
On Approximation of Real-World Influence

Spread

Yu Yang, Enhong Chen, Qi Liu, Biao Xiang, Tong Xu, and Shafqat Ali Shad

Dept. of Computer Science, Univ. of Science and Technology of China,
Hefei 230026, China

{ryanyang,feiniaol,bxiang,tongxu,shafqat}@mail.ustc.edu.cn,
cheneh@ustc.edu.cn

Abstract. To find the most influential nodes for viral marketing, several
models have been proposed to describe the influence propagation pro-
cess. Among them, the Independent Cascade (IC) Model is most widely-
studied. However, under IC model, computing influence spread (i.e., the
expected number of nodes that will be influenced) for each given seed
set has been proved to be #P-hard. To that end, in this paper, we pro-
pose GS algorithm for quick approximation of influence spread by solv-
ing a linear system, based on the fact that propagation probabilities in
real-world social networks are usually quite small. Furthermore, for bet-
ter approximation, we study the structural defect problem existing in
networks, and correspondingly, propose enhanced algorithms, GSbyStep
and SSSbyStep, by incorporating the Maximum Influence Path heuris-
tic. Our algorithms are evaluated by extensive experiments on four social
networks. Experimental results show that our algorithms can get better
approximations to the IC model than the state-of-the-arts.

1 Introduction

Recently, viral marketing has drawn more and more attention from both indus-
trial and research fields [15]. This kind of marketing is based on the word-of-
mouth effect in social networks, i.e., one may be influenced by his neighbors.
According to a survey [11], 83% of people prefer consulting family, friends or
an expert over traditional advertising before trying a new restaurant, 71% of
people do the same before buying a prescription drug, and so on. Thus, compa-
nies believe that viral marketing should be one of the most effective marketing
strategy.

Unlike traditional marketing strategies, viral marketing only targets a few
influential individuals in a social network. For example, if a company employs a
viral marketing strategy to promote sales performance, it only needs to choose a
small number of individuals and persuade them to be the initial users(by offering
them discounted or free products etc.). Due to the word-of-mouth effect, these
initial users, also called seed users, will influence their friends to use this product.
And once the friends are influenced, they will try to influence their friends and
so on. Eventually, a much larger group of people compared to the number of
initial users will adopt this product.

P. Flach et al. (Eds.): ECML PKDD 2012, Part II, LNCS 7524, pp. 548–564, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



On Approximation of Real-World Influence Spread 549

Since different seed users usually lead to different results of word-of-mouth
propagation, an important step for a successful viral marketing is to precisely
evaluate the expected number of influenced individuals (influence spread) for
each seed user set. Along this line, several influence models have been proposed
[8][9][12]. Among these models, Independent Cascade(IC) Model is a simple and
most widely used one that describes the information propagation in a social
network as a stochastic process according to certain probabilistic rules [9][12].
However, Wei Chen et al. have proved that computing influence spread of a set of
seed users, under IC model, is a #P-hard problem [7]. As an alternative, Monte
Carlo simulation, which is very time-consuming, is employed to approximately
calculate influence spread. For example, for a moderate sized social network, we
usually have to run Monte Carlo simulation for more than ten thousands times
to obtain a good estimation of the true influence spread. Thus, the problem of ef-
ficiently computing influence spread has become a bottleneck for the deployment
of viral marketing.

To that end, in this paper, we provide a novel study on approximating influ-
ence spread under IC model, mainly based on the observation that the influence
propagation probabilities in real-world social networks are usually quite small.
Specifically, our main contributions can be summarized as follows:

– To address the above efficiency problem, we show that by solving a lin-
ear system we can approximately calculate each node (individual, or user)’s
probability of being influenced, and thus we can quickly compute influence
spread of a given seed set.

– We point out that SteadyStateSpread algorithm [1] is also an approximation
for the real influence spread under IC model when the propagation proba-
bilities are small, and this was not illustrated by Aggarwal, et al. in [1].

– For better approximation, we discover the structural defect problem (as
illustrated by Definition 2 in Section 4.1) existing in networks, and fur-
ther propose enhanced algorithms by incorporating the Maximum Influence
Path(MIP) heuristic [7] to both our algorithm and SteadyStateSpread.

– We evaluate our algorithms on four real networks. Experimental results prove
our discoveries and show that the proposed algorithms can get good approx-
imations of the real influence spread. Moreover, the nodes ranking obtained
by our algorithms are very similar to the true ranking results.

