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ABSTRACT
Recent years have witnessed great success in deep learning-based
sequential recommendation (SR), which can provide more timely
and accurate recommendations. One of the most effective deep
SR architectures is to stack high-performance residual blocks, e.g.,
prevalent self-attentive and convolutional operations, for capturing
long- and short-range dependence of sequential behaviors. By care-
fully revisiting previous models, we observe: 1) simple architecture
modification of gating each residual connection can help us train
deeper SR models and yield significant improvements; 2) compared
with self-attention mechanism, stacking of convolution layers also
can cover each item of the whole sequential behaviors and achieve
competitive or even superior performance.

Guided by these findings, it is meaningful to design a deeper
hybrid SR model to ensemble the capacity of both self-attentive
and convolutional architectures for SR tasks. In this work, we aim
to achieve this goal in the automatic algorithm sense, and propose
NASR, an efficient neural architecture search (NAS)method that can
automatically select the architecture operation on each layer. Specif-
ically, we firstly design a Table-like search space, involving both
self-attentive and convolutional-based SR architectures in a flexible
manner. In the search phase, we leverage weight-sharing supernets
to encode the entire search space, and further propose to factorize
the whole supernet into blocks to ensure the potential candidate
SR architectures can be fully trained. Owning to lacking supervi-
sions, we train each block-wise supernet with a self-supervised
contrastive optimization scheme, in which the training signals are
constructed by conducting data augmentation on original sequen-
tial behaviors. The empirical studies show that the discovered deep
hybrid network architectures can exhibit substantial improvements
over compared baselines, indicating the practicality of searching
deep hybrid network architectures on SR tasks. Notably, we show
the discovered architecture also enjoys good generalizability and
transferability among different datasets.
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1 INTRODUCTION
Recommender systems (RS) [29, 45, 48] have become ever important
in the increasingly overloaded age of the digital economy where
users have to make choices from massive and rapidly increasing
contents, products, and services. The key of personalized RS is to
model users’ preferences on items based on their past interactions,
known as collaborative filtering (CF) [7, 30]. In real scenarios, the
user interaction records often exist in a form of chronological se-
quence. In such scenes, sequential recommendation (SR) models,
focusing on characterizing users’ evolving interest from ordered be-
haviors, could provide more timely and accurate recommendations
compared with traditional CF methods [18, 22, 47].

Massive efforts have been paid to improve the accuracy of SR
tasks [42]. Early works on SRS usually capture lower-order sequen-
tial dependencies from user historical interactions by using Markov
chains (MC) and matrix factorization [37]. Following this line, a se-
ries of extensions for higher-order MC have been proposed [18, 22].
Among them, leveraging deep neural networks to capture dynamic
user interests from chronological user behaviors has become the
core of SR research and achieved substantial improvements [34].
The most prevalent deep SR network architecture usually contains
three major modules: two embedding layers for input & output
items, and several middle hidden layers [50]. The core part of exist-
ing deep SR models is to capture long- and short-term user interests
with sequential behaviors via utilizing diversified high-performance
architectures [40, 47].

Originally, recurrent architectures and their variants [18, 25, 26]
are first utilized to capture infinitely long user interaction sessions.
While effective, such methods mainly summarize all previous ac-
tions depending on the hidden states that cannot be fully used for
parallel computation within a sequence [40, 47]. Thus their speed is
limited in both training and evaluating in large-scale recommenda-
tion scenarios. Later, numerous advanced efforts [38, 51] have been
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proposed to capture evolving user interests by abandoning recur-
rent structures and achieve competitive or superior performance
by stacking many hidden residual blocks. Nowadays, there exist
two types of prevalent configurations in capturing user preference
from sequential behaviors: 1) stacking multiple convolutional lay-
ers to cover all interacted items from the sequential behaviors; 2)
leveraging the global reception field of self-attentive architectures
to capture dynamic user interests.

Despite their effectiveness, we empirically find that these exist-
ing deep SR models (i.e., self-attentive and convolutional networks
in [22, 47]), modified with slight linear residual enhancement (see
Section 2.2), can be stacked with deeper hidden layers to achieve
more promising results. Such surprising results are inconsistent
with the sense of most current works [17], holding that only several
hidden layers are enough. With rigorous controlled experiments
(on the same experimental setting and evaluation protocol), we also
find convolutional architectures could achieve competitive results
compared with self-attentive alternatives. Even more surprising,
convolutional-based SR models can exhibit self-attentive methods
in certain scenarios. We believe it is reasonable since the convolu-
tional networks can cover all the items within the whole session
by stacking convolutions. Such results remind us that the convolu-
tional architectures retain great strength in modeling ordered user
behaviors just as recent very prevalent self-attentive structures. As
suggested by both such empirical findings and prior works [12]
- using hybrids of self-attentive and convolutional architectures
can outperform pure ones, one may ask whether can we design a
very deep SR model, which can merge the strengths of both self-
attentive and convolutional capacities to boost capturing dynamic
user interests. Following this intuition, we explore a new but more
challenging research question - designing a deep hybrid SR model
in the automatic algorithm sense instead of relying on the human
experts’ manual efforts.

