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ABSTRACT
One-hot encoder accompanied by a softmax loss has become the

default configuration to deal with the multiclass problem, and is

also prevalent in deep learning (DL) based recommender systems

(RS). The standard learning process of such methods is to fit the

model outputs to a one-hot encoding of the ground truth, referred

to as the hard target. However, it is known that these hard targets

largely ignore the ambiguity of unobserved feedback in RS, and

thus may lead to sub-optimal generalization performance.

In this work, we propose SoftRec, a new RS optimization frame-

work to enhance item recommendation. The core idea is that we

add additional supervisory signals - well-designed soft targets -

for each instance so as to better guide the recommender learning.

Meanwhile, we carefully investigate the impacts of specific soft

target distributions by instantiating the SoftRec with a series of

strategies, including item-based, user-based, and model-based. To

verify the effectiveness of SoftRec, we conduct extensive experi-

ments on two public recommendation datasets by using various

deep recommendation architectures. The experimental results show

that our methods achieve superior performance compared with the

standard optimization approaches. Moreover, SoftRec could also

exhibit strong performance in cold-start scenarios where user-item

interaction has higher sparsity.

CCS CONCEPTS
• Computing methodologies→ Learning from implicit feed-
back; • Information systems → Personalization.
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1 INTRODUCTION
Online consumptions (e.g., purchasing items, watching videos.)

have become increasingly popular with the rapid development of In-

ternet services. Meanwhile, people repeatedly encounter the choice

problem because of Information Overload [17]. Recommender sys-

tems (RS) have become an important tool to address such problems.

The key of personalized RS is to model users’ preferences on items

based on their past interactions, known as collaborative filtering

(CF). There are two common tasks in the recommendation literature:

rating prediction with explicit feedback [27, 28, 48] and item rec-

ommendation from implicit feedback [29, 50]. To be specific, rating

prediction is to estimate unseen ratings based on user rating history

while item recommendation is to predict a personalized ranking on

a set of candidate items. In the past decade, the research on RS has

shifted from explicit feedback problem to implicit feedback given

that most signals in user actions are implicit [26, 49].

Deep learning (DL) has made massive strides in many research

areas, continually achieving breakthrough performance in recent

years. Meanwhile, the integration of DL in recommendation [47, 59]

has demonstrated the advantages of complex network architectures

over traditional factorization models in user/item representation

learning. Many newly proposed deep learning architectures, such

as attention-based networks [24, 44], convolution neural networks

(CNNs) [42, 53], graph neural networks (GNNs) [45], have been

successfully applied in personalized recommender systems.

In parallel, a remaining challenge for implicit RS is how to for-

mulate the loss function over implicit feedback and how to per-

form general optimizations for various deep recommender models.

In general, there are three popular ways that cast the item rec-

ommendation problem into a supervised machine learning (ML)

problem [36], namely, pointwise loss [33], pairwise loss [7, 34, 37]

and softmax loss [6, 9, 14, 22, 53]. In particular, softmax loss that

includes a softmax activation plus a default cross-entropy loss is

becoming increasingly popular due to its simplicity, ease of use for
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Figure 1: An example of multiclass optimization.

DL models, and wide applications in many other research domains,

such as computer vision (CV) [55] and natural language processing

(NLP) [20]. The core idea of softmax loss is to interpret the item

recommendation as the multiclass or multinomial classification

problem — i.e., by fitting the softmax output into the one-hot vector

space, as shown in Figure 1. Concretely, the optimization of it is

to find a group of model parameters to force the position of the

target item (or class) in the one-hot vector to be a value of 1 and

all other positions with values of 0 [43]. In fact, the way of using

this multiclass softmax loss in RS has no difference with that in

other fields, where, for example, in the NLP models the classes

are words, and in the CV models the classes are categories. It is

perhaps for this reason that so far very few work are devoted to

exploring a fundamental research question: whether such ‘standard’
multiclass classification practice is optimal for item recommendations
with implicit feedback?

In this paper, we argue that the typical softmax loss has an obvi-

ous drawback when dealing with implicit feedback. To be specific,

such multiclass classification methods tend to ignore the ambi-

guity of missing feedback due to leveraging one-hot vectors as

supervisory signals. That is, the unobserved items can be just miss-

ing data rather than a signal of dislike. Actually, this unobserved

preference problem is not at all a new research question for the

recommendation task, for example, in [33, 51] where authors solve

it by considering the pointwise loss, and in [37, 52] where they com-

bine it with pairwise loss. However, to the best of our knowledge,

this problem has never been investigated when using the softmax

loss, which is as important and influential as the pointwise and

pairwise loss functions.

Targeting at this problem, in this paper, we propose a novel

optimization framework, termed as SoftRec, to enhance item rec-

ommendation from implicit feedback when using the softmax loss

during optimization. The core idea of SoftRec is to incorporate ad-

ditional prior of soft targets to smooth the original hard targets (i.e.,

one-hot vectors) so as to guide the process of recommender train-

ing. Specifically, we introduce three different strategies, including

item-based, user-based, and model-based, to instantiate our frame-

work for fully exploring the influence of specific target distributions.

Each one is based on its own concern, i.e., item-based strategies

focus on leveraging the dataset prior knowledge; user-based strate-

gies aim to extract soft targets from the neighborhood information;

model-based strategies mainly explore the generation of the soft

targets via knowledge distillation from the same architecture or

different architectures. On two benchmark datasets, we evaluate

these strategies over four representative recommendation models:

GRU4Rec [15], Caser [42], NFM [13] and Youtube Recommender

(YoutubeDNN for short) [9]. The experimental results show Soft-

Rec yields significant improvements over the standard multiclass

optimization approach using only the softmax loss.

