) in the deep network is intractable, whose gradient
always vanishes in the siдn function, a convenient way is to learn a continuous function instead,
from which s is obtained by using the median method [78]. Specifically, we first compute the
median value of the semantic vector in the training set as the threshold. Then we set the kth
element of s to 1 if the kth dimension of s is larger than the threshold; otherwise, we set the kth
bit to –1.

3.2 Similar Search Problem in Recall Stage

In the similar text search problem, given a query text q, our target is to find a subset of texts Set (q)
from the database. We should make as many texts x in set Set (q) as possible to satisfy a similarity
score sim(q,y) ≤ sim(q,x ), where y ∈ {X − Set (q)}.
While using semantic hashing in the recall stage, there are two phases, including indexing phase

and search phase. In the indexing phase, texts setX are indexed in the database by using a hashing
function f (x ) to extract hash codes as representation. In the search phase, the system uses the
hashing function f (x ) to extract the hash code from a query text q. Then it uses the code of the
query as the index to access hash buckets and find candidate texts. In this setting, we have two
search problems according to the termination conditions, including KNN search and PLEB search.

ACM Transactions on Information Systems, Vol. 41, No. 4, Article 91. Publication date: March 2023.
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Table 1. NOTATION

Notation Description

Dx The data distribution
X The dataset of texts
N The number of texts in X
V The set of vocabulary
M The external memory

M̂ The set of selected hash codes from external memory
P (x ) The corrupt texts set of x
xi The i-th text in dataset X

x , x̂ ,x ′ The original,corrupted and reconstruction text

x (i ), x̂ (i ) The actual and predicted words at position i in x
wi The i-th word in vocabulary V
s The hash code of x
ŝ The latent representation of x
l The high-dimensional representation of x
B The training mini-batch
Mi The i-th slot in external memoryM
vi The i-th timer corresponds toMi

K The number of returned texts in KNN search
r The search radius of the Hamming-ball
b The hash code length
| · | The length of a representation or the number of a set

θE ,θD Parameters of the encoder and the decoder

Specifically, Given a set of hash codes S = {s1, s2, . . . , sN }, KNN search is to find exact K codes in
S that are closest in Hamming distance to a given query. While in the PLEB search, we pre-define
a search distance and then find all codes in S within the distance of a query. The notations used
in this paper are given in Table 1.

4 MEMORY-BASED SEMANTIC HASHING

In this section, we will introduce the MASH model. The overview of the proposed Memory-Based
Semantic Hashing model is presented in Figure 4, which is an encoder-decoder framework and
consists of two auxiliary components. (1) A relevance propagation regularization aims at tackling
the information loss in short hash codes, where we design an objective for the encoder network
to propagate the correlations between pairs of texts from high-dimensional informative space to
compact Hamming space. (2) An external memory storing hash codes of all texts during the train-
ing process aims at achieving the code balance objective from a global perspective. In the following
subsections, we will explain the details of each part of the MASH framework.

4.1 Encoder-Decoder based Semantic Hashing Framework

As illustrated in Figure 4, we use an encoder-decoder framework to generate hash codes from the
texts in an unsupervised way. Given a dataset X = {x |x ∼ Dx }, where Dx is the data distribution,
the encoder-decoder framework is defined as an encoding function E (x ,θE ) : x → z thatmaps each
text x into a latent representation z with the parameter θE , and a decoding functionD (x ,θD ) : z →
x̂ that reconstructs the latent representation z to x̂ with the parameter θD . Considering x =

∑
i x

(i )

is the bag-of-words representation for text x and x (i ) is the actual word at position i in x , we write
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Fig. 4. The overview of the MASH model.

the reconstruction loss function of all texts as word-wise negative likelihood:

Lr ec = Ex∼Dx

⎡⎢⎢⎢⎢⎣

1

|V |
|V |∑
i=1

− logp (x̂ (i ) = x (i ) )
⎤⎥⎥⎥⎥⎦
, (4)

where |V | is the number of word in the vocabulary set V and x̂ (i ) corresponds the ith word in the
reconstructed text x̂ .

In deep semantic hashing, the encoding function E (x ,θE ) is the hashing function f (x ) : x → s
aiming at generating hash code s from the textx . However, asmentioned before, learning a discrete-
output function directly is an intractable problem because the discrete layer is usually incompatible
with the backward propagation and thus causes a gradient flow problem [15]. We instead learn a
continuous function ŝ = f (x ) ∈ [−1, 1]b for convenience. Concretely, we use the smooth function
tanh(a) = 2

1+e−2a − 1 as the activation function to approximate binary representation. Then the
hash code s is obtained by using median method [78]. Note that the encoding function f (x ) can be
specified with several models like RNN [10] and CNN [88]. We do not emphasize their differences
and implement it by MLP architecture to make a fair comparison with previous works [6, 8, 23, 24,
63, 82]. Besides, the decoder function D (s,θE ) is to reconstruct the binary-like representation ŝ as
x̂ . We use a softmax layer to predict discrete words. Then, the decoder can be defined as

p (x (i ) = w |ŝ ) = exp (ŝTWx (w ) + bw )∑ |V |
j=1 exp (ŝ

TWx (j ) + bj )
, (5)

where p (x (i ) = w |ŝ ) is the predicted probability of each word w ∈ V with parameter θE =
{W ,b1,b2, . . . ,b |V | } and x (w ) is the one-hot representation of word w . Here,W ∈ Rb×|V | can be

interpreted as a word embedding matrix to be learned, and {bi } |V |i=1 denote bias terms.