To achieve the above goals, we propose NASR, an efficient net-
work architecture search method for automatically designing SR
models to make accurate recommendations. Specifically, we first
propose a Table-like search space, containing both diversified self-
attentive and convolutional-based SR architectures in a flexible
manner. In the search phase, we apply the weight-sharing tech-
niques, allowing candidate architectures to share the weight pa-
rameters from the supernet, for saving the evaluation cost. We
further modularize the whole supernet into blocks to ensure the
potential candidate SR architecture is fully trained. Due to lacking
training signals in optimizing each block supernet, we employ a self-
supervised learning scheme, in which we construct the supervisions
via performing data augmentation on original sequential behaviors.
Thanks to the block-wise search, we can evaluate all candidates
within each block. Toward a more fair and efficient estimation, we
also propose to select sub-models from Table-like space block-by-
block with a newly designed unsupervised evaluation metric to
measure candidates. We evaluate the effectiveness and accuracy
of NASR on two benchmark datasets. The results show that the
searched deep hybrid SR models can achieve superior performance
than that achieved by compared competitive baselines.

The contribution of this paper are listed as:
• By performing a comprehensive empirical evaluation over
existing self-attentive and convolutional SRmodels, wemake

two important observations, specifically, we find that 1) SR
models equipped with simple linear residual enhancement
can be stacked with deeper hidden layers to achieve their
optimal performance; 2) training convolutional SR models
are competitive and even promising alternatives in certain
scenarios, compared to self-attentive structures.

• We propose NASR, a neural architecture search method to
automatically discover more expressive deep hybrid models
for SR tasks. In the NASR, we propose a Table-like search
space, which can organize the candidate operations in a flex-
ible manner. Furthermore, we apply several key techniques,
including weight-sharing supernet, block-wise search, and
self-supervised training scheme, to reduce the search cost
and improve the search accuracy.

• We empirically compare NASR and baseline architectures
by following the same setting and demonstrate substantial
improvements, indicating the practicality of searching deep
hybrid SR models. We also find that the searched models
can be transferrable between datasets, indicating the good
generalizability and transferability of searched architectures.

2 PRELIMINARIES
We first formalize the sequential recommendation (SR) and intro-
duce the notations. Then, we briefly introduce the deep SR architec-
ture and show a linear residual modification. After that, we perform
insightful empirical studies. The novel contribution of this part is
to highlight the necessity to search hybrid networks for SR tasks.

2.1 Definitions and Notations
Suppose that there exist |U| unique users in the user set U =

{u1, ...,u |U |} and |I | unique items in the item set I = {i1, ..., i |I |}

in total. The goal of SR is to predict the next item xut+1 ∈ I,
that user might interact in time t + 1. The key constraint is only
to use the historical interaction records in chronological order
X = [xu1 ,x

u
2 , ...,x

u
t ] for user u ∈ U in the current session. In this

work, we omit the discussion of learning manner in previous se-
quential recommendation models [18, 38] and consistently adopt
auto-regressive (a.k.a self-supervised learning in [46]) optimization
to train all deep sequential recommendation models.

2.2 Revisiting Deep Sequential Recommenders
2.2.1 Basic Deep Sequential Recommendation Models. As
is shown in Figure 1, modern SR model usually contains three ma-
jor modules. Specifically, each input item xui is first mapped into
an embedding vector by embedding lookup operation, and then
the sequential behavior input Xu is represented by an embedding
matrix Eu= [eu1 , ..., e

u
t ]. Next, the sequence embedding matrix Eu is

fed into a stack of hidden layers, which are expected to capture long-
and short-range dependence of sequential behaviors. Finally, the
extracted hidden sequence representation is further fed to softmax
classier layer [8, 47] for generating the user preference distribution
over candidate items. Actually, the hidden layer lies the core part of
capturing sequence dependence. A large body of research has pro-
vided efforts in leveraging diversified architectures (e.g., recurrent
network in [18]) to conduct non-linear transformation. In the liter-
ature, training self-attentive and convolutional SR models [22, 40]

1924



Towards Automatic Discovering of Deep Hybrid Network Architecture for Sequential Recommendation WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Embedding Layer

Softmax Classifier Layer

Sequential Behaviors

Hidden
Layers

Add & LN

Dropout

FFN

Add & LN

Dropout

Multi-head
Attention

Add

LN

Dilated 
Convolution

LN

Dilated 
Convolution

(b) Transformer block (c) TCN block(a) Deep SR structure

Figure 1: Illustration of sandwich-like deep SR models.

become the research hotspot due to: (1) these networks can leverage
modern parallel computation, such as GPU/TPU, (2) these models
can stack more hidden layers with residual block structure [16].