The contributions of this paper are summarized as follows:

• We explore a fundamental optimization problem for deep

recommender models with implicit feedback, i.e., the widely

used multiclass classification method with the softmax loss

might result in only sub-optimal performance for the item

recommendation problem due to the use of hard targets as

supervisory signals.

• We formulate amore effective optimization framework namely

SoftRec, which incorporates the priors of soft targets as

additional supervisory signals. To instantiate the SoftRec

framework, we explore a series of soft target generating

strategies to instantiate the SoftRec from three perspectives:

item-based, user-based and model-based.

• We compare SoftRec with the standard optimization method

with four well-known DL-based recommendation architec-

tures on two benchmark datasets. The results consistently

demonstrate that SoftRec can achieve appealing performance

compared with their counterparts. Further, we also show

that the proposed optimization of SoftRec can significantly

improve the performance of the cold-start issues, where user-

item interactions are highly scarce.

2 PRELIMINARIES
In this paper, we consider a generic deep recommender model as

multiclass classifier ℎ𝜃 (𝑐, 𝑖) : C → I, in which the relevance of

a context 𝑐 ∈ C to an item 𝑖 ∈ I can be computed by a score

function ℎ𝜃 (𝑐, 𝑖). Here, C and I denote two set of entries. The

set C denotes the set of 𝑀 contexts while set I = {𝑜1, 𝑜2, ..., 𝑜𝑁 }
represents the set of 𝑁 items. Note, to be generic, we use context to

represent user, time, location, sequence of previous selected items

and so on. Assuming the deep recommender model ℎ = 𝑔 ◦ 𝑓 can
be decomposed of a user embedding function 𝑓𝜑 : C → 𝑍 , which

transforms the input context information into logit vectors, and a

softmax output layer is widely adopted as 𝑔𝜗 : 𝑍 → I.

2.1 Multiclass Optimization for Item
Recommendation

Asmentioned before, item recommendation can often be formulated

as the multiclass classification problem by fitting the outputs of

the recommender model to the one-hot supervisory signals, where

class labels here are the items in the systems. Correspondingly, each

input context needs to be assigned with the label of the item. To do

this, a softmax layer is usually placed on the final layer of the deep

recommender model, which is a default choice for transforming the

model output to a probabilistic distribution. This naturally aligns

with the sentiment that the label with the highest score matches the

context. Without loss of generality, cross entropy loss is used as the

loss function by computing the distance between softmax output

and target item distribution. In the standard optimization manner,

the supervisory signals of context 𝑐 are usually represented by only

a one-hot vector 𝑞(𝑖 |𝑐) over a set of items, with the coordinate

corresponding to the target item is set to 1. Mathematically, for a
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given context item pair (𝑐, 𝑖), the optimization objective can then

be formulated as:

H(𝑞, 𝑝) = −
∑
𝑖∈I

𝑞(𝑖 |𝑐) log𝑝 (𝑖 |𝑐), (1)

where 𝑝 (𝑖 |𝑐) = ℎ𝜃 (𝑐) = softmax(z), 𝑧 = 𝑓𝜃 (𝑐). As we know, mini-

mizing the cross-entropy is equivalent to minimize the negative

log-likelihood objective [43]. In this way, we could obtain following

the maximum likelihood estimation (MLE) objective,

L(𝑐, 𝑞) = − logℎ𝜃 (𝑐),

= −ℎ𝜃 (𝑐, 𝑖) + log

∑
𝑖′∈I

exp(ℎ𝜃 (𝑐, 𝑖 ′)), (2)

where ℎ𝜃 (𝑐, 𝑖) denotes the user preference score between context 𝑐

and item 𝑖 .

The goal of the above optimization strategy is to find a group of

network parameters so that the position of the target item is forced

to 1 and all others are forced to 0. Although such an optimization

manner has become a standard practice in the ML community for

multiclass classification, we argue that it might be too strict for

the recommendation task given that it simply treats all unobserved

data as negative feedback, where the ambiguity of missing feedback

is largely neglected. With such an objective, preferences of the huge

unobserved items cannot be well exploited. That is, it might not be

suitable to solely maximize the predicted score of the ground-truth

item. In contrast, it is more reasonable by allowing some potential

matched items to have non-zero supervisory signals. Unfortunately,

the standard one-hot encoding of target items fails to exploit the

difference of unobserved feedback. Hence, we argue that such stan-

dard practice by using the softmax loss and hard target ground

truth could be too strict and lead to sub-optimal results for item

recommendation from implicit feedback.

3 METHOD
The former section has demonstrated that the one-hot encoding

would lead to sub-optimal results for learning actual user preference

on unobserved feedback. Motivated by this, we set our goal to assign

more informative supervisory signals for training examples so as

to improve recommendation accuracy.

This section elaborates our proposed methods. Specifically, we

first give a formal definition of the well-informed soft targets and

present some practical solutions under the guidance of the defini-

tion. Finally, we provide a summary and remark for the proposed

optimization framework.