2 Related Work

In general, related work can be grouped into two categories. The first category
includes the most relevant work on influence models. In the second category, we
introduce the related work on computing social influence spread.

Influence Models. Domingos et al. first proposed to mine social networks for
marketing [8]. However, their models are essentially descriptive, and prior works
[1][7][12][13] following [8] focus more on the models that explicitly represent the
step-by-step dynamics of influence.



550 Y. Yang et al.

Among existing influence models, Independent Cascade(IC) Model [9][12] is
one of the most widely-studied models. In IC model, a social network is repre-
sented by a directed graph G(V,E). Each node v ∈ V denotes an individual in
the social network. Each edge (u, v) represents the relationship between u and
v, and is assigned with a real number puv (puv ∈ [0, 1]) which is the probability
that v is influenced by u through the edge in the next step after u is activated.
In the beginning, there is a set of users (seed set) who are already activated,
i.e. influenced, denoted by S. Let St represents the set of nodes that become
activated at time t, and S0 = S. At time t + 1, each node u ∈ St will try to
activate its inactivated neighbor v with probability puv. If there are no newly
activated nodes at time t+1, the propagation process ends. The influence spread
of S, which is denoted by σ(S), is the expected number of nodes being activated
in the whole propagation process.

Two kinds of ICmodel, namelyUniform ICModel andWeighted Cascade(WC)
Model are defined in [12]. In uniform IC model, each link shares the same prop-
agation probabilities, while according to WC model, the propagation probability
through edge(u,v) equals to weight(u, v)/indegree(v).

Influence Spread Computation. In [12], Kempe, et al. exploited running
Monte Carlo simulation for a large number of times to evaluate the influence
spread of a given seed set under IC model.

Further, Wei Chen et al. [7] proved that computing influence spread based
on IC model is #P-hard. Given the fact that the influence of a node is always
local, they proposed the Maximum Influence Path(MIP) heuristic. Specifically,
they defined the propagation probability of a path P =< u = n1, n2, ..., nm =
v > (u ∈ S), pp(P ), as

pp(P ) =
m−1∏

i=1

pnini+1

and the maximum influence path from S to v, which is denoted by MIP (S, v),
is defined as

MIP (S, v) = argmax
P

{pp(P )|P ∈ Path(S, v)}

in which Path(S, v) is the set of all paths from S to v. By using the MIP
heuristic, they regard the probability of v being influenced by seed set S as
pp(MIP (S, v)). Their experiments showed that by using this heuristic one can
accelerate the influence maximization algorithm drastically. However, the influ-
ence spread calculated by the MIP heuristic maybe very different with the true
influence spread because it abandons too many possible paths.

In contrast, Kimura and Saito proposed the shortest-path based influence
models and provided efficient algorithms to compute influence spread under these
models in [13]. However, their algorithms are only suitable for the uniform IC
model where propagation probabilities of links are all the same, which is seldom
the case in reality.

Recently, Aggarwal et al. [1] proposed the SteadyStateSpread method to com-
pute flow authority by solving a system of nonlinear equations,



On Approximation of Real-World Influence Spread 551

pv =

{
1 if v ∈ S

1−∏
u∈N(v) (1 − puv ∗ pu) if v /∈ S

(1)

in which N(v) is the set of all v’s in-neighbors and pv indicates the probability
of v being influenced. As we will explain later, Eq.(1) can be used to approx-
imately compute the real influence spread under IC model when propagation
probabilities through links are small. However, it does not strictly hold for some
situations(e.g., the situation illustrated in Section 4.1). More importantly, there
are some difficulties in solving systems of nonlinear equations, such as the conver-
gence problem [6] and the multiple solutions problem [10]. Though Aggarwal et
al. [1] gave a simple iterative algorithm for solving Eq.(1), they did not theoret-
ically prove that their algorithms can converge or Eq.(1) has only one solution.

3 Approximating Influence Spread by Linear System

In this section, we first illustrate the observation that influence propagation prob-
abilities in real-world social networks are usually quite small. Based on this fact,
we then show the way to approximate influence spread, and represent the approx-
imation by a linear system. At last, we propose a simple iterative algorithm to
solve the linear system and return the influence spread for each seed set.