4.2 Relevance Propagation Regularization

Here, we have obtained the hash code through the encoder network. As discussed in Section 2.2,
efficient hash codes should be as short as possible. However, when we set a short length for hash
code s , the original encoder network cannot handle severe information loss in s . Some related
works [8, 24, 63] show that in a suitable range, with a growing number of dimension, the quality
of binary representations (hash codes) increases but it will lead to higher search latency. Therefore,
it inspires us to utilize high-quality information in high-dimensional representation.
Specifically, we introduce a relevance propagation objective to build a bridge between high-

dimensional representation l and short binary-like representation ŝ by using a regularization loss
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function, which is equivalent to propagating Hamming distances between two layers in the en-
coder network. Any of the intermediate representations in the encoder network can be chosen as
the high-dimensional representation l , where we choose the representation before the short latent
representation ŝ as Figure 4 illustrates. In order to make l and ŝ comparable, we use the same activa-
tion function tanh for l . Another referential property is the hamming distance between two binary
vector a1,a2 ∈ {−1, 1}b of the same length can be written as dh (a1,a2) = −0.5(aT1 a2 − |a1 |). There-
fore, remote hash codes are characterized by low values and close hash codes are characterized by
high values. Thus we define the relevance propagation objective as follows:

Lrp =
1

|B|( |B| − 1)
|B |∑

k, j=1,k�j

�����
lklj

|l | −
ŝk ŝj

|ŝ |
�����
, (6)

where the notation B is a mini-batch with |B| texts in it, and |l | and |ŝ | is the dimension of l
and ŝ respectively, where we usually ensure |l | � |ŝ |. In terms of the optimization procedure,
we guarantee that texts nearby in high-dimensional Hamming space are also nearby in latent
Hamming space. We normalize Hamming distances between dh (lk , lj ) and dh (ŝk , ŝj ) by dividing
the corresponding representation dimensions to make them comparable. In general, the role of the
relevance propagation objective is to map the relevance between embeddings from the informative
high-dimensional space to the compact Hamming space.

4.3 External Memory

Code balance is a crucial factor in generating highly effective hash codes as analyzed in Section 2.2,
which means hash codes should be evenly spread throughout the entire Hamming space and alle-
viates the search time delay. However, previous deep models [15, 23, 24, 63, 82] only optimize them
from a local perspective and ensure them in a small subset of texts (e.g., in a mini-batch), which are
not suitable for large-scale databases. To address this problem, we propose an external memory
M ∈ {−1, 1}N×b in MASH to record all hash codes of N texts during the training process. These
stored hash codes describe the entire distribution and we will use them to adjust the distribution
of new hash codes in the training procedure. Theoretically, the external memory does not occupy
many GPU or CPU memory due to the storage efficiency of the hash code. Next, we first introduce
the updated details of the external memory, then describe the optimization of new hash codes.
Figure 4 illustrates the details of external memory. Each text x has its storage location. For

example, the hash code si generated from the ith training text xi will be stored in the external
memory’s ith slotMi . Therefore, we can view all N training texts globally rather than only select
a subset of texts to optimize. A natural way is to use all stored hash codes to evaluate the current
distribution. However, some hash codes stored in the external memory will become stale with the
training process because of substantial training texts and the finite batch size. If we use all hash
codes in the external memory, the optimization may be biased. Although we can update all hash
codes in the external memory after each training step, it will cause intolerable time costs. Thus we
need to choose “fresh” hash codes in the memory before optimizing the code-balance objective.
Intuitively, there are two crucial factors in identifying which hash code should be chosen. From

the individual perspective, more recently updated hash codes are more likely to be “fresh”, so
we should choose the lately modernized hash codes in the external memory. From the integrated
perspective, if the network’s parameters have little evolution in the current training step, most of
the texts’ hash codes will remain unchanged. In general, at the beginning of the training process,
the network parameters change fast with a large loss and most of the hash codes in the external
memory become stale. As the update progresses of the network, the parameters become consistent
with small loss and most of the texts’ hash codes will remain unchanged, which means more
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stored hash codes are “fresh”. Based on the above ideas, we design a heuristic method to choose
“fresh” hash codes. Specifically, we assign a timer vi to each slot Mi in the external memory. At

the beginning of t th training step, each timer will be updated byv (t ) = v (t−1) + 1. Then we choose

Mi if v
(t )
i satisfy following inequality:

v (t )
i ≤ γ

|Lmax − Lt−1 |
|Lmax | ∗ N

|B| , (7)

where Lt−1 is the loss in time t −1, Lmax is the largest loss in the training history, and γ ∈ (0, 1] is a

hyper-parameter.We use the first term |Lmax−Lt−1 |
Lmax

tomeasure the changes of network’s parameters

and the second term N
|B | is equivalent to the total amount of timer increments in a training epoch.

In backward propagation, we update the ith timer v (t )
i = 0 if xi ∈ B and correspondingly update

the ith slot in the external memory byMi = siдn(si ), where siдn is the signum function.

After choosing the “fresh” hash codes matrix M̂ = {M̂1, M̂2, . . . , M̂ |M̂ | } ∈ {−1, 1} |M̂ |×b , where
|M̂ | is the number of selected hash codes, MASH model begins to optimize code balance from a
global perspective. Technically, code balance includes two optimization targets: bit-balanced and
bit-uncorrelated [78].