In fact, leveraging residual block to boost SR has become very
prevalent in a series of recently proposed works [38, 39, 51]. The
basic idea of residual learning is to stack multiple non-linear layers
together as a residual block and then employ a skip connection
scheme that passes the previous layers’ transformation informa-
tion to its posterior layer. Formally, we describe the expression
of residual connection as Hu

L = Hu
L−1 + FL((H

u
L−1);WL), where

Hu
L−1 ∈ Rt×d and Hu

L ∈ Rt×d are the input and output of L−th
residual block respectively while FL denotes the residual mapping
to be learned. Here, d is the embedding (hidden) size, and WL
indicates all the parameters in the L−th block.

2.2.2 Linear Residual Enhancement. Despite the effectiveness,
by revisiting current deep SR models, we notice that most recom-
mendation works [22, 38, 47] only stack limited layers depth in
SR task. It is easy to understand since the neural work becomes
more difficult to training with the increasing of depth layer [16].
To solve such a dilemma, taking inspirations from recently pro-
posed work [2, 43], we add one trainable parameter λL−1 to the
vanilla residual connection for each layer. In this way, the residual
connection can be re-formulated as

Hu
L = Hu

L−1 + λL−1 · FL((H
u
L−1);WL), (1)

where we initialize the λL−1 with 0 at the beginning of training
since such a simple modification can help current deep SR models
obtain faster convergence and better accuracy.

In the following, we instantiate the linear residual modifica-
tion over two well-known deep SR models including self-attentive
based SASRec [22] and convolutional based NextItNet [47]. The for-
mer is composed of repeated Transformer structure for capturing
long-range dependence, while the later relies on repeated tempo-
ral convolution neural network (TCN) architecture to obtain the
global reception field to cover each item within the user session.
The Transformer architecture modified with our linear residual
modification can be expressed as

Hu
L = LN(Hu

L−1 + λL−1 · sublayer(H
u
L−1)), (2)

where sublayer ∈ {Multi−head Self−attention, Position−wise Feed−
forward Network(FFN)}, where LN denotes the layer normaliza-
tion [1], as is illustrated in the middle of Figure 1. NextItNet [47] is
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Figure 2: Illustration of the SR results w.r.t. the model depth
of self-attentive [22] and convolutional [47] based methods.

composed a stack of temporal convolutional network (TCN) blocks,
each two of dilated convolution are wrapped with a residual TCN
block, as is shown the right of Figure 1. We formally represent the
corresponding block as,

Hu
L = Hu

L−1 + λL−1 · LN(sublayer(H
u
L−1)) (3)

where sublayer ∈ {Dilated Convolution}.

2.2.3 Empirical Explorations. In this subsection, we are inter-
ested in conducting empirical studies from two aspects: 1) validate
the performance of residual-style SR architectures equipped with
our slight linear residual modification; 2) fairly evaluate the repre-
sentation capacity of self-attentive and convolutional-based archi-
tectures in the SR task. To keep the comparison as fair as possible,
the experimental setting strictly obeys the hyper-parameter rules.
With rigorous controlled experiments, we report all compared re-
sults by 1) adopting auto-regressive regression accompanied by
cross-entropy loss as optimization objective [47], 2) generating the
probability of the next item with a linear softmax classifier without
leveraging shared item embedding layer [22], 3) training two SR
models until achieving the best results. More implementation de-
tails w.r.t. hyper-parameter setting see section 4.1.5. We report all
these experimental results in Figure 2.

By analyzing the experimental results, we can conclude that:
• By leveraging the linear residual enhancement, we can stack
both the well-known Transformer and TCN architectures
with deeper layers (e.g., up to 32 layers onMovieLens datasets).
Notably, we find that SR can enjoy a very deep network and
yield substantial gains (e.g., obtaining 15% improvements
than shallow models on MovieLens datasets). Actually, some
recent SR models only achieve a stacking of only several
layers (e.g., SASRec [22], BERT4Rec [38], S3Rec [51]).

• Convolutional-based architectures, e.g., TCN structures con-
sisting of repeated dilated convolutions, actually are compet-
itive and even achieve superior performance compared with
prevalent self-attentive style structures (e.g., Transformer)
for SR tasks. Such experimental phenomenon reflects the
same potential ability for using convolutional recommenders
for capturing user interests [41].

Combining recent hotpot in computer vision (CV) [12] - using hy-
brids of CNN and Transformer can outperform pure alternatives -
and these insightful empirical findings claimed above, we are natu-
rally motivated to think: whether can we ensemble the strengths
of both convolutional and self-attentive architectures in a single
model to obtain a more powerful SR method. Instead of relying
on human experts’ manual efforts, we are interested in designing
such a deep hybrid SR network in the automatic algorithm sense.

1925



WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Mingyue Cheng et al.

In the next section, we would introduce our proposed NASR, an
efficient neural architecture method for automatically discovering
deep hybrid architectures for SR.