3.1 Preliminary Observation

Though there exists the effect of peer-to-peer influence, in real scenarios of infor-
mation diffusion, propagation probabilities between people are very small. For
example, according to [5], in Facebook, the average probability that an individ-
ual will share a Web link is about 2% when there are 6 of his friends who shared
the same link before. In LiveJournal, the average probability that an individual
will join a community is no more than 2% even though 50 of his/her friends have
already joined that community [4]. Moreover, influence is not the only reason
that leads to phenomena of friends sharing same Web links and joining same
communities. Prior works, [2][3][16], showed that correlations between friends
in social networks are also an important factor that contributes to homophily
phenomena. Thus, the actual propagation probability caused by the effect of
influence is even smaller.

To facilitate the following discussion, we first define small propagation proba-
bilities mathematically.

Definition 1 (Small Propagation Probabilities). Given a network G =
(V,E), if for ∀v ∈ V , and for ∀u ∈ N(v), puv < weight(u, v)/indegree(v),
we say the propagation probabilities in G are small. Note that indegree(v)=∑

u∈N(v)weight(u, v).

From Definition 1 we can see that if the small propagation probabilities condition
holds in a social network, then for ∀v ∈ V ,

∑
u∈N(v) puv < 1 because puv <

weight(u, v)/indegree(v). The further explanations of these two formulas can be



552 Y. Yang et al.

easily observed from the real world social networks: First, besides the influence
coming from the direct neighbors in the specific social network, each node v’s
activity is also impacted by the information from other sources (e.g., influence
coming from other friends that are not included in the current network). Second,
when influence propagates in the network, there is information lost (or decay)
in each node, and this has been widely observed and adopted by models from
other domains, such as the PageRank method [14].

3.2 Approximation of Real-World Influence Probability

In this subsection we consider approximating influence spread under IC model
for social networks, where propagation probabilities are small. We use σ(S) to
denote influence spread of a seed set S. It is obvious that σ(S) =

∑
v pv, in which

pv denotes the probability that v will be influenced, also called the influence
probability of v. Since ∀v ∈ S, pv = 1, the core step of computing σ(S) is
to compute pv for each v /∈ S. In the following, we show that the influence
probability of v(v /∈ S) can be well approximated by a linear equation that
pv =

∑
u∈N(v) pu ∗ puv.

Let v(t) denotes the event that v becomes influenced at time t. Note that
p{v(0)} = 1 if v ∈ S. For each node v /∈ S, p{v(t)} can be computed by

p{v(t)} =
∑

W⊆N(v)

p{v(t)|W (t− 1), ṽ(t− 1)}p{W (t− 1), ṽ(t− 1)} (2)

where N(v) is the set of in-neighbors of v, W is a subset of N(v), W (t − 1)
indicates the event that all nodes in set W become influenced at time t− 1 and
ṽ(t − 1) denotes the event that v is still not influenced after time t − 1. Worth
noting that p{v(t)} = p{v(t), ṽ(t− 1)}1. It is obvious that

p{v(t)|W (t− 1), ṽ(t− 1)} = 1−
∏

u∈W

(1− puv) (3)

Following [8] and [13], given the marginals {p{u(t− 1)};u ∈ W} and p{ṽ(t− 1)},
we approximate p{W (t− 1), ṽ(t− 1)} by the maximal entropy estimation:

p{W (t− 1), ṽ(t− 1)} = p{ṽ(t− 1)}
∏

u∈N(v)

p{u(t− 1)}hu(1 − p{u(t− 1)})1−hu

(4)
where hu is an indicator that if u ∈ W , hu=1, otherwise hu=0. Combining
Eq.(2), Eq.(3) and Eq.(4), and after some algebraic transformations, we have

p{v(t)} = p{ṽ(t− 1)}[1−
∏

u∈N(v)

(1 − puv ∗ p{u(t− 1)})] (5)

Note that under the small propagation probabilities condition, puv is very small,
the probability that v will be influenced is even smaller. So p{ṽ(t− 1)} is very

1 If v is influenced at time t, it should stay inactive from time 0 to t− 1.



On Approximation of Real-World Influence Spread 553

close to 1 2. Thus, p{v(t)} can be approximated by

p{v(t)} = 1−
∏

u∈N(v)

(1− puv ∗ p{u(t− 1)}) (6)