First, bit-balanced means each bit has the same probability of appearing. To achieve the goal
of bit-balanced, each bit in the hash code should have a 50% chance of being 1 or –1. Thus we
introduce the bit-balanced loss function as follows:

Lbb =
1

b

b∑
j=1

α j

������

|B |∑
i=1

si j

������
, (8)

where si j is the jth bit value of ith hash codes in a training batch B and α j is a weight coefficient
assigned to each bit:

α j =
exp ( |∑ |M̂ |i=1 M̂i j |)∑b
j=1 exp ( |

∑ |M̂ |
i=1 M̂i j |)

, (9)

where M̂i j is the jth bit value of ith hash codes in matrix M̂ . This regularization function can be
understood as making the mathematical expectation of each bit in the training batch zero with
an important weight. The weight α j reflects the degree of each bit’s bit-balanced in the selected
hash codes from the external memory. Suppose the mathematical expectation of a bit in the ex-
ternal memory deviates from zero. In that case, a relatively large penalty term will be added to
the corresponding bit in the current training batch and guides the new hash codes to the desired
distribution from a global perspective.
Second, bit-uncorrelated means different bits should be as irrelevant as possible. We implement

orthogonal on our model to achieve this goal. To be specific, the premise of the orthogonal method
is that if two variables are orthogonal and the expectation of any one of them is zero, then they are
irrelevant. For convenience, we assume S = {ŝ1, ŝ2, . . . , ŝ |B | } ∈ R |B |×b is the matrix of short binary-
like representation generated from mini-batch B. Similarly, we also add a weight coefficient A in
the following regularization function:

Lbd =
1

b2

					
A ·
(
ST S

|B| − I
)					

2

F

, (10)

where I is identity matrix, | | · | |F denotes frobenius norm and A is defined as follow:

A = so f tmax

(�����
M̂T M̂

|M̂ | − I
�����

)
. (11)
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With these two objectives, MASH can optimize code balance from a global perspective. Fur-
thermore, there is a training trick for external memory. In the early training, because of extensive
updates, the hash code in external memory is unstable and the loss values usually dramatically
change. Using such hash codes to measure distribution is meaningless and the loss value may be

tremendous to make |Lmax−Lt−1 |
Lmax

always be approximately 1 in later training. Thus we need to

warm up the external memory first. Precisely, at the beginning of training, we do not compute the
bit-balanced objective Lbb , bit-uncorrelated objective Lbd and do not record the largest loss value
but only update timers and slots.

4.4 Model Objective Function

By combining the bit-balance loss function and bit-uncorrelated loss function, the objective func-
tion Equation (4) can be transformed into the final formulation:

Lf inal = Lr ec + β1Lrp + β2Lbb + β3Lbd , (12)

where β1, β2 and β3 are the hyper-parameters. By the values of β2 and β3, MASH can balance
the efficiency and effectiveness of retrieval in the different practical application situations. We
summarize the training algorithm of MASH in Algorithm 1.

ALGORITHM 1: Parameter Learning of MASH

1: Initialization: θE , θD ,M , Lmax ; vk ← N
|B |

2: repeat

3: draw a mini-batch B from X
4: Update all vi ∈ {v1,v2, . . . ,vN } by vi = vi + 1
5: M̂ ← {}
6: for each i ∈ {1, 2, . . . ,N } do
7: if vi satisfy Equation (7) then

8: M̂ ← M̂ ∪ {Mi }
9: end if

10: end for

11: Update θE , θD by minimizing Lf inal in Equation (12)
12: if Lf inal > Lmax then

13: Lmax ← Lf inal
14: end if

15: for each i ∈ {1, 2, . . . ,N } do
16: if xi ∈ B then

17: Mi ← siдn(si )
18: vi ← 0
19: end if

20: end for

21: until converged
Output: {θE } parameters of the encoder

5 DENOISING MEMORY BASED SEMANTIC HASHING

MASH can effectively deal with the problem of information loss in short hash codes and gener-
ate uniformly distributed hash codes. It is a general framework for many applications. However,
in the recall scenario, a large of textual data contains various types of noise such as misspelling,
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Fig. 5. The overview of SMASH model.

non-standard abbreviations, and E-speak & new words and so on [3, 22, 40], as shown in Figure 2.
Although we can clean the noisy text in the database, the noise can also be introduced by user
queries (e.g., misspelling) [11]. For example, a user may misspell “exercise” for “exercuse” in the
query text. In general, “exercuse” is absent in standard dictionaries and causes semantics devi-
ation, damaging the retrieval performance. Therefore, to alleviate this problem and improve the
performance of our MASHmodel in the noisy scenario, we further consider the robustness of hash
codes. Intuitively, when a text includes non-dictionary words, it should still fall into the same or
close hash bucket as the clean one. Based on the above consideration, in this section, we further
address the problem of noise texts by generating robust hash codes. We extend the current MASH
framework and propose a SMASH framework by incorporating a noise-aware encoder-decoder
framework in our model as illustrated in Figure 5. In the following subsections, we will explain
the details of each part in the SMASH framework.

5.1 Noise-aware Encoder-decoder Framework

To generate robust hash codes, the model targets to reconstruct the corrupted text x ′ as the clean
one x . A straightforward way is randomly removing each word in the text x with a pre-defined
noise rate pn , which is the fraction of the words of the input texts that need to be removed [15].
Then, suppose the reconstructed text is x̂ ′, the reconstruction loss Equation (4) can be rewritten
as follows:

Lr ec = Ex∼Dx

⎡⎢⎢⎢⎢⎣

1

|V |
|V |∑
i=1

− logp (x̂ ′(i ) = x (i ) )
⎤⎥⎥⎥⎥⎦
, (13)

where x̂ ′(i ) corresponds the ith word in the reconstructed text x̂ ′. This method is also known to
help learn a smooth, low-dimensional manifold of the data [5].
However, two problems will affect the performance and convenience of that framework. First,

we argue that not each removed word has the same importance in a sequence, leading to various
semantic changes in each corrupt text. For example, the original text is “What is the best exercise for
losing weight in your upper thighs”.We randomly remove the word and may get a new text “What
is the ### exercise for losing weight in ### upper thighs”, which without changing the original
semantic practically and should be put into the same hash bucket. However, the corrupt text also
could be “What is the best ### for losing ### in your upper thighs”. In this scenario, the semantics of
this new text are far from the original one becausewe do not knowwhat the subject of this question
is? For example, it may be surgery for losing the fat in the upper thighs. Second, the choice of noise
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value pn for all texts has a significant impact on performance, which is a time-consuming process
because of the manual setting and we need to fine-tune it for different datasets.
To tackle the first problem, we propose to assign a coefficient to each text in the reconstruc-

tion loss, which makes each corrupt text created by the same text has different impacts on the
model’s update. Specifically, for the original text x , we construct its corrupted text set P (x ) =
{x ′