3.1 The SoftRec Optimization Framework
As discussed above, we are aware that the one-hot label might

not be an appropriate supervision signal for guiding recommender

training due to simply ignoring the ambiguity of missing feedback

problems. Under this circumstance, a natural idea is to use addi-

tional soft targets as supervisory signals for each instance. To be

more specific, we need to assign unobserved feedback a non-zero

value signal, which denotes the preference level between the user

and this candidate item. Likewise, the principle for designing soft

targets should also follow the important ranking constraint: pos-

itive (or target) items are ranked higher than other unobserved
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Figure 2: Item popularity in two example datasets.

feedback [37]. Thus, we develop the following formal definition of

well-informed soft targets.

Definition 1. We define the soft target 𝑑 = {𝑑𝑜1 , 𝑑𝑜2 , ..., 𝑑𝑜𝑁 }, is
subject to

∑
𝑑𝑜𝑖 = 1 and 𝑑𝑜𝑖 ∈ [0, 1], for each instance. In the whole

soft targets, each unlabeled item is assigned a non-zero supervisory
signal value, which denotes the user’s preference for the item. Par-
ticularly, the argmax output of the soft target should be equal to the
position of target item in one-hot vectors for each instance.

Take inspirations from label smoothing regularization [41, 55],

we smooth the original hard targets with the soft targets and ob-

tain new target 𝑞′. Mathematically, the label fusing process can be

formulated as

𝑞′(𝑖 |𝑐) = (1 − 𝛼)𝑞(𝑖 |𝑐) + 𝛼𝑑, (3)

where the controlling parameter 𝛼 ∈ [0, 1] denotes the coefficient

to trade off two types of supervisory signals. With the mixed target

𝑞′, we reformulate the objective Eq (1) and get a new optimization

framework as follows,

L(𝑐, 𝑞′) = −
∑
𝑖∈I

𝑞′(𝑖 |𝑐) log 𝑝 (𝑖 |𝑐)

= (1 − 𝛼)H (𝑞(𝑖 |𝑐), 𝑝 (𝑖 |𝑐)) + 𝛼H(𝑑, 𝑝 (𝑖 |𝑐)) .
(4)

From a density estimation point of view,minimizing cross-entropy

is equivalent to optimizing the Kullback-Leibler (KL) divergence

D𝐾𝐿 , i.e., D𝐾𝐿 = H(𝑑, 𝑝 (𝑖 |𝑐)) −H (𝑑), where the entropyH(𝑑) is
a constant for a fixed distribution. Thus, we can further reformulate

Eq (4) to

L(𝑐, 𝑞′) = (1 − 𝛼)H (𝑞(𝑖 |𝑐), 𝑝 (𝑖 |𝑐)) + 𝛼 (D𝐾𝐿 (𝑑, 𝑝 (𝑖 |𝑐)) + H (𝑑))
= (1 − 𝛼)H (𝑞(𝑖 |𝑐), 𝑝 (𝑖 |𝑐)) + 𝛼D𝐾𝐿 (𝑑, 𝑝 (𝑖 |𝑐)) .

(5)

We name the newly proposed optimization objective as SoftRec.

In the new optimization framework, If 𝛼 = 0, the optimization

objective is reduced back to the original multiclass cross entropy

objective. Otherwise, this new optimization framework not only

penalizes errors relevant to the target item but also errors relevant

to these unobserved data so that the recommendation model can

find a compromise between two types of supervisory signals. In this

way, the new optimization framework allows us to further explore

the unobserved item preference by assigning unobserved data with

non-zero value supervisory signals.

3.2 Instantiations of the SoftRec
According to the above description, incorporating high-quality

soft targets could have an important impact on the optimization
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Figure 3: Collaborative Siamese Network.

performance. Though the optimal well-informed soft targets are

hard to achieve, we can still try to simulate it by leveraging the

rich information from the data and model. In the following, we will

present a series of generating strategies to explore the specific soft

target distribution 𝑑 , which includes item-based, user-based, and

model-based.

3.2.1 Item-Based Strategy. In this part, we attempt to add the

soft targets for each instance from the item side. Prior literature [52]

has pointed out that when training recommender models from

implicit feedback, an item popularity-based negative sampler usu-

ally exceeds the random negative sampler. Inspired by this, we

plan to generate soft targets by leveraging item popularity. To

be specific, we denote item popularity distribution with 𝑑𝑝𝑜𝑝 =

{𝑓 𝑜1 , 𝑓 𝑜2 , ..., 𝑓 𝑜𝑁 }, where 𝑓 𝑜𝑖 represents the clicking frequency of

item 𝑖 for all users. It has been recognized that item popularity

distribution in most real-world recommendation datasets has a

non-uniform distribution, following an approximate power-law or

exponential distribution. We have also depicted the popularity dis-

tribution of our datasets, as shown in Figure 2. Generally, the more

popular an item is, the more times it acts as a positive one since

popular items are more likely to be suggested by recommender sys-

tems. In this way, generating soft targets by normalizing popularity

distribution should be beneficial.