Since puv ∗ p{u(t− 1)} << 1 and (1− a)(1− b) ≈ 1− a− b when a, b << 1, we
can further approximate p{v(t)} with a linear equation:

p{v(t)} =
∑

u∈N(v)

puv ∗ p{u(t− 1)} (7)

Now we add up p{v(t)} over t to get pv. Note that pv = 1 if v ∈ S. For v /∈ S,
we have

pv =
∑

t=0

p{v(t)}

= p{v(0)}+
∑

u∈N(v)

puv
∑

t=1

p{u(t− 1)}

=
∑

u∈N(v)

puvpu

(8)

Because we are discussing approximation under the condition that
∑

u∈N(v) puv
< 1, it is guaranteed that 0 ≤ pv < 1. Thus, the influence probability pv com-
puted by Eq.(8) is well defined.

Approximation From SteadyStateSpread. As have said, under the small
propagation probabilities condition puv ∗ pu << 1, and recall Eq.(1), it is easy
to conclude that

∑
u∈N(v) puvpu ≈ 1 − ∏

u∈N(v) (1− puvpu). In this situation,
we can see that SteadyStateSpread is actually also an approximation for the true
influence spread. In the following experiment section, our experimental results
verify that the smaller puv is, the more accurate approximation will be obtained
by SteadyStateSpread.

3.3 Linear System Formulation

Rewriting Eq.(8) in a matrix form we can get a linear system. To facilitate the
following discussion, first we list some math notations in Table 1.

Table 1. Math Notations

Notations DESCRIPTION
[M]|V |∗|V | probability adjacent matrix, Muv = puv

P = [p1, p2, ..., p|V |]T pv is the probability of v being influenced by seed set S

B = [b1, b2, ..., b|V |]T bv = 1 if v ∈ S, otherwise bv = 0
MS matrix which is cut down from matrix M by removing rows

whose index v ∈ S
MSS matrix which is cut down from matrix M by removing rows and

columns whose index v ∈ S

2 The assumption on this value will be verified in the experimental section 5.3.



554 Y. Yang et al.

For node v /∈ S, we rewrite Eq.(8) by

pv =
∑

u∈N(v)
∧

u/∈S

puv ∗ pu +
∑

u∈N(v)
∧

u∈S

puv (9)

Further, using matrix form to represent the right side of Eq.(9), we have

pv = (MS)
T
v PS + (MTB)v (10)

Put all nodes v that v /∈ S together,

PS = (MSS)
TPS + (MTB)S (11)

thus we have
[I− (MSS)

T ]PS = (MTB)S (12)

Given that we are dealing with approximations of influence spread under the
condition that

∑
u∈N(v) puv < 1, the matrix [I − (MSS)

T ] is strictly diagonally

dominant. Thus, [I− (MSS)
T ] is invertible and the linear system of Eq.(12) has

only one solution that PS=[I − (MSS)
T ]−1(MTB)S . In this way, by summing

up pv over each v, we get influence spread for seed set S(i.e., σ(S)).

3.4 A Simple Iterative Algorithm

As we stated above, to approximately compute the influence spread of a seed
set S, we only have to solve the linear equation Eq.(12) and sum up all pv.

Algorithm 1. GS(G, S)

1: for v = 1 to |V | do
2: if v ∈ S then
3: pv ← 1
4: else
5: pv ← 0
6: end if
7: end for
8: while not converge do
9: for v = 1 to |V | do
10: if v /∈ S then
11: pv ←∑

u∈N(v) puv ∗ pu
12: end if
13: end for
14: end while
15: sum← 0
16: for v = 1 to |V | do
17: sum← sum+ pv
18: end for
19: return sum



On Approximation of Real-World Influence Spread 555

Since [I−(MSS)
T ] is strictly diagonally dominant, we can use Gauss-Seidel(GS)

algorithm to efficiently solve Eq.(12) in O(E) time. The entire computation
process can be illustrated by Algorithm 1, where the iteration formula used is
Eq.(8). Based on the output of Algorithm 1, we can rank each seed set S, so as
to find the most influential individuals for marketing.

4 Algorithms Incorporating MIP Heuristic

In this section, we first illustrate the structural defect problem existing in many
methods for social networks. Then, to address this problem and to get a better
approximation, we propose enhanced algorithms by incorporating the Maximum
Influence Path(MIP) heuristic into both GS algorithm and SteadyStateSpread.