(1)
,x ′

(2)
, . . . ,x ′

(n)
}, where x ′

(j )
is the jth corrupted text. Each corrupted text x ′

(j )
is created by a

specific noise rate, which we will discuss later. In the training procedure, we input the original
text x and corrupted text set P (x ) to the encoder and will get corresponding high-dimensional
representation l and P (l ) = {l ′

(1)
, l ′
(2)
, . . . , l ′

(n)
}. Considering the high-dimensional representation

can be used as the indicator in the Hamming space and reflect the semantic similarity between
two texts, we calculate the semantic similarity coefficient as follows:

ϵj =
exp (lT l ′

(j )
)∑n

k=1 exp (l
T l ′

(k )
)
, (14)

where ϵj can also be view as a latent weight variable for the jth text. Thus we use the latent weight
variable ϵj to rewrite the reconstruction loss Equation (4) as follows:

L′r ec = Ex∼Dx

⎡⎢⎢⎢⎢⎢⎣

1

|V |

�
�

n∑
j=1

|V |∑
i=1

−ϵj logp
(
x̂ ′(i )
(j )
= x (i )

)�
�

⎤⎥⎥⎥⎥⎥⎦
. (15)

To solve the second problem, we intend to traverse various noise rates in the training process.
An intuitive solution is to view the noise rate p̃n from a Bayesian perspective and assume that it
is a random variable obeying a given distribution q. Specifically, in our work, we suppose q as a
Gaussian distribution N (μ,σ 2). The reason is if we set μ to be pn and σ to be 0, then q degrades
to a definite point, which is equivalent to setting pn as a hyper-parameter. Therefore, our method
generally covers traditional ways. Under this setting, the reconstruction loss function is as follows:

Ep̃n∼q[L
′
r ec ] =

∫
q(p̃n )L

′
r ecdp̃n

=

∫
q(p̃n )

∫
x∼Dx

1

|V |
n∑
j=1

|V |∑
i=1

−ϵj logp
(
x̂ ′(i )
(j )
= x (i )

)
dxdp̃n

=

∫
x∼Dx

∫
p̃n∼q

1

|V |
n∑
j=1

|V |∑
i=1

−ϵj logp
(
x̂ ′(i )
(j )
= x (i )

)
dp̃ndx .

(16)

However, Equation (16) is intractable due to the integration of p̃n . To tackle this problem, we
sample p̃n from the distribution q for each text x to create noisy text x ′, which means x ′ = p̃n (x ).
It should be noticed that we may have different p̃n , rather than setting the same rate for different
texts, which is capable of dealing with different training samples independently and thus brings
better generalization ability to our model. To be more specific, in each training step, we sample
the noise rate for each text in every training step. The reconstruction loss function turns to:

L′r ec = Ex ′=p̃n (x ),x∼Dx

⎡⎢⎢⎢⎢⎢⎣

1

|V |
n∑
j=1

|V |∑
i=1

−ϵj log
(
x̂ ′(i )
(j )
= x (i )

)⎤⎥⎥⎥⎥⎥⎦
. (17)

Please note that although the obtained corrupt texts can be used as supplementary training sam-
ples, we only use them to optimize the reconstruction loss Equation (17) to generate robust hash
codes and optimize relevance propagation regularization Equation (6) to propagate relevance be-
tween representations. The bit-balanced loss Equation (8) and bit-uncorrelated loss Equation (10)
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are still optimized by the original text because the external memory is used to analyze the distribu-
tion of original texts’ hash codes. We summarize the training algorithm of SMASH in Algorithm 2.

ALGORITHM 2: Parameter Learning of SMASH

1: Initialization: θE , θD ,M , Lmax ; vk ← N
|B |

2: repeat

3: draw a mini-batch B from X
4: create the corrupt text set P (x ) for each x ∈ B with noise rate p̃n ∼ N (μ, ϵ )
5: Update all vi ∈ {v1,v2, . . . ,vN } by vi = vi + 1
6: M̂ ← {}
7: for each i ∈ {1, 2, . . . ,N } do
8: if vi satisfy Equation (7) then

9: M̂ ← M̂ ∪ {Mi }
10: end if

11: end for

12: Update θE ,θD by minimizing Equation (4), Equation (6), Equation (8), Equation (10) with B
13: Update θE by minimizing Equation (17), Equation (6) with P (x )
14: if Lf inal > Lmax then

15: Lmax ← Lf inal
16: end if

17: for each i ∈ {1, 2, . . . ,N } do
18: if xi ∈ B then

19: Mi ← siдn(si )
20: vi ← 0
21: end if

22: end for

23: until converged
Output: {θE } parameters of the encoder

6 EXPERIMTENTS

In this section, we conduct extensive experiments to validate the performance of our proposed
MASH and SMASH frameworks. Specifically, we first describe the datasets and introduce the ex-
perimental setup (Sections 6.1 and 6.2). Then, we demonstrate the effectiveness and efficiency of
our models on three real-world datasets (Sections 6.3 and 6.4). At last, we provide further analyses
on different aspects, including code balance (Section 6.5), external memory (Section 6.7), text noise
(Section 6.6), and Hamming space visualization (Section 6.8).

6.1 Datasets

We utilize the following three datasets from different domains for evaluation: searching similar
questions in CQA (community-based question answering) sites, finding similar exercises in the
educational platform, and searching similar news.

— Yahooanswer.3 It is a large collection of 1,460,000 questions obtained through the Yahoo!
Research Alliance Webscope program with the ten largest main categories. We use it as the
coarse-grained semantic dataset.