However, one important problem is that the argmax of nor-

malized popularity distribution might not match with the one-hot

vectors. As a result, it would violate the basic constraint in Defi-

nition 1 as is illustrated in Section 3.1 if we directly adopt such a

normalized distribution as soft targets. Hence, we further take an

adjustment for the original normalized popularity as follows,

𝑑𝑝𝑜𝑝+ (𝑖 |𝑐) =
1

2

(softmax(dpop/T ) + q(i|c)), (6)

where softmax(·) is used to normalize the popularity distribution,

and we also add temperature T to softmax so as to scale the over-

all popularity distribution. Note that temperature T should be

carefully set or scheduled. Combining the formulated SoftRec op-

timization framework before, the popularity-based instantiation

strategies can be given as

L𝑝𝑜𝑝+ = (1 − 𝛼)H (𝑞(𝑖 |𝑐), 𝑝 (𝑖 |𝑐)) + 𝛼D𝐾𝐿 (𝑑𝑝𝑜𝑝+, 𝑝 (𝑖 |𝑐)) . (7)

It means that the deep recommender is not only guided by the

original hard targets (i.e., one-hot vectors) but also supervised by

the popularity-based soft targets with KL divergence. Here, we

name such item-based instantiation manner as POP+ strategy.

context target
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Figure 4: Teacher-Student Training Network.

3.2.2 User-Based Strategy. Now, we turn to instantiate the Soft-

Rec framework from the user side. That is, we are committed to

providing each instance with personalized soft targets. Past works

have proven that neighborhood, as a type of local information,

plays an important role in RS for complementing the user-item

interaction data [2]. Hence, an intuitive idea is to leverage neigh-

borhood information to help generate soft targets. However, it is

non-trivial for deep recommendation model to achieve this purpose.

We have to solve the following two issues: (1) how to obtain the

neighborhood of each user (context), and (2) how to model such

neighborhood information in deep recommendation model.

For the first question, we consider the historical interactions

of each user as his/her pre-existing features, following [51]. We

first embed each item into latent vector space by Item2vec [12] in

bipartite graph, and then obtain the embedding of each user. In

this paper, we choose the cosine similarity as the measurement to

compute the similarity distance between contexts. However, it will

be inefficient for comparing with all other context information due

to a large number of context sets. To solve the inefficiency problem,

we adopt the similar embedding search solution in [19], which can

work well in terms of searching efficiency problem and achieve

near-optimal performance.

For the second question, taking inspirations from metric learn-

ing methods [8, 32], we design a Collaborative Siamese Network

(CSN) to extract the knowledge from the neighborhood to generate

soft targets. For a better illustration, we show the proposed CSN

model in Figure 3. The key point of the CSN network is to feed

pairs of examples, including current context information and its

neighborhood, into a single network. Then, we consider matching

the prediction results between the two examples.

For a given context 𝑐 and its neighborhood 𝑐 ′, we can respectively
obtain two prediction results 𝑝 (𝑖 |𝑐 ;𝜃𝐶𝑆𝑁 ) and 𝑝 (𝑖 |𝑐 ′;𝜃 ′𝐶𝑆𝑁 ), where
𝜃 ′
𝐶𝑆𝑁

is a fixed copy of parameter 𝜃𝐶𝑆𝑁 . It should be noted that

the gradient is not propagated through 𝜃 ′
𝐶𝑆𝑁

to avoid the model

collapse issue [30, 56]. Next, one may wonder that argmax of the

prediction results in terms of neighborhood 𝑐 ′ might not keep

pace with the original one-hot label 𝑞(𝑖 |𝑐). Hence, we smooth the

prediction results of the neighborhood with one-hot label 𝑞(𝑖 |𝑐),
ensuring the soft distribution to satisfy the basic constraint in

Definition 1. Formally, the fusing process can be written as

𝑑𝐶𝑆𝑁 =
1

2

(𝑝 (𝑖 |𝑐 ′;𝜃 ′𝐶𝑆𝑁 ,T) + 𝑞(𝑖 |𝑐)), (8)

where 𝜃 ′
𝐶𝑆𝑁

denotes the copy version of 𝜃𝐶𝑆𝑁 . Note that we also

adopt the temperature softmax to control the whole distribution.
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Revisiting the formulated SoftRec framework in Section 3.1, the

total training loss of proposed CSN network can be defined as

L𝐶𝑆𝑁 = (1−𝛼)H (𝑞(𝑖 |𝑐), 𝑝 (𝑖 |𝑐;𝜃𝐶𝑆𝑁 ))+𝛼D𝐾𝐿 (𝑑𝐶𝑆𝑁 , 𝑝 (𝑖 |𝑐;𝜃𝐶𝑆𝑁 )) .
(9)

In this way, the loss can enforce consistent predictive distribu-

tions between context 𝑐 and its neighborhood 𝑐 ′. In addition, the

whole algorithm is explained in Algorithm 1.

Algorithm 1 Collaborative Siamese Network

1: Initialize parameters 𝜃𝐶𝑆𝑁 .

2: while 𝜃𝐶𝑆𝑁 has not converged do
3: Sample a batch (𝑐, 𝑞) from the training datasets.

4: Sample a batch 𝑐 ′ from the neighborhood of batch 𝑐 .

5: Update parameters 𝜃𝐶𝑆𝑁 by computing the gradients of

the proposed loss function in Eq (9).

6: end while

In summary, we can generate additional soft targets for each

instance by fully utilizing the localized information, i.e., neighbor-

hood. For each context, each instance is supervised by two types of

supervisory signals including both the hard one-hot target and the

prediction results of its neighborhood.

3.2.3 Model-Based Strategy. Knowledge distillation (KD) [16],

which extracts the dark knowledge from a teacher network to guide

the learning process of a student network, has become an important

technique for model compression and transfer learning. It has been

shown that the student model can achieve comparable or sometimes

even higher accuracy than its teacher network by KD [10, 55, 57].