4.1 Structural Defect

According to Eq.(1) and Eq.(8), for v /∈ S, the value of pv depends on all of its
in-neighbors. However, in fact sometimes a node u’s influence probability pu is
independent from some of its in-neighbors. Consider the following example of an
undirected network, as shown in Fig.1.

Fig. 1. An undirected network

In this undirected network, assume that node 1 is the only seed node. Based
on Eq.(1) and Eq.(8), the probability of node 4 being influenced depends on the
probability of node 5 being influenced. However, actually, to influence node 5,
node 4 should be influenced first. Thus, p4 is irrelevant with p5, and this con-
tradicts with Eq.(1) and Eq.(8). We have reasons to believe that each network,
especially an undirected network, may have many sub-structures like Fig.1, and
in this situation, if we use Eq.(1) or Eq.(8) to calculate pv would get misleading
results. In summary, we call structures like (node 4, node 5) in Fig.1 structural
defect of Eq.(1) and Eq.(8), and we define it in a mathematical way.

Definition 2 (Structural Defect). Given a network G = (V,E), a seed set S
and an influence spread algorithm A, if ∃u, v /∈ S, ∀P = (pn1 , pn2 , ..., pnm = v) ∈
Path(S, v), u ∈ P (that is, every path from S to v has to pass u), and according
to A, the value of pu depends on pv, we say that (u, v) is a structural defect
of algorithm A on G.



556 Y. Yang et al.

4.2 Incorporating Maximum Influence Path Heuristic

To handle the problem of structural defect, we propose to incorporate the Max-
imum Influence Path(MIP) heuristic [7] into our algorithm. The main idea is to
set an iteration threshold β(v) for node v, i.e., for each v, we only update pv in
the first β(v) iterations.

Let’s consider the algorithms of Gauss-Seidel(GS) and SteadyStateSpread [1],
which are both iterative processes of accumulating each path’s influence prob-
ability for a node (e.g., v) by Eq.(8) and Eq.(1) respectively. Specifically, for a
path P from S to v, if we want to include the propagation probability through P ,
we have to update pv for no less than length(P )(hops of P ) iterations. Since the
maximum influence path is the path with biggest propagation probability, we do
not want to abandon this path’s influence. Thus, let step[v] denotes hops of this
maximum influence path from S to v, and to include the influence probability
of maximum influence path, we should set the iteration threshold for v to be at
least step[v].

However, since step[v] is usually also the shortest distance from S to v, and
if we just update pv in the first step[v] rounds of iterations, we may miss some
important influences from other paths. For example, the value of p2 for node 2
in Fig.1 does depend on the influence from all its neighbors. In contrast, if we
update pv for too many iterations, the structural defect will have serious impact
on the estimation of influence spread. Take node 4 in Fig.1 for example, as the

Algorithm 2. GSbyStep(G, S)

1: for v = 1 to |V | do
2: if v ∈ S then
3: pv ← 1
4: else
5: pv ← 0
6: calculate hops of the maximum influence path from S to v, denoted by step[v]
7: end if
8: end for
9: times← 0, updated← true
10: while updated is true do
11: updated← false, times← times+ 1
12: for v = 1 to |V | do
13: if v /∈ S

∧
times � step[v] + 1 then

14: pv ←∑
u∈N(v) puv ∗ pu

15: updated← true
16: end if
17: end for
18: end while
19: sum← 0
20: for v = 1 to |V | do
21: sum← sum+ pv
22: end for
23: return sum



On Approximation of Real-World Influence Spread 557

round of iterations increases, p5 will become larger and the structural defect
caused by node 5 for p4 will be more and more serious.

To that end, as a tradeoff, we choose step[v] + 1 as v’s iteration threshold
β(v). Choosing such value is because in the (step[v] + 1)-th iteration there are
few miss counted influence probabilities, and meanwhile, the bad impact from
structural defect is limited. Along this line, by incorporating MIP heuristic into
Algorithm 1 and SteadyStateSpread, we propose GSbyStep algorithm(as illus-
trated by Algorithm 2) and SSSbyStep algorithm3 for better approximations.
Worth noting that our solution also works for some other iterative algorithms,
where the structural defect problem exists.