3 METHODOLOGY
In this section, we describe NASR, which performs neural archi-
tecture search to find a powerful sequential recommendation (SR)
model with an ensemble of self-attentive and convolutional opera-
tions, simultaneously. To the best of our knowledge, few attempts
are devoted to boosting recommendation performance, especially
for SR tasks. Generally, designing the NAS algorithms requires
the specification of three main steps, including search space (Sec-
tion 3.1), search algorithms (Section 3.2), model selection strategies
(Section 3.3). We first design a hybrid search space, which can
organize high-performance diversified candidate operations well
together to form a Table-like space. After that, we will respectively
introduce several vital techniques (including weight-sharing, block-
wisely search, self-supervised training) to reduce the whole search
cost and improve the search accuracy.

3.1 Search Space
While designing the search space, we release two simple yet useful
principles based on the insightful empirical studies in Section 2.2.3.
On the one hand, we hope the search space can be scalable to
the depth dimension so as to allow the SR model to enjoy the
benefits of deeper architecture. On another hand, we hope the
search space can ensemble the reception field of both self-attentive
and convolutional architecture for further capturing user sequential
dependence. Obeying this two basic rules, we design a novel Table-
like search space as is shown in Figure 3, which flexibly takes
the candidate operations of self-attentive and convolutional based
architectures into account.

In this work, instead of designing more powerful candidate net-
work operations, we are primarily interested in showing readers
the expressiveness ability of hybrid SR models consisting of preva-
lent self-attentive and convolutional building blocks in current
works. Specifically, we mainly choose the Transformer structure
in SASRec [22, 38] and temporal convolutional network (TCN) ar-
chitecture in NextItNet [4, 47]. It is worth mentioning that while
a large body of self-attentive and convolutional SR architectures
have been proposed recently, we leave it for future explorations.

3.2 Search Algorithms
Despite the large advance brought by NAS, automatically designing
well-optimized deep hybrid architecture can be challenging, espe-
cially as the number of layer depth and choice operations increases.
In this subsection, we would successively introduce three vital
techniques adopted in our NASR methods to solve the tremendous
search inefficiency and ineffectiveness issue caused by the depth
of the SR model, including weight-sharing supernet, block-wise
search, and self-supervised training.

Weight-sharing Supernet. Considering the depth of our hy-
brid search space in Figure 3, rating all candidates by training them
from scratch, making it nearly impossible in real recommenda-
tion scenarios. Here, we follow the prevalent weight-sharing NAS
solutions [33] to avoid repeated training the weight of candidate
networks W. Specifically, the entire search space A is encoded

……

Hidden
representation

Sequence
embedding
matrix

! − 3 ! − 2 ! − 1 !Layer depth 1 2 3 4
block block

Figure 3: Illustration of our Table-like search space.

into a weight-sharing supernet S(W,A), in which all candidate ar-
chitectures inherit the shared network weights W∗ over the same
network operations. In this way, the search cost can be largely
reduced since these candidate networks avoid repeated training by
inheriting the weights of the supernet. The search phrase can be for-
mulated as: α∗ = min∀α ∈A

Lval (W
∗,α ;X). Here, Lval denotes the

evaluation metric. The optimization process of shared weights can
be expressed as: W∗ = min

W
Ltrain (W,A;X). The loss Ltrain

denotes the loss function while training supernets.
Block-wisely Search. Although the weight-sharing strategies

largely improve the evaluation efficiency, the used Table-like search
space accompanied by layer-level granularity grow exponentially
with the increase of network depth. Badly, a series of recent research
works [23] show that such a huge search space has become one
inevitable obstacles to the evaluation of weight-sharing candidate
networks. Inspired by recent proposed methods [24, 49], we adopt
the block-wise search techniques to further factorize the whole
search space. Specifically, we first uniformly divide the supernet
A into |k | blocks (A1,A2, ...,A |k |) according to the depth layer
dimension. Mathematically, we formalize the supernet S(W,A) =

{Sk (Wk ,Ak )}, denoting a supernet is composed of |k | blocks.
Here, W = {Wk } indicates its network weights of supernet of
k−th block and A = {Ak } denotes corresponding architectures.

Self-supervised Training. To separately train each supernet
block, lacking supervision for each hidden block becomes a vital
technical barrier. We notice existing works [23, 44] mainly leverage
knowledge distillation (KD) framework [8, 19] to provide block-wise
supervisions, in which a pre-trained teacher supernet generates
the data for both training and searching. Considering the goal of
obtaining hybrid CNN-Transformer recommendation architecture,
it is a big barrier to finding a well-optimal hybrid SR model to
perform as a teacher network. Also, recently proposed work [24]
claims that such KD scheme is likely to be highly correlated with the
teacher architecture and the student network inevitably inherits the
architecture bias from the teacher model. In the supernet training
of NASR methods, we thus abandon such KD optimization scheme
and focus on performing self-supervised learning with constructing
the supervision signals from original sequential behaviors [9].