Inspired by this, we aim to leverage the KD framework to implement

the proposed SoftRec, since the core idea of KD well matches our

demand for SoftRec. Here, we denote the teacher network as 𝑇 and

the student network as 𝑆 , as shown in Figure 4.

By leveraging KD, we can treat the outputs of a pre-trained

teacher network 𝑝 (𝑖 |𝑐 ;𝜃𝑇 ) as soft targets for each training instance,

where 𝜃𝑇 denotes the parameters in the pre-trained teacher. To

do this, one question may arise: the maximum prediction in the

teacher’s softmax outputs might not be consistent with the position

of value 1 in the one-hot encoding of target items. Since these

incorrect predictions may mislead the learning of student model,

we hence smooth teacher outputs with the one-hot vectors 𝑞(𝑖 |𝑐).
Formally, such a process can be represented as

𝑑𝐾𝐷 =
1

2

(𝑝 (𝑖 |𝑐;𝜃𝑇 ,T) + 𝑞(𝑖 |𝑐)) . (10)

After obtaining the informative soft target information. Based

on above formulated SoftRec framework, we formulate the specific

optimization goal as

L𝐾𝐷 = (1 − 𝛼)H (𝑞(𝑖 |𝑐), 𝑝 (𝑖 |𝑐;𝜃𝑆 )) + 𝛼D𝐾𝐿 (𝑑𝐾𝐷 , 𝑝 (𝑖 |𝑐;𝜃𝑆 )),
(11)

where 𝜃𝑆 denotes the parameters of the student model. Specifi-

cally, we explore the KD from two different perspectives. On the

one hand, we allow a student network to learn from the same ar-

chitecture, assuming that the teacher network can provide extra

information [1]. We name such a knowledge distillation strategy as

self knowledge distillation (SKD). On the other hand, holding that it

keeps a higher diversity between different architectures, we hence

propose encouraging the student network to mimic the teacher

network crossing architectures to explore more ability. We name

such a knowledge transfer process as Cross-architecture Knowl-

edge Distillation (CKD). In summary, we distill the soft targets by

encouraging the student network to mimic the teacher network

including both the same architecture and different architectures.

3.3 Summary and Remarks
It should be noted that in this paper we only focus on formulating

the training optimization strategy, which is applicable to different

deep recommender models equipped with the softmax function

in the last layer. We instantiate SoftRec with a series of strategies,

which deeply explore the impacts of a specific soft target distri-

bution for implicit recommender systems. Although the proposed

three instantiation strategies are intuitively simple, they are effec-

tive in boosting the recommendation performance. That is, our

proposals are not the only solution in practice, and we encourage

more effective generation approaches could be explored and further

improve our SoftRec framework [11].

4 EXPERIMENTS
The key contribution of this work is to design effective soft targets

so as to provide more informative supervisory signals for implicit

feedback when using the standard multiclass softmax loss. To eval-

uate SoftRec, we use two public datasets and explore multiple deep

recommendation architectures. In general, we aim to answer the

following research questions:

• RQ1: Whether the proposed soft targets help to enhance

the accuracy of deep recommender models from implicit

feedback?

• RQ2: Is the SoftRec framework generic to various recom-

mendation architectures?

• RQ3: Is SoftRec also well-suited to the sampled softmax

loss [18] which is an efficient alternative for the standard

full softmax loss?

• RQ4: How does SoftRec perform under a very difficult rec-

ommendation setting, e.g., for the cold-start problem?

4.1 Experimental Settings
4.1.1 Datasets. Since the core contributions of this paper do not

focus on the exploration of various features, we simply treat user

historical interactions as context features.

• MovieLens1: To alleviate the impact of cold users and items,

we perform the basic pre-processing by filtering out inter-

actions (rates) with less than 5-score and users with less

than 10 items, following [37]. Then, we define the maximum

length of the interaction sequence as 30. Sessions longer

than 30 is split into additional sequences, while sequences

shorter than 30 is padded with zero in the beginning of the

sequence to reach 30, similar to [40].

• Last.FM2
: We randomly pick 199 thousand songs from the

original Last.FM data. We define the session length as 20, and

extract 20 successive items as input sequence. This is done

1
http://files.grouplens.org/datasets/movielens/

2
http://www.dtic.upf.edu/ocelma/MusicRecommendationDataset/lastfm-1K.html
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Table 1: Statistics of the datasets.

DATA # sequences # items length

MovieLens 858𝐾 18𝐾 30

Last.FM 535𝐾 199𝐾 20

by sliding a window of both size and stride of 20 over the

whole data. We ignore sessions where the time span between

the last two items is longer than 2 hours.

The statistics of our datasets after the basic pre-processing are

described in Table 1.

4.1.2 Evaluation Protocols. We evaluate all models by employ-

ing three popular top-𝐾 metrics, namely MRR@𝐾 (Mean Recipro-

cal Rank), NDCG@𝐾 (Normalized Discounted Cumulative Gain),

and Recall@𝐾 . 𝐾 is set to 10 for comparison. Following previous

works [21, 39, 58], we apply the leave-one-out strategy for evalua-

tion. Specifically, for each user sequence, the last item is used as

the test data, the item before the last one is used as the validation

data, and the remaining data is used as training set. In addition,

we evaluate each method on the whole item set rather than the

sampled metrics (e.g., with 100 randomly selected negative items)

which are questioned by [23].