3https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset.
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Table 2. The Statics of the three Datasets

Dataset Yahooanswer EduMath 20Newsgroups

domain CQA Education News

# of texts 1,460,000 748,554 18,828
# of classes 10 175 20

average of text length 10.8 69.2 206.2
word error rate 0.552% 0.251% 0.418%

Table 3. A Practical Example of Noisy Text in Yahooanswer Dataset

Noisy text example Classes of OOV Words

What is the difference betwen a close knit family
and extended family?

misspelling

What du think abt joze moriniyo (chelsea coach) abbreviation

I have a desktop with a 82845 GL Intel integrated video
card 64MB w/ no AGP slot. Should I upgrade via PCI?

E-speak & new words

— EduMath. This dataset collects extensive mathematical exercises for Chinese high school stu-
dents from an authoritative institution mainly for education. It contains 748,554 real-world
math exercises with 85 knowledge concepts,4 which are seen as classes. We use it as the
fine-grained semantic dataset.

— 20Newsgroups.5 This dataset collects 18,828 newsgroup posts, partitioned into 20 different
newsgroups/categories. It has become a popular dataset for experiments in text applications
of machine learning techniques, and we use it as the small texts dataset.

Note that three datasets come from real world and contain various text noise. We utilize pycor-
rector,6 which is a text error correction tool, to roughly evaluate the word error rate [35] in these
datasets. Tables 2 and 3 respectively present the basic statistics of three datasets and an interpre-
tation example about noisy text in Yahooanswer dataset.
For the three datasets, we split them into three subsets with roughly 80% for training, 10% for

validation, and 10% for the test. Besides, we filter all texts by removing short texts with less than
6, 20, and 100 words and long ones with more than 100, 200, and 500 words in Yahooanswer, Edu-
Math and 20Newsgroups datasets respectively. In the EduMath dataset, we utilize jieba7 Chinese
text segmentation tool to get the word list. Moreover, we apply stopword removal using the NLTK
stopword list8 for Yahooanswer and 20Newsgroups datasets. The used datasets are originally cre-
ated for text classification, but we can define two texts to be similar if they have the same class
label. This is the only time that the class labels are used. The definition of similarity is also used
by related works [6, 8, 15, 23, 24, 63, 82].

6.2 Experimental Setup

6.2.1 Settings of Short Code Length. In our work, we focus on generating short hash codes.
However, there is no clear definition of the short hash code currently. With the efficiency target,
we consider that the code length should ensure that exploring the Hamming space by increasing

4knowledge concepts are previously labeled (e.g., in ASSISTments [56]).
5https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html.
6https://github.com/shibing624/pycorrector.
7https://github.com/fxsjy/jieba.
8https://www.nltk.org/nltk_data/.

ACM Transactions on Information Systems, Vol. 41, No. 4, Article 91. Publication date: March 2023.

https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html
https://github.com/shibing624/pycorrector
https://github.com/fxsjy/jieba
https://www.nltk.org/nltk_data/


91:18 L. He et al.

the search radius r around the query faster than the linear scan. That means the number of hash
buckets 2b should be less than the number of texts N in the database. Besides, the Hamming space
should ensure that different semantics have unique codes. Based on the above understanding, we
think if the code length b satisfy:

loд2c ≤ b ≤ loд2N , (18)

where c is the dataset’s semantic (e.g., class) number, we say it is a short hash code. In our ex-
periment, we set different datasets with a corresponding code length according to this definition.
Specifically, we choose code length in {16, 18} for Yahooanswer and EduMath, {10, 12} for 20News-
groups in the following experiments.

6.2.2 Settings of MASH and SMASH. There are some hyper-parameters in our MASH and
SMASH models, and they should be initialized in the experiment. Similar to almost previous
works [6, 8, 23, 24, 63, 82], our model use two Rectified Linear Unit (ReLU) layers of 1,000 hid-
den nodes as the first two layers of the encoder, then followed by a layer of 128 hidden nodes with
tanh activation to get the high-dimensional representation l and a layer of hash code length with
tanh activation to get the latent representation ŝ . We set the learning rate as 0.001 and consider the
hyper-parameters β1 in set {1, 5, 10}, β2 in {0.001, 0.005, 0.01} and β3 in {0.001, 0.005, 0.01} (Equa-
tion (12)). Besides, we set γ (Equation (7)), μ as 0.7 and 0, and choose σ in {0.2, 0.3}. We perform
the grid search method on different datasets to get their best combination.9

6.2.3 Baseline Approaches. To compare the performance of our proposed MASH and SMASH
models with other hashing methods, we borrow some baselines from various perspectives. The
details of them are as follows:

— Spherical Hashing (SPH) [78]: SPH is a hypersphere-based space-partitioning shallow hash-
ing method that preserves the similarity between texts.

— Self-taught Hashing (STH) [86]: STH is a two-component method that generates binary
code via a k-nearest neighbor search and then learns hashing function by preserving the
local similarities between samples.

— Variational Deep Semantic Hashing (VDSH) [8]10: VDSH is a deep hashing method that
learns the hashing function based on variational autoencoders.

— Neural Architecture for Semantic Hashing (NASH) [63]11: NASH is also based on variational
autoencoders but models the hash codes as a Bernoulli latent-variable and optimizes code
balance from a local perspective.

— Neighborhood Recognition Model (NbrReg) [6]12: NbrReg is a deep hashing method using
supplementary neighborhood information to generate hash codes. Like STH, it mitigates the
lack of labeled data by using an unsupervised ranking to approximate the true text space.

— Pairwise reconstruction based hashing (PairRec) [24]13: PairRec is a weak supervised se-
mantic hashing approach. It uses pairwise reconstruction loss to reconstruct the original
text from the input text and its neighbor texts.

— Few-bits Semantic Hashing(WISH) [82]14: WISH is a deep hashingmethod on few-bits hash-
ing problem. It leverages auxiliary implicit topic vectors to generate compact hash codes.