5 Experimental Evaluation

5.1 Experimental Setup

We evaluate our algorithms by experiments on four real-world datasets (two di-
rected networks and two undirected networks) that we downloaded from SNAP 4.
Detailed information of these four data sets can be seen in Table 2.

Table 2. Description of Data Sets

Name Description Type Nodes Edges
wiki-Vote Wikipedia who-votes-on-whom network Directed 7,115 103,689

p2p-Gnutella04 Gnutella peer to peer network from August 4 2002 Directed 10,876 39,994
email-Enron Email communication network from Enron Undirected 36,692 367,662
ca-AstroPh Collaboration network of Arxiv Astro Physics Undirected 18,772 396,160

Unlike Kimura and Saito using uniform IC model [13] where propagation
probabilities are all the same, for simulating the real-world influence propagation
process more accutately, we evaluate our algorithms following more general cases
of IC model. Specifically, we set propagation probabilities in a WC model [12] like
way. As stated in the related work section, the propagation probability of an edge
(u, v) under WC model is weight(u, v)/indegree(v). Thus, this model assumes
that the total influence probabilities of a node’s in-neighbors are 1. As we have
discussed in Section 3.1, this assumption is too idealistic for real scenarios. In
order to make the influence propagation process more realistic, and following
Definition 1, we slightly change WC model by setting

∑
u∈N(v) puv = α, thus

puv = α ∗ weight(u, v)/indegree(v). In this way, we can not only cover more
general cases of IC model (by slightly changing weights of the edges) but also
capture the characteristics (i.e., small and different values) of the real-world
influence propagation probabilities. Thus, in the following, we call such modified
model as General IC Model, or IC model for short.

3 Modifying the 14-th line of GSbyStep algorithm by replacing
∑

u∈N(v) puv ∗ pu with

1−∏
u∈N(v) (1− puv ∗ pu), we get the SSSbyStep algorithm.

4 http://snap.stanford.edu

http://snap.stanford.edu


558 Y. Yang et al.

For each network, we conduct three groups of experiment by setting α as 0.5
for all nodes, setting α as 0.75 for all nodes, and randomly generating α with
a uniform distribution on [0.1,0.9] for each node, respectively. For evaluation,
the average result of 20,000 times Monte Carlo simulation of IC model (GICM )
is regarded as the real influence spread. In the following, we compare our algo-
rithms (SSSbyStep,GSbyStep,GS ) with four baseline algorithms, MIP [7],
SteadyStateSpread(SSS) [1], SP1M [13] and an insufficient times Monte Carlo
simulation of IC model, i.e., 200 times of Monte Carlo simulation(GICM200 ).

5.2 Ranking Problem

First we consider the problem of extracting influential seeds by ranking candidate
nodes. Specifically, we try to find the rank list of 100(|S| = 100) influential seeds,
i.e., the top-100 nodes with higher influence spread than others.

We use the result of 20,000 times Monte Carlo simulation as the ground truth,
and the ranking according to such simulation is regarded as the true nodes rank.
For evaluating rankings obtained by different algorithms, we compare similarities
between those rankings with the true ranking. We employ the same measurement
which is used in [13], the ranking similarity F (k). F (k) quantifies the degree of
similarity between two ranking methods at rank k, and it is defined as follows:
Let L(k) and L′(k) be the respective sets of top-k nodes for the two ranking
methods that we compare. Then, F (k) = |L(k) ⋂ L′(k)| / k.

Fig.2-Fig.5 show the experimental results . We can see that rankings ob-
tained by our proposed algorithms and SteadyStateSpread(SSS) are very similar

1 10 20 30 40 50 60 70 80 90 100
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
α=0.5

top k

ra
nk

 s
im

ila
ri

ty

 

 

1 10 20 30 40 50 60 70 80 90 100
0.7

0.75

0.8

0.85

0.9

0.95

1
α=0.75

top k
1 10 20 30 40 50 60 70 80 90 100

0.75

0.8

0.85

0.9

0.95

1
random α

top k

SSSbyStep
GSbyStep
GS
MIP
SSS
SP1M
GICM200

Fig. 2. Rank Similarity Comparison on wiki-Vote Network Data

1 10 20 30 40 50 60 70 80 90 100
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
α=0.5

top k

ra
nk

 s
im

ila
ri

ty

 

 