Inspired by recent works [5, 9, 14, 15], we find that different com-
positions of network architectures can generate user representa-
tions with various views. Hence, we propose to perform contrastive
learning [5, 15] to train each block-wise supernet, in which mini-
mizing the distance of different views of the same sequence records
is the main optimization objective. To achieve this goal, we adopt
the simple dual Siamese (weight-sharing) network, containing stu-
dent and target supernet (respectively denoted as S(W,A) and
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Figure 4: Illustration of supernet training with self-supervised contrastive learning.
T(WT ,AT )), as the self-supervised contrastive training frame-
work, analogous to the simple yet powerful self-supervised works
widely adopted in computer vision [6]. To generate the self-supervised
training signals, we adopt three simple but effective data augmen-
tation (DA) strategies (destroying the partial user sequential be-
haviors by masking, cropping, reordering, detail descriptions will
be provided in Section 4.1.2) for contrastive training by following
previous works [9, 11]. As for more effective DA strategies, we
leave them for future works.

To improve the stabilization of training supernet, we allow the
student supernet to imitate the ensemble target representations dur-
ing each training iteration, which indicates the ensemble of |p |
sampled sub-networks, indicated by {αp } ⊂ Ak ,p = 1, 2, ..., |p |. To
be more specific, the optimization of each sampled sub-network of
the student supernet is to predict the probability ensemble of |p |
sampled sub-models in the target supernet:

T̂k ({αp ; {X
′

p }}) =
1
|p |

|p |∑
p=1

Tk (W,αp ;X
′

p ), (4)

where {X
′

p } are generated for each sampled sub-network of the
Siamese supernets. Next, we formalize the optimization process of
the block-wisely Siamese supernet as follows:

α∗ = {α }∗ = argmin
Wk

|p |∑
p=1

Ltrain(W∗
k, {αp};X)

where Ltrain({Wk} {αp};X) =

∥ Sk(Wk,αp;X
′

p) − T̂k(Wk, {αp; {X
′

p}}) ∥ .

(5)

in which ∥ · ∥ indicates l2 distance.
3.3 Model Selection
In the following, we introduce the efficient process of model selec-
tion from two parts: (1) greedily search the candidates block-by-
block; (2) design an unsupervised evaluation metric for estimating
candidate architectures.

Greedily Search Strategies. After training the supernet with
self-supervised learning, the candidate architecture can be ranked
and searched based on the weight of the supernets. Considering
the typical supernet contain tremendous sub-models (e.g., hybrid
search space with 32 layers depth and 4 candidate architectures
contains about 432 sub-networks), which stop us from evaluating
all of them. To solve the large size of sub-networks, greedy search
strategy usually is utilized to progressively shrink the search space

by selecting the top-performing partial models layer by layer. Since
that we adopt the block-wise search techniques, we here propose
to estimate the performance of all sub-models according to their
block-wise performance and traverse all the sub-models to select
the top-performing partial architectures block by block. Thanks
to our block-wise search, traversal evaluation of all the candidate
architectures are affordable.

Unsupervised Evaluation Metric. Since the process of train-
ing supernet without leveraging supervision signals, in the follow-
ing, we aim to design a fair and effective unsupervised rating metric
to measure the representation ability of candidate architectures. In
our proposed NASR, we aim to imitate the behavior target network
in each block. Thus, we estimate the learning ability of a student
sub-model by our designed measure in each block. Specifically, we
first ensemble the population {αp } as the common targets to provide
fair rating for each architecture αp . Then, one pair of views for each
validation user sequence behaviors X are generated and fixed. We
describe the ensemble of the architecture population as

Ŝk ({αp };X′) =
1
|p |

|p |∑
p=1

Tk (W,αp ;X
′

p ). (6)

In this case, the architecture population {αp } is expanded to the
whole block-wise search spaceAk , and thewhole searching process
is finished in a single step:

α∗ = min∀α ⊂A

|p |∑
p=1

Lval(α ;Xk),

where Lval(α ;X) =∥ Sk(α ;X
′

) − Ŝk(Ak; {X
′

}}) ∥ .

(7)

4 EXPERIMENTS
4.1 Experimental Setup
4.1.1 Datasets Description. To verify the effectiveness of our
proposed NASR, we conduct extensive experiments on two widely
used datasets: MovieLens1 and Last.FM2. In the data processing
step, to alleviate the impact of cold users and items, we perform
the basic pre-processing by filtering out interactions with less than
5 users and users with less than 10 items. We summarize the statics
of datasets in Table 1.

1http://files.grouplens.org/datasets/movielens/
2http://www.dtic.upf.edu/ocelma/MusicRecommendationDataset/lastfm-1K.html
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Table 1: Statistics of the datasets.
DATA # actions # sequences # items length

MovieLens 25,417,546 876,162 23,515 30
Last.FM 10,699,640 534,982 199,013 20
• MovieLens: We generate the interaction sequence of a user
according to the chronological order. We define the maxi-
mum length of the interaction sequence as 30. Sequences
shorter than 30 will be padded with zero at the beginning of
the sequence to reach 30.