9We make our code publicly available at https://github.com/hly1998/SMASH.
10https://github.com/bayesquant/VDSH.
11https://github.com/donggyukimc/nash.
12https://github.com/yfy-/nbrreg.
13https://github.com/casperhansen/PairRec.
14https://github.com/smartyfh/WISH.
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Specifically, the chosen baselines are all widely used in the text semantic hashing area. Besides,
we also design MASH w/o RP and MASH w/o EM for the ablation experiment. Specifically, MASH
w/o RP means not using relevance propagation regularization but using the external memory to
store hash codes and optimize the code-balance objective. On the contrary, MASH w/o EM means
not using external memory but using relevance propagation regularization to solve the few-bits
hashing problem.
In the following experiments, all models are implemented by using Pytorch. Specifically, VDSH,

NbrReg, PairRec, andWISH use two layers of 1,000 hidden nodes for the encoder part. At the same
time, NASH has two hidden layers with 500 units as suggested in [63]. We conduct all experiments
on a Linux server with four 2.0 GHz Intel Xeon E5-2620 CPUs and a Tesla K80 GPU. For fairness,
all parameters in these baselines are tuned to have the best performances.

6.3 Performance on Effectiveness

Effectiveness is a crucial factor in the recall stage, which aims at retrieving more relevant texts
in the database while maintaining accuracy in the returned texts set. In this experiment, we use
Recall@K and Precision@K as metrics to measure various semantic hashing models, which we
define as:

Recall@K =
Number o f relevant texts in K retrieved texts

Total number o f all relevant texts
, (19)

Precision@K =
Number o f relevant texts in K retrieved texts

Total number o f retrieved texts
. (20)

We choose code lengthb in {16, 18} for Yahooanswer and EduMath, {10, 12} for 20Newsgroups in
this experiment, and gradually increase the number of retrieval texts to plot the Precision-Recall
curves. In Figure 6, we have several observations from these results. First, traditional shallow-
hashing methods SPH and STH always have worse performance than other deep hashing meth-
ods, revealing the importance of deep semantic information in hash codes. Second, compared
with other deep semantic hashing models, both MASH and SMASH clearly perform better on
three datasets, followed byWISH. These phenomena prove the effectiveness of our proposed mod-
els by incorporating the factors of generating effective short hash codes. Third, SMASH consis-
tently improves the retrieval quality compared to MASH in three real-world datasets, which in-
clude text noise. This phenomenon indicates that SMASH could handle text noise problems well
by using the noise-aware encoder-decoder framework. A further study of noise will present in
Section 6.6.
Besides, to further explore the effect of the different components in our model, we also conduct

an ablation study with MASH w/o EM (MASH without external memory) and MASH w/o RP
(MASH without relevance propagation regularization) models. Specifically, we set code length b
as 16 for two large datasets Yahooanswer and EduMath to retrieve 1,000 candidates and code length
as 10 for 20Newsgroups to retrieve 100 candidates. Then we use the Recall and Precision metrics
for evaluation. As illustrated in Table 4, we find that compared with MASH and MASH w/o EM,
MASH w/o RP gets poor performance, demonstrating that the relevance propagation objective
can sufficiently address the few-bits hashing problem. Furthermore, MASH beats MASH w/o EM
by additionally leveraging the external memory. We conjecture that the superior performance
of MASH is due to the global optimization of code balance by using external memory, which
reduces the redundancy among texts and a subsequent study about the de-redundancy ability will
be discussed in Section 6.5.
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Fig. 6. Precision-recall curves in three datasets using KNN search.

Table 4. Ablation Study of MASH in three Datasets

Model
Yahooanswer EduMath 20Newsgroups

Recall Precision Recall Precision Recall Precision

MASH w/o EM 0.026 0.428 0.033 0.375 0.066 0.348
MASH w/o RP 0.026 0.405 0.032 0.369 0.064 0.336
MASH 0.026 0.443 0.037 0.395 0.069 0.364
SMASH 0.028 0.466 0.038 0.416 0.070 0.371

6.4 Performance on Efficiency

In addition, efficiency is also a crucial metric for the recall stage given a query, including the aver-
age search case and the worst search case. Considering the different search termination conditions
between KNN search and PLEB search, we conduct two experiments for each.

6.4.1 Efficiency on KNN Search. In the KNN search, we aim at retrieving the exact K nearest
neighbor texts around the query. The time delay depends on the bucket examination in the search
procedure. Here, we compareMASH and SMASHmodels with other deep semantic hashingmodels
in retrieval time delay. Concretely, we set code length b as 16 for Yahooanswer and EduMath with
K = 1,000 and code length b as 10 for 20Newsgroups with K = 100 to retrieve candidate texts and
record the average andworst time cost per query. Figure 7 shows the average andworst time results
for different models in three datasets, and we have some findings from them. First, we observe no
apparent gap between these methods in average time, whereMASH and SMASH are slightly worse
than other baselines. However, we find an apparent distinction between our models and other
baselines in the worst situation. Compared to other baselines, MASH and SMASH achieve about
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Fig. 7. Average and worst search case in three datasets using KNN search.

2–5 times more time-saving promotions on the worst search time. The results confirm the ef-
ficiency of our approaches. Second, compared with MASH and MASH w/o RP, MASH w/o EM
cannot achieve good performance in the worst time case, which confirms the importance of gener-
ating a uniform distribution of data points as mentioned before. This uniform distribution benefits
from the external memory, which estimates the distribution from a global perspective to achieve
code balance. Furthermore, these results show a large gap between the average and worst cases
in the search procedure. For example, the worst case takes 4–15 times as long as the average case,
which has a harmful impact on users’ experience. However, the gap between average and worst
cases is only about two times in MASH and SMASH. Thus it is crucial to generate code-balance
hash codes to relieve such issues.