1 10 20 30 40 50 60 70 80 90 100
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
α=0.75

top k
1 10 20 30 40 50 60 70 80 90 100

0.5

0.6

0.7

0.8

0.9

1
random α

top k

SSSbyStep
GSbyStep
GS
MIP
SSS
SP1M
GICM200

Fig. 3. Rank Similarity Comparison on p2p-Gnutella04 Network Data



On Approximation of Real-World Influence Spread 559

1 10 20 30 40 50 60 70 80 90 100
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1
α=0.5

top k

ra
nk

 s
im

ila
ri

ty

 

 

1 10 20 30 40 50 60 70 80 90 100
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1
α=0.75

top k
1 10 20 30 40 50 60 70 80 90 100

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1
random α

top k

SSSbyStep
GSbyStep
GS
MIP
SSS
SP1M
GICM200

Fig. 4. Rank Similarity Comparison on email-Enron Network Data

1 10 20 30 40 50 60 70 80 90 100
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
α=0.5

top k

ra
nk

 s
im

ila
ri

ty

 

 

1 10 20 30 40 50 60 70 80 90 100
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
α=0.75

top k
1 10 20 30 40 50 60 70 80 90 100

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
random α

top k

 

 

SSSbyStep
GSbyStep
GS
MIP
SSS
SP1M
GICM200

Fig. 5. Rank Similarity Comparison on ca-AstroPh Network Data

to the true ranking while others are not. This is because both our algorithms
and SteadyStateSpread(SSS) are approximations for the real influence spread as
stated in Section 3.

Another observation is that in most cases all algorithms can choose the most
influential seed(top-1 node) accurately, even algorithms like MIP which is not
very effective on ranking similarity metric. This may explain why these algo-
rithms work well for the influence maximization problem [7][12][13]. Since under
the greedy framework [12] for solving this problem, an algorithm only cares
about finding the node with the maximum increasing influence spread in each
round, and this node will be added into seed set.

5.3 Estimation of Influence Spread

We then evaluate each algorithm by their performances on estimating the influ-
ence spread for a given seed set. For each dataset, we first calculate influence
spreads of the top-1000 nodes with highest out-degrees5, i.e., experiment with
setting the size of seed set equals to 1. Then we randomly generate 100 differ-
ent seed sets with the size to be 10, 20, 30, 40, 50, respectively. At last, the
effectiveness of each algorithm is measured by error rate of the influence spread
returned by this algorithm. Here, we define σ(S) as the true influence spread

5 Since people often care about top influential nodes, and nodes with higher out-degree
are usually more influential.



560 Y. Yang et al.

Table 3. Average Influence Spread (σ(S)) under α = 0.5 Setting

����������dataset
size of seed set

1 10 20 30 40 50

wiki-Vote 4.58 45.22 87.83 133.25 178.60 222.61
p2p-Gnutella04 3.76 37.34 74.15 112.60 148.97 185.13
email-Enron 14.21 151.34 269.06 428.79 559.47 733.68
ca-AstroPh 4.41 44.06 86.04 129.91 171.13 215.14

Table 4. Average Influence Spread (σ(S)) under α = 0.75 Setting

����������dataset
size of seed set

1 10 20 30 40 50

wiki-Vote 8.29 80.76 156.41 234.35 310.25 384.17
p2p-Gnutella04 8.91 89.58 169.30 260.26 343.52 419.03
email-Enron 31.04 318.28 579.39 895.69 1,160.61 1,495.89
ca-AstroPh 10.65 104.97 201.66 301.34 392.89 485.68

Table 5. Average Influence Spread (σ(S)) under random α Setting

����������dataset
size of seed set

1 10 20 30 40 50

wiki-Vote 4.71 46.34 90.73 136.85 183.16 227.99
p2p-Gnutella04 3.81 37.74 75.29 113.77 151.07 188.41
email-Enron 14.02 150.40 264.93 424.46 552.89 724.63
ca-AstroPh 4.39 44.09 85.69 129.41 170.09 212.86

computed by 20,000 times Monte Carlo simulation, and σ
′
(S) as the influence

spread calculated by an approximate algorithm. Then the error rate of σ
′
(S) can

be measured by |σ(S)− σ
′
(S)|/σ(S).