• Last.FM: We define the session length as 20, and extract
20 successive items as the input sequence. This is done by
sliding a window of both size and stride of 20 over the whole
data. We ignore sessions in which the time span between
the last two items is longer than 2 hours.

4.1.2 Search Space andSupernet Setup. Weperform our search
on the designed Table-like search space as demonstrated in Fig-
ure 3. The supernet consists of L = 16 layers. We search among
Transformer architecture in [22] with multi-head number of {4, 8}
and TCN structure [47] with dilated factor of {[1, 2], [1, 4]}, four
operations in total. We random sample 4 paths to obtain corre-
sponding sub-networks. It should be noted that we assume that it is
consistent for all hidden embedding sizes among the 4 blocks. We
separately train each block in the supernet for 2 epochs under the
guidance of self-supervised signals. The self-supervised learning
hyper-parameter setting follows those used in SimSiam [6]. Not loss
of generality, we employ three simply data augmentation strategies
to generate the self-supervised training signals including: 1) ran-
domlymasking a certain percent of the whole sequence behaviors
with [MASK] token; 2) randomly clipping fragments of the entire
sequence; 3) randomly reordering the partial sub-sequence of the
whole sequence. All of these data augmentation strategies destroy
25% of the whole sequence behaviors.

4.1.3 ComparedMethods. To evaluate the effectiveness of NASR,
we prepare several baselines to compare with our design. To keep
the results of all recommendations as fair as possible, we strictly
obey the hyper-parameter control rules to train these SR models
as is illustrated in Section 2.2.3. In addition, all residual-style SR
models are further enhanced by leveraging our newly introduced
linear residual learning enhancement.

• GRU4Rec [18] is a well-known session-based recommenda-
tion method by using the hidden state to memory users’
dynamic interest to the evolving of sequential behaviors.

• SASRec [22] is a self-attentive-based recommender model,
which uses Transformer structure to capture user preference
to the evolving of interactions in chronological order.

• NextItNet [47] employs the residual block of dilated convolu-
tion to increase the reception field for modeling long-range
dependence over user interactions with chronological order.

• Random search: randomly sample candidate architecture
operations to form deep hybrid network architectures for
SR tasks, where the reported results are obtained with the
mean value of repeating experiments three times.

• NASR denotes the searched SR models with automatic de-
signing methods, i.e., NASR. Note that all searched SR net-
work architectures are retrained from scratch on the orig-
inal sequence behavior datasets.

Here, we respectively use SASRec-1 and SASRec-2 to denote the
self-attentive-based SRmodel with the multi-head numbers of 4 and
8. Similarly, we use NextItNet-1 and NextItNet-2 to represent the
convolutional-based SR methods with different settings of dilated
factors including [1, 2] and [1, 4].

4.1.4 Evaluation Protocols of Sequential Recommendation.
To quantify the performance of compared methods, we evaluate all
models by employing two popular top-K metrics, namelyNDCG@K
(Normalized Discounted Cumulative Gain), and Recall@K . K is set
to 10 and 20 for comparison. Following previous works [22, 38], we
apply the leave-one-out strategy for evaluation, i.e., only consider-
ing the last item in each interaction for the SR task. It should be
noted that since we have only a test set for each user, Recall@M is
equivalent to HR@K and is proportional to Precision@K . In addi-
tion, we evaluate each method on the whole item set rather than
the sampled metrics.

4.1.5 Hyper-parameter Settings. We implement all models by
PyTorch. All models were trained on the device of a single NVIDIA
V100 GPU. For comparison purposes, the embedding dimension d
is set as 64 for all models. The hidden dimensions are set the same
value as embedding dimension. The learning rate of all models is set
to 0.001 on all datasets. The batch size is set to 256 on MovieLens,
while it is set to 64 on Last.FM. For all models, we use Adam as opti-
mizer. Other hyper-parameters of baseline methods are empirically
tuned according to performance on validation sets by following
original works [18, 22, 47]. For all compared results, the default
depth layer is 16. In search phase, we use AdamW optimizer with
0.001 initial learning rate and exponential decay schedule, weight
decay is set to 0.

4.2 Experimental Results Analysis
4.2.1 RecommendationPerformanceAnalysis. We report the
overall results in Table 2. By carefully analyzing the experimental
results, we find GRU4Rec yields much worse results than Trans-
former and TCN based SRmodels. The results indicate self-attentive
and convolutional SR models via stacking deeper hidden layers can
be more expressive than shallow GRU4Rec architecture in cap-
turing sequential patterns in user behaviors. Meanwhile, training
a deeper model from scratch requires much more computational
costs than a shallower model. Second, SR models discovered by
the NASR consistently perform better than pure self-attentive and
convolutional ones. Such results demonstrate the powerful capac-
ity of deep hybrid SR models in capturing dynamic user interests
via the global reception field of attention mechanism and local
view of convolutional architecture. We believe that this is explain-
able since the effectiveness of using hybrids of using self-attentive
and convolutional architecture have been fully evidenced in other
domains [10, 12]. It worst noting that naively using hybrids of
Transformer and TCN seems to perform a bit worse than baselines.
To some extent, this indicates the importance of employing NAS
techniques to heuristically search for effective SR architectures.