6.4.2 Efficiency on PLEB Search. In PLEB search, we specify a Hamming search radius r and
retrieve near neighbors. The search time is almost equal in the recall stage because we use the
same search radius r in the PLEB search. However, as mentioned before, the number of returned
texts will affect the efficiency of the ranking stage. Thus, we use the number of returned texts in
the recall stage to measure the efficiency and do not care about the specific model implemented in
the ranking stage. Expressly, we set code length b as 16 for Yahooanswer and EduMath, and 10 for
20Newsgroups to retrieve texts with a radius r = 2. We record the average and worst number of
returned texts per query, whose result is shown in Figure 8. These figures show that our proposed
models MASH and SMASH return fewer texts than selected baseline models, both in average and
worst cases. These results mean our models will process faster than other baselines in the ranking
stage. Recalling the synthetic analysis in Section 2.2, MASH and SMASH can achieve such good
performance because they can generate code-balance hash codes. These results demonstrate the
efficiency of our model in the realistic scenario from the perspective of the entire retrieval system.

6.5 Code Balance Evaluation

In the previous analysis, we evaluate the search effectiveness and efficiency of various semantic
hashing models, where we find that code balance plays a significant role. To further study the
code balance on different models, we choose MASH as a representative and other deep semantic
hashing models to conduct the following experiments.

6.5.1 Entropy Analysis. As mentioned before, code balance means texts are uniformly dis-
tributed in each hash bucket. To evaluate the ability of different models in this aspect, we calculate
the entropy of hash codes’ distribution. The higher the entropy value is, the more uniform the
texts in each hash bucket are. We set code length b as 16 for Yahooanswer and EduMath and 10
for 20Newsgroups. All texts in each dataset are fed into the trained model and get corresponding
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Fig. 8. Average and worst search case in three datasets using PLEB search.

Fig. 9. The entropy of hash codes on three datasets.

hash codes. Then we calculate the entropy of all hash codes and plot the result in Figure 9, from
which MASH apparently exceeds other baselines by 25%–60%. This result shows that MASH can
generate more uniformly distributed hash codes in the Hamming space. In other words, MASH
outperforms other baselines on code balance. We think this is because external memory can use
a global perspective to guide the hash code learning and scatter texts across the entire Hamming
space, rather than estimating the distribution of hash codes using mini-batch data.

6.5.2 Redundancy Analysis. According to [15], another code-balance effect is the de-
redundancy ability, which can better preserve the original locality structure of the data. To
validate this fact, we select some representative models and set code length b as 16 for Yahooan-
swer and EduMath, and 10 for 20Newsgroups to conduct the following experiment. Specifically,
we first calculate the entropy of classes in each hash bucket. If the entropy value is low, then the
classes in the hash bucket are pure, which means that the model has good discrimination ability.
Next, we use KDE [69], a non-parametric way to estimate the probability density function of a
random variable, to compute the distribution of entropy in all hash buckets. Figure 10 report the
result. In this Figure, if the distribution is proximate to the left, then the model has a solid ability to
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Fig. 10. The distribution of some representative deep semantic hashing models on Yahooanswer dataset and

20Newsgroups dataset with kernel density estimation.

distinguish semantics in different classes. Compared with other baselines, the entropy distribution
created by MASH is the closet on the far left. This phenomenon demonstrates that MASH has bet-
ter de-redundancy ability than other baselines credited with better code balance by leveraging the
external memory to optimize code balance globally, i.e., the bit-balanced objective in Equation (8)
and the bit-uncorrelated objective in Equation (10).

6.6 Performance on Noisy Data

In this experiment, we evaluate the performance of various models when the data contain noise.
There are various text noises in real-world applications. Among them, misspelling is a common
problem that frequently occurs in search engines [11]. Thus we focus on the noise introduced by
spelling mistakes and typos but can also be applied to other noise types.
We simulate the presence of misspellings in the user query, where we use original texts to train

different models and use noisy texts as the query. Referring to [66], we first create the noisy text
dataset. Specifically, to create noisy text from original text x , we randomly choose one character
from the text of x and replace it with nearby characters in a qwerty keyboard. For example, if
character h is selected, it will be replaced by a character randomly chosen from y,u, j,n,b,д, sur-
rounding the keyh in a qwerty keyboard. In the Yahooanswer and EduMath datasets, we randomly
modify a pre-defined fraction of the words ranging from 0% to 100%, which is called misspelling
rate, for each text query according to the above procedure. Then we evaluate the performance,
specifically Precision@1000, of various representative deep semantic hashing models.

Figure 11 shows the performance of the methods at various misspelling rates. We observe that
SMASH has a slower decline in Precision@1000 with misspelling rate increases. The result demon-
strates that SMASH is more robust than other methods except for the misspelling rate approaching
100%, which becomes almost a random guess for all methods. The results also demonstrate the ro-
bustness of employing the noise-aware encoder-decoder framework in SMASH toward noise texts,
a realistic scenario when deploying the similarity search system in a real-world environment.
Besides, as discussed before, we draw a noise rate p̃n fromGaussian distributionN (μ,σ 2) (μ = 0)

in each training step rather than assign a fixed pn by manual setting. To evaluate the difference
between them, we conduct the following experiment. Specifically, we use the fix noise rate pn
and adaptive p̃n to train SMASH respectively. Figure 12 visualizes the performance with the in-
creasing values of fix pn and standard variation σ from 0.1, 0.2, 0.3, 0.4, 0.5 in datasets Yahooan-
swer, EduMath, 20Newsgroups respectively. In these figures, as pn increases, the performances of
SMASH firstly increase but decrease dramatically when pn surpasses 0.1 or 0.2 in the correspond-
ing datasets. Besides, we also observe that the performance of SMASH keeps stable with differ-
ent σ and will achieve better performance better than the fixed pn . This result demonstrates that
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Fig. 11. Precision@1000 of various deep models on Yahooanswer and EduMath dataset.

Fig. 12. The impact of fixed pn and flexible σ on three datasets.

training themodel adaptively by drawing the noise rate from theGaussian distributionwill achieve
better results in our model.