4.1.3 Testing Recommenders and Compared Methods. To
verify whether the SoftRec framework is generic, we apply the four

on four representative deep recommender models that are proven

to yield strong performances. Specifically we select two sequential-

aware algorithms (GRU4Rec [15], Caser [42]) and two feature-

based algorithms, NFM [13] and Youtube Deep Neural Network

(YoutubeDNN for short) [9]. Meanwhile, we treat the standard

softmax loss (short for Base) and label smoothing (LS) [35] method

as our competitive baselines. Note we emphasize that the purpose

of our study is not to judge which loss — binary pointwise, binary

pairwise, or multiclass softmax loss — performs the best, since

they were shown different strengths and weaknesses under various

hyper-parameter settings or on different datasets [4, 14, 14, 36]. The

purpose is rather to assess whether there is still significant room to

improve the ‘standard’ softmax loss widely recognized and used

for deep recommender models with implicit feedback data.

• Base denotes the original multiclass classification optimiza-

tion framework by optimizing the cross-entropy loss be-

tween model outputs and the hard one-hot target.

• LS employs the label smoothing regularization strategy to

smooth the hard one-hot target as soft supervisory signals

for each instance during training.

• POP+ is our proposed item-based strategy by adjusting

item popularity distribution according to our principle 1,2

as soft supervisory signals for model training.

• CSN is our proposed user-based strategy using the pro-

posed Collaborative Siamese Network (CSN) to implement

the our proposed optimization framework.

• SKD is our proposed model-based strategy by distilling

knowledge from the same model architecture.

• CKD: also denotes the model-based strategy using the

knowledge distillation framework but with different types of

architectures as the teacher model. That is, for GRU4Rec, we

use Caser as its teacher, and for NFM, we use YoutubeDNN

as its teacher, and vice versa.

4.1.4 ImplementationDetails. Allmodels were trained onGPUs

using Tensorflow. To ensure a fair evaluation, hyper-parameter are

fine-tuned on the validation set and shared for the base model and

SoftRec given they use exactly the same backbone architecture. To

be specific, we randomly initializemodel parameters using Gaussian

distribution.We set the embedding dimension 𝑒 to 128 for all models.

The hidden dimensions are set the same value as the embedding di-

mension. Though methods with other e (𝑒.𝑔., 𝑒 = 64, 256, 512) yield
different results, the performance trend keeps similar. The learning

rate is set to 0.001 in this paper. We use Adam as the optimizer. The

learning rates for Adamwith 0.001 to 0.0001 show consistent trends.

Batch size is set 128 for all models. The controlling parameter 𝛼

is searched from {0.1, 0.2, .., 1.0} while temperature T is searched

from {1, 2, ..., 10}.

4.2 Experimental Results
4.2.1 RecommendationPerformances (RQ1&RQ2). To show
the effectiveness of SoftRec, we evaluate it by specifying four types

of deep recommendation architectures, namely GRU4Rec, Caser,

NFM, and YoutubeDNN. We report the overall results in Table 2.

First, we observe consistent performance gains when comparing

the proposed SoftRec (POP+, CSN, SKD, CKD) with the base opti-

mization strategy, which demonstrates the effectiveness by using

soft targets as an additional supervisory signal. For example, CSN,

by considering the prediction results of neighborhoods, the SoftRec

framework can achieve obvious improvements in most situations.

The main reason behind such phenomenon is because the deep rec-

ommender optimized by our proposed SoftRec framework can not

only capture the relation between user context and target items, but

also learn the implicit relations between these candidate items by fit-

ting the soft target. Further, LS by label smoothing also improves the

base optimization. However, LS in general underperforms SoftRec

because the newly incorporated soft target distribution is simply

assigned with uniform supervisory signal without taking any types

of user preference into account. In addition, we observe that se-

quential recommender models (i.e., GRU4Rec and Caser) largely

surpass the feature-based models (i.e., NFM and YoutubeDNN), sim-

ilar to the finding in [46]. The reason is that sequential models can

capture the dynamics of user behaviors while the non-sequential

models only treat these interactions as common features. In brief,

these extensive experimental results well back up our claims that

(1) using soft targets instead of simply adopting one-hot targets can

enhance the item recommendation performance to a large extent.

(2) SoftRec is not specialized to a specific network architecture

given the consistent improvements for all base models.

4.2.2 SoftRec with Sampled Softmax (RQ3). In practice, the

item size in a large-scale recommender systems could be very huge,

leading to prohibitive computation if using the standard (full) soft-

max loss. As such, the sampled softmax loss [6, 18] is even more

popular for the item recommendation task [53]. Here we want to

evaluate SoftRec by using sampled softmax.

We report main results in Figure 5. As shown, we can see that

recommender models with the sampled softmax loss in general
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Table 2: Item recommendation performance based on the full softmax loss using two benchmark datasets on four deep rec-
ommender. The best performance methods are denoted in bold.