4.2.2 Searcher Efficiency Analysis. Beyond accuracy, we also
record the time cost for training searcher and model selection.
In our experiments, NASR was trained on with batch of 256 on
MovieLens and 64 on Last.FM equipped with the device of GPU (1
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Table 2: The experimental results on two benchmark datasets, where the best performance methods are denoted in bold.

Model
MovieLens Last.FM

NDCG@20 Recall@20 NDCG@10 Recall@10 step time NDCG@20 Recall@20 NDCG@10 Recall@10 step time
GRU4Rec 0.1587 0.3344 0.1347 0.2390 126ms 0.3931 0.4772 0.3848 0.4452 75ms
Nextitnet-1 0.1610 0.3342 0.1375 0.2411 338ms 0.3963 0.4807 0.3883 0.4490 188ms
Nextitnet-2 0.1653 0.3421 0.1413 0.2471 329ms 0.3848 0.4703 0.3764 0.4368 198ms
SASRec-1 0.1648 0.3392 0.1412 0.2453 247ms 0.3916 0.4836 0.3845 0.4493 183ms
SASRec-2 0.1665 0.3428 0.1428 0.2485 257ms 0.3943 0.4886 0.3855 0.4538 182ms

Random search 0.1605 0.3395 0.1361 0.2426 313ms 0.3932 0.4885 0.3837 0.4508 200ms
NASR 0.1793 0.3648 0.1548 0.2676 280ms 0.4068 0.4965 0.3978 0.4611 191ms

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Transformer-1
Transformer-2
TCN-1
TCN-2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Transformer-1
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Figure 5: Visualization of architectures discovered by NASR.

NVIDIA V100). As a result, discovering the SR models with NASR
spends about less than 3 hours (9, 128 seconds) over the MovieLens
dataset and 5 hours (15, 429 seconds) for Last.FM dataset. It should
be noted that the spend time contains the time of both training
supernet and model selection stage. Compare to previous works -
training even one architecture costs a long time (e.g., more than
10 GPU days) [52], it can be found such search cost is affordable
in real recommendation applications. This is mainly because 1) we
adopt weight-sharing NAS techniques, which allow the sampled
sub-models to inherit the weight parameters from the supernet; 2)
we employ block-wise search methods to divide the deep supernet
into sub-blocks and perform a greedy search strategy to rank all
candidate architectures.

4.2.3 Architecture Visualization Analysis. We visualize three
of the network architectures found by NASR in Figure 5, in which
we repeat the experiments of NASR three times with the making
data augmentation strategies over MovieLens datasets. It shows
these three searched architecture ensembles multiple different net-
work operations and prefer to adopt a higher percent of Transformer
architectures while transforming sequence embedding matrix to
hidden representations. Such phenomenon largely reflects the self-
attentive-based Transformer architecture is necessary for sequence
dependences in the next item recommendation. Such results are
consistent with the empirical study in Section 2.2. Surprisingly, we
notice the searched network architecture tends to adopt TCN struc-
ture in the beginning and ending position of the whole model to the
dimension of depth layer. Such results reflect a similar empirical
phenomenon in recently proposed work [36].

4.2.4 Architecture Transferability Analysis. Since the human-
crafted architectures are not designed for a specific dataset, we
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NASR-with-MovieLens NASR-with-LastFM

Figure 6: Transferability of architectures found by NASR.

explore the transferability of the searched architectures across dif-
ferent datasets. Here, select the best architectures discovered by
NASR on MovieLens, and apply them on Last.FM, and vice versa.
We report the compared experimental results in Figure 6. As shown,
while a bit worse, the architecture searched from one SR dataset
could still achieve superior performance compared with baselines
while applying on other datasets. Such experimental phenomenon
largely reflects that the Table-like space could be well suitable for
capturing sequence dependence. We guess a possible reason is that
the two benchmark datasets share common characteristics of user
interest extraction. We believe such interesting experimental re-
sults can inspire more work to be proposed for discovering adaptive
architecture in certain scenes, e.g., cold-start recommendation [46].

4.2.5 Study on Data Augmentation Strategies. In the NASR,
we train the supernet with a self-supervised contrastive learning
manner, in which the training signals are constructed from the orig-
inal user behavior information. According to previously claimed
views [5, 9], DA strategies are crucial to the contrastive optimization
manner. Here, we perform extensive ablation studies by controlling
the composition of three different DA strategies, including mask-
ing, clipping, and reordering strategies. For limit space, we omit the
results using Last.FM and only report the results in Figure 7. We
can observe that masking strategies perform a bit better than an-
other two types of DA manners, but there exists a minor difference
between the three DA strategies. Despite the effectiveness of these
DA strategies, it is still necessary to develop a more effective and
simple DA manner [13] for further boosting and simplifying the
training process of supernet.