6.7 External Memory Analysis

Here, we find that the external memory is helpful in ourmodel, which provides a global perspective
to guide the hash code training. To further explore the proposed select strategy in the external

memory, we analyze the effects of γ and the loss change term |Lmax−Lt−1 |
Lmax

. To be specific, we set

code length as 16 for Yahooanswer and EduMath and 10 for 20Newsgroups with K = 1,000 to
retrieve candidate texts and use the Precision as the metric. We change γ from 0 to 1 with or

without loss change term |Lmax−Lt−1 |
Lmax

to train SMASH model. Note that when γ = 0, the external

memorywill not affect the training procedure; thus, we remove the loss term related to the external
memory.
Figure 13 illustrates the effects of the above factors, where the green line uses the loss change

term and the blue line does not. We can draw the following conclusions from these pictures. First,
whether the loss change term is used or not, asγ increases, precision growths at the beginning and
then decreases. These phenomena demonstrate that the strategy of choosing “fresh” hash codes

is useful and is affected by γ , which controls the number of selected hash codes set M̂ . Second, in
terms of the growth trend, the blue line grows faster than the green line. We think this is because
the ratio of selected hash codes should be around a value. Influenced by the loss change term, the
green line needs a larger γ to reach. Third, in terms of the best precision, using the loss change
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Fig. 13. The impact of γ and loss change term on three datasets. The green line means using the loss change

term and the blue line means not using the loss change term.

term is better than without the loss change term. This result demonstrates that the loss change
term can make the model achieve better results by dynamically adjusting the ratio of the selected
hash codes during the training process.

6.8 Hamming Space Manifold

To intuitively see if the learned hash codes preserve the semantics of the original texts and if
the Hamming space is fully utilized, we plot the embedding of the texts in the Hamming space
using the 2-D t-SNE projection [71]. Specially, we compare our proposed model SMASH with
other representative semantic models in the 20Newsgroups dataset and set the code length b to 12.
In Figure 14, each point denotes a text and the texts belonging to the same class are represented
using the same color. We randomly select five classes to display. Implications of pronounced colors
are indicated in the figure’s description.
Compared to other deep semantic models, the shallow-hashing method STH can only distin-

guish a small number of samples. Besides, as observed in VDSH and WISH, texts belonging to
the same class are clustered together. However, the text embedding does not fully use the space
and many texts overlap at the same point. In contrast, NASH and PairRec allow the texts to be
dispersed in the space due to their local optimization of code balance. However, the effect of clus-
tering is not significant. In the SMASH results, the texts belonging to the same class are clustered
together and well scattered throughout the space credited to optimizing code balance globally. The
visualization analysis verifies the effectiveness of our approach again and demonstrates that our
approach preserves code balance, which ensures efficiency in the retrieval process.

7 DISCUSSION

In this section, we comprehensively discuss the advantages and some available research directions
in the future. In this article, we explore the semantic hashing technology in the similar text search
problem. Here, we maintain the semantic information in short hash codes using explicit prop-
agation relevance regularization. Besides, the external memory in our model provides a global
perspective to optimize the code balance target, which is sufficiently demonstrated in Section 6.5.
Although the external memory will increase the training time and adds parameters, it is only con-
sidered in the training procedure, where we usually have more time tolerance in practice. When
the model is used as the inference procedure, we only apply the encoder network, which does not
include the external memory, as the hash function to map the original texts to hash codes. Thus
the external memory will not have severe impacts on practical applications. Moreover, considering
the text noise problem makes our model more suitable for real-world application scenarios.
Meanwhile, there are still some critical issues that can be explored in the future. On the one hand,

in current text-based semantic hashing works [6, 8, 15, 23, 24, 63, 82], most of them are applied to
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Fig. 14. Visualization of the 12 bits hash codes of 20Newsgroups generated by some representative models.

The main classes in the picture include electronics(light blue), hardware(orange), electronics(brown), win-

dows x(Orange), hardware(navy blue), christian(yellow).

similar text search problems and have achieved great success. These frameworks use one encoder
as the hash function with homogeneous textual inputs. However, the similar text search task is
one of the problems in the information retrieval domain. As for heterogeneous input tasks such as
ad-hot and QA tasks, there is little work in the semantic hashing applied to them. These semantic
hashing frameworks may not guarantee desired performance because the difference between the
input texts is not considered. How to introduce the ad-hot and QA model to the semantic hashing
field is still an open direction.
On the other hand, BOW and TF-IDF are two common text representations in text-based seman-

tic hashing. Still, it may lose some vital information like the word order and dependency structure.
Although [15] considers this problem, they only use simple RNN and CNN to replace the MLP
networks. Nowadays, many pre-trained large models have achieved excellent performance in dif-
ferent fields [14, 84]. In our opinion, information retention is a crucial factor in semantic hashing,
and these large pre-trained models may give help. However, large pre-trained models will increase
the inference time and the storage overhead, which contradicts the original goal of semantic hash-
ing. Along this line, some model compression methods, such as knowledge distillation [17] and
network quantization [85, 93], could be potentially helpful.

8 CONCLUSION

In this article, we presented a focused study on semantic hashing learning. Specifically, we de-
signed two lightweight and practical unsupervised semantic hashing models, the MASH and the
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SMASH model incorporating important factors on hash codes. Specifically, the MASH model uses
relevance propagation regularization to ensure the accuracy of short hash codes. With external
memory, the MASH model can generate code-balance hash codes from a global perspective, pro-
moting the effectiveness and efficiency of hash codes. Furthermore, against the noise texts, the
improved SMASH model applies a novel noise-aware encoder-decoder framework to generate ro-
bust hash codes. Finally, extensive experiments on three real-world datasets demonstrated the
effectiveness and efficiency of MASH and SMASH. We hope this work will lead to more studies in
the future.
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