Recommender Datasets Measures Base LS POP+ CSN SKD CKD

GRU4Rec

MovieLens

MRR@10 0.0502 0.0508 0.0584 0.0538 0.0512 0.0526

NDCG@10 0.0666 0.0681 0.0759 0.0713 0.0688 0.0694

Recall@10 0.1212 0.1251 0.1338 0.1290 0.1273 0.1253

Lastfm.FM

MRR@10 0.2464 0.2568 0.2718 0.2686 0.2767 0.2686

NDCG@10 0.2611 0.2716 0.2877 0.2840 0.2918 0.2840

Recall@10 0.3076 0.3180 0.3381 0.3322 0.3394 0.3322

Caser

MovieLens

MRR@10 0.0474 0.0504 0.0596 0.0565 0.0594 0.0604
NDCG@10 0.0627 0.0665 0.0780 0.0747 0.0776 0.0787
Recall@10 0.1133 0.1195 0.1386 0.1348 0.1378 0.1389

Lastfm.FM

MRR@10 0.2294 0.2361 0.2670 0.2402 0.2411 0.2559

NDCG@10 0.2488 0.2564 0.2923 0.2619 0.2632 0.2771

Recall@10 0.3098 0.3204 0.3709 0.3301 0.3325 0.3434

NFM

MovieLens

MRR@10 0.0264 0.0267 0.0298 0.0290 0.0315 0.0300

NDCG@10 0.0374 0.0381 0.0427 0.0415 0.0438 0.0433

Recall@10 0.0742 0.0766 0.0859 0.0830 0.0849 0.0877

Lastfm.FM

MRR@10 0.1012 0.1025 0.1103 0.1228 0.1132 0.1177

NDCG@10 0.1205 0.1242 0.1298 0.1407 0.1348 0.1371

Recall@10 0.1822 0.1930 0.1920 0.1970 0.2038 0.1986

YoutubeDNN

MovieLens

MRR@10 0.0221 0.0232 0.0238 0.0255 0.0244 0.0242

NDCG@10 0.0328 0.0342 0.0352 0.0362 0.0356 0.0352

Recall@10 0.0688 0.0708 0.0734 0.0722 0.0733 0.0722

Lastfm.FM

MRR@10 0.0845 0.0866 0.0929 0.1008 0.0980 0.0998

NDCG@10 0.1045 0.1101 0.1134 0.1210 0.1186 0.1218

Recall@10 0.1690 0.1856 0.1791 0.1855 0.1838 0.1918
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Figure 5: Item recommendation performance on the basis of sampled softmax loss with 20% sampling ratio using MovieLens
(first line) and Last.FM (second line) on four recommender architectures.

perform a bit worse than the full softmax loss. Despite that, the

performance improvements of SoftRec over the base methods are

highly consistent. In fact, with sampled softmax loss, SoftRec some-

times could perform better than itself with full softmax. We believe

this is reasonable since it is hard to judge whether the full soft

target distributions generated by our three strategies are better or

not than its sampled versions.

To conclude, item recommendation based on such sampled soft-

max loss can also be improved by our soft target strategies. That is

because there is no fundamental difference between the full soft-

max and its sampled version in both intuition and theory. As a

result, such sampled softmax has exactly the same hard issue as the

standard softmax loss.
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Table 3: Recommendation performances of new users cold-start on two datasets using GRU4Rec and Caser architecture.

MovieLens Last.FM

MRR@10 NDCG@10 Recall@10 MRR@10 NDCG@10 Recall@10

GRU4Rec Ours GRU4Rec Ours GRU4Rec Ours GRU4Rec Ours GRU4Rec Ours GRU4Rec Ours

t1 0.0010 0.0042 0.0016 0.0064 0.0037 0.0139 0.0002 0.0007 0.0003 0.0011 0.0007 0.0023

t2 0.0019 0.0051 0.0031 0.0076 0.0069 0.0163 0.0003 0.0012 0.0004 0.0017 0.0009 0.0036

t3 0.0028 0.0063 0.0043 0.0095 0.0095 0.0204 0.0004 0.0019 0.0007 0.0028 0.0014 0.0058

t4 0.0104 0.0133 0.0156 0.0197 0.0330 0.0413 0.0034 0.0153 0.0045 0.0206 0.0082 0.0384

t5 0.0437 0.0502 0.0592 0.0667 0.1104 0.1215 0.1652 0.1873 0.1755 0.1995 0.2083 0.2384

Caser Ours Caser Ours Caser Ours Caser Ours Caser Ours Caser Ours

t1 / 0.0063 0.0001 0.0091 0.0001 0.0183 0.0015 0.0065 0.0020 0.0083 0.0035 0.0142

t2 0.0001 0.0128 0.0002 0.0185 0.0006 0.0373 0.0036 0.0127 0.0048 0.0167 0.0086 0.0299

t3 0.0004 0.0174 0.0008 0.0248 0.0020 0.0495 0.0047 0.0120 0.0064 0.0159 0.0122 0.0287

t4 0.0010 0.0307 0.0018 0.0425 0.0044 0.0815 0.0054 0.0326 0.0074 0.0400 0.0141 0.0641

t5 0.0458 0.0546 0.0604 0.0712 0.1087 0.1261 0.1318 0.1895 0.1454 0.2071 0.1884 0.2624
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Figure 6: The effect of temperature T for the POP+ strategy with the NFM recommender onMovieLens (first line) and Last.FM
(second line).
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Figure 7: The effect of trade-off parameter 𝛼 for the POP+ strategy with the Caser recommender on MovieLens (first line) and
Last.FM (second line).
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4.2.3 Cold Start Analysis (RQ4). Cold start is a common prob-

lem in recommender systems (RS) when new users or items have

not yet obtained sufficient interactions [38]. Considering the soft

targets as one type of prior knowledge, we turn to analyze the

performance of SoftRec in the setting of the cold start problem. We

report SoftRec with GRU4Rec as the base model following the same

experimental settings in [25]. Specifically, we extract a number

of items (denote as 𝑀) from the beginning of the original train-

ing sequence and train both models using the new dataset. Let

𝑀 = {5, 15, 20, 25, 30} for {t1, t2, t3, t4, t5} on MovieLens, and𝑀 =

{4, 8, 12, 16, 20} for {t1, t2, t3, t4, t5} on Last.FM, as shown in Table 3.