4.2.6 Hyper-parameter Sensitivity Analysis. We also study
the hyper-parameters how to affect the performance of searched
models, including the number of training epochs for optimizing
supernet, the number of sampling paths, and the number of build-
ing blocks involved within each divided block. Here, the default
setting denotes remaining each block supernet with layers of 4
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Figure 7: The ablation study w.r.t. data augmentation (DA)
strategies in training supernets of our NASR.

building blocks, sample 4 paths on the supernet, and training each
block supernet with 1 epoch. Presenting all results on all datasets
is redundant and space unacceptable, we mainly report results of
hyper-parameter influence on MovieLens datasets in Figure 8. In-
terestingly, the proposed NAS methods are slightly sensitive to
these several parameters. Such results largely reflect the robustness
of our NASR methods in discovering the SR models for releasing
accurate recommendations. Such experimental results reflect that
it is more important to rank these sampled candidate architectures
rather than measure the absolute performance of candidate models.

5 RELATEDWORK
Deep Sequential Recommenders. A large body of research pro-

vides efforts in deep sequential recommendation techniques since
their effectiveness in capturing complex sequential patterns from
user behaviors [9, 18, 22]. Originally, recurrent architectures gated
recurrent units (GRU) [18, 25, 26] are natural choices in modeling
sequential behaviors. While effective, such methods mainly summa-
rize all previous actions depending on employing the hidden state,
in which the modern parallel processing resources cannot be fully
leveraged in practice. Thus their speed is limited in both training
and evaluation in large-scale recommendation scenes. Numerous
advanced efforts for sequential recommendation with abandoning
RNN architectures have been proposed. A series of works have been
proposed by training convolutional neural networks (CNN) [40, 47]
or self-attentive networks [22, 25, 38] for SR tasks, in which these
methods allow parallelization over each entity within a sequence.
These newly proposed convolutional or self-attentive-based models
can be able to achieve comparable or even superior performance
to the popular RNNs structures since more hidden layers can be
stacked by the residual block architectures.

NeuralArchitecture Search. Recently, neural architecture search
(NAS) [31, 52] is hoped to replace the effort of human experts in
network design by leveraging machines. Early works adopt rein-
forcement learning (RL) [52] or evolutionary algorithms (EA) to
sample architecture and get its performance through training it
from scratch. However, this type of NAS is computationally expen-
sive. To enhance the efficiency of NAS, recently proposed ENAS [33]
encode the entire search space as a weight-sharing supernet. After
training the supernet, sub-models are sampled and evaluated with
the weights inherited from the supernet. To solve the large size of
the weight-sharing space, some works [23, 44] proposed to factor-
ize the supernet into independently optimized blocks. Meanwhile,
unsupervised NAS performs architecture search without access to
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Figure 8: Hyper-parameter sensitivity study on MovieLens.
any supervision signals. Representative work like [28] introduced
unsupervised pretext tasks to train supernets.

Self-supervised Learning. Self-supervised learning [5, 20] re-
cently becomes prevalent since the parameters optimized by the
self-supervised loss can be easily utilized to benefit other tasks.
Most mainstream approaches fall into one of two classes: genera-
tive or discriminative. For generative-based methods, in NLP area,
the language model becomes a popular self-supervised objective
that learns to predict the next word given the previous contex-
tual information [32, 35]. Also, the cloze prediction task is widely
adopted in [11]. Though these fine-grained prediction tasks have
achieved promising results, some researchers hold that its compu-
tation is expensive and might not be necessary for representation
learning [5]. Recently, discriminative-based methods, such as con-
trastive learning, have been well studied in visual representation.
The core idea of contrastive learning is to pull the positive example
pairs closer and push the negative pairs apart. Simple and effective
methods have been developed using Siamese network [3].

Although some automated based methods have been proposed
before, most of these research focus on click-through rate (CTR)
tasks by: (1) automatically searching the optimal hyper-parameter
(e.g., embedding size in [21]); (2) conducting automated feature
interaction learning (a.e., feature learning in [27])). To the best
of our knowledge, it still remains under-explored in terms of de-
signing effective deep hybrids of self-attentive and convolutional
architectures for SR tasks.

6 CONCLUSIONS
In this work, we perform a pilot study of automatically designing
deep architectures for SR, and proposed NASR, a very efficient neu-
ral architecture search (NAS) method for discovering deep hybrid
SRmodels to provide more expressive ability. In the proposed NASR,
we first designed a Table-like search space, containing self-attentive
and convolutional architectures, for finding more powerful SR mod-
els. After that, NASR could efficiently discover top-performing op-
timal SR architectures by applying weight-sharing supernet, block-
wise search, and self-supervised learning. We conducted extensive
experiments on two benchmark datasets to demonstrate both the
strength of SR models discovered by our NASR, indicating the prac-
ticality of conducting NAS for SR tasks. We hoped our NASR can
inspire more NAS efforts and deep hybrid networks of self-attentive
and convolutional architecture to be proposed for recommendation.
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