Note that results on NFM and YoutubeDNN are highly consistent

but are simply omitted for space reason.

We report results for the standard softmax loss (i.e., Base) and

item-based SoftRec (i.e., POP+). We find that SoftRec significantly

outperforms the baseline approach on all metrics, indicating the

effects of SoftRec in the cold start setting. In particular, SoftRec

outperforms the baseline with a large margin with t1. Then, by

growing the number of users’ interactions (i.e., t2, t3, t4 and t5),

the improvement decreases gradually. Such results indicate SoftRec

optimization strategy poses powerful capacity to handle the cold-

start challenges of new/cold users. In view of this, we conclude

that SoftRec can work very well for the new user recommendation

problem. The results suggest that it is possible to transfer knowledge

by a prior distribution while learning recommender models. We

hope our findings could bring a new insight for alleviating such

cold-start issues.

4.2.4 Hyper-parameter Sensitivity Analysis. In this section,

we study how the hyper-parameter affect the performance. Our

proposed SoftRec incorporate two important hyper-parameters, i.e.,

trade-off coefficient 𝛼 and scaling parameter T . For clarity and sav-

ing space purpose, we only report the results of NFM trained with

item-based soft target strategy (i.e., POP+) in Figure 6 and Figure 7.

Other strategies have the similar patterns. From the experimental

results, we find that: 1) the recommender is relatively sensitive to 𝛼

since the trade-off 𝛼 decides how much the hard one-hot encoding

will be changed by the newly added soft target loss; 2) SoftRec

is slightly sensitive to the temperature T in Last.FM dataset but

more sensitive to the data of MovieLens. Such experimental phe-

nomenon might be caused by the different scales of the item set

since T can make the soft target distribution either spiky (with

low temperature) or uniform (high temperature). These findings

provide insights on how to tune the hyper-parameters of SoftRec

in practice.

5 RELATEDWORK
Learning recommender systems from implicit feedback has become

a research hotspot for over a decade [33, 37]. In general, one need to

consider two aspects for generating high-quality recommendations,

namely, designing a highly expressive neural network architecture

as the scoring function and formulating a loss function over implicit

feedback. In this paper, we pay our attention to the latter one.

Three popular loss functions have been proposed to cast the

item recommendation problem into a supervised machine learn-

ing problem. They are pointwise loss (binary) [33, 51], pairwise

loss (binary) [7, 37, 52], and softmax loss (multiclass) [6, 53, 54].

To be specific, pointwise loss function cast learning from implicit

feedback as a classification or regression problem, where observed

feedback is treated as positive, and unobserved (i.e., missing) feed-

back is often treated as weak negatives. To formulate the specific

loss, one could assign 𝑦 = 1 for the positive context-item (𝑐, 𝑖)
pair, while for unobserved instance (𝑐, 𝑗), where 𝑗 ∈ I, one could
assign 𝑦 = 0 from the regression perspective, and 𝑦 = −1 from the

classification perspective. A weight can be assigned to each (𝑐, 𝑖, 𝑗)
tuple so as to represent the confidence of the training case [36].

Pairwise (a.k.a. BPR) loss is an another typical loss function for the

implicit feedback problem, which was first introduced in [37]. The

key motivation for pairwise loss is that for item recommendation,

it is not of primary interest if a score 𝑦 is 1 or 0. Instead, the relative

ordering of items under a given context is a more important con-

cern. Thereby, pairwise losses are mostly designed under a basic

assumption that the relevance of a positive (𝑐, 𝑖) pair is supposed
to be higher than other unobserved (𝑐, 𝑗) pairs. A key drawback

of pairwise loss function is that all unobserved feedback is treated

equally, while in practice some of them are harder to be learned

than others. To address the hard negative examples, a series of

negative sampling techniques have been proposed [7, 26, 52]. In ad-

dition to the above two losses, softmax loss [9, 53] can be regarded

as a third option, and becomes particularly popular in recent years

because of its wide applications in deep learning models. In do-

mains like NLP and CV, softmax loss has even become a default

choice for the classification problem [36]. Unlike pointwise and

pairwise loss, softmax loss cast the item recommendation problem

as the multinomial classification problem [9, 53]. In practice, an

efficient sampling-based softmax [18], kernel-based softmax [23],

hierachical softmax [31], and a two-pass sampler [3] are often used

as alternatives for the full softmax, especially when the classes (i.e.,

items) in the system have a very large scale [5]. For future work, it

is interesting to explore how to apply SoftRec for these different

variants, beyond the full and sampled softmax studied in this paper.

6 CONCLUSIONS
In this work, motivated by the drawback of the standard multiclass

optimization strategy for implicit recommender systems, we pro-

posed a simple but very effective optimization framework, called

SoftRec, in which informative soft target loss is designed to comple-

ment the standard hard target loss. To be specific, we contributed

three specific instances: item-based, user-based, and model-based.

These methods are very general and can be applied to different

types deep recommender models. We conduct thorough experi-

ments on two public datasets to show the effectiveness of SoftRec.

Furthermore, we also empirically evaluated SoftRec in cold-start

settings and confirmed that it could considerably improve the rec-

ommendation results.
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