Ground Truth. The average values of σ(S) under different α settings are il-
lustrated in Table 3 - Table 5, where a much larger group of nodes are finally
influenced compared to the size of each seed set. Based on these tables, we then
present a verification for the assumption that p{ṽ(t− 1)} is very close to 1 for
each v and t. For simplicity, we take α = 0.75 and the email-Enron network (with
the largest number of influenced nodes) as an example. From Table 4 we can
see that when |S| = 50, the average pv for each node in email-Enron network is
1, 495.89/36, 692 = 0.04, thus 1−pv = 0.96. Since 1−pv < p{ṽ(t− 1)}, it means
p{ṽ(t− 1)} > 0.96. Similarly, when |S| = 1, we can get p{ṽ(t− 1)} > 0.999.
From these lower bounds we can summarize that p{ṽ(t− 1)} is very close to 1.

Effectiveness. Correspondingly, Fig.6-Fig.9 show the average error rates of dif-
ferent algorithms when the size of each seed set varies from 1 to 50. From Fig.6
and Fig.7 we can see that our two linear algorithms GSbyStep and GS are the
most accurate algorithms for the two directed networks. Error rates of these
two algorithms are lower than 1% in most cases. While from Fig.8 and Fig.9,
we find that for the two undirected networks, SSSbyStep has the lowest er-
ror rate in most cases(with error rate lower than 3%). Worth noting that, for
the two undirected networks, when α = 0.75, accuracy has been significantly



On Approximation of Real-World Influence Spread 561

1 10 20 30 40 50

0.20%

0.40%

0.80%

1.6%

3.1%

6.2%

12.5%

25%

50%

α=0.5

size of seed set

A
ve

ra
ge

 E
rr

or
 R

at
e

 

 

1 10 20 30 40 50

0.20%

0.40%

0.80%

1.6%

3.1%

6.2%

12.5%

25%

50%

α=0.75

size of seed set
1 10 20 30 40 50

0.80%

1.6%

3.1%

6.2%

12.5%

25%

50%

random α

size of seed set

SSSbyStep
GSbyStep
GS
MIP
SSS
SP1M
GICM200

Fig. 6. Average Error Rate Comparison on wiki-Vote Network Data

1 10 20 30 40 50
0.40%

0.80%

1.6%

3.1%

6.2%

12.5%

25%

50%

α=0.5

size of seed set

A
ve

ra
ge

 E
rr

or
 R

at
e

 

 

1 10 20 30 40 50

0.20%

0.40%

0.80%

1.6%

3.1%

6.2%

12.5%

25%

50%

100%
α=0.75

size of seed set
1 10 20 30 40 50

0.40%

0.80%

1.6%

3.1%

6.2%

12.5%

25%

50%

random α

size of seed set

SSSbyStep
GSbyStep
GS
MIP
SSS
SP1M
GICM200

Fig. 7. Average Error Rate Comparison on p2p-Gnutella04 Network Data

improved by incorporating MIP heuristic into algorithms, especially when the
size of the seed set is 1. Specifically, average error rate of SSSbyStep algorithm is
about 7% lower than SteadyStateSpread(SSS) algorithm, and average error rate
of GSbyStep algorithm is about 10% lower than GS algorithm.

Another observation is that error rates of our algorithms and SteadyState-
Spread(SSS) are lower when setting α = 0.5 than setting α = 0.75. This substan-
tiates that both our algorithms and SteadyStateSpread can better approximate
the real influence spread when propagation probabilities are smaller.

Efficiency. Our algorithms are also very efficient compared to baseline algo-
rithms. Fig.10 shows the average processing time when α = 0.75 and the size of
each seed set varies from 1 to 50, where GICM denotes the algorithm of 20,000
times Monte Carlo simulation of IC model. Similar results under other α settings
are omitted due to the space limit. We can see that tens thousand times Monte
Carlo simulation (GICM ) is very time-consuming. And insufficient times Monte
Carlo simulation (GICM200 ) is fast when the size of seed set is small, but the
error rate is correspondingly very high. Moreover, another drawback of Monte
Carlo simulation is that the processing time increases as seed set gets larger.
In contrast, all of our algorithms are iteration-based algorithms, so the running
time does not increase when seed sets become larger.



562 Y. Yang et al.

1 10 20 30 40 50

0.20%

0.40%

0.80%

1.6%

3.1%

6.2%

12.5%

25%

50%

100%
α=0.5

size of seed set

A
ve

ra
ge

 E
rr

or
 R

at
e

 

 

1 10 20 30 40 50

0.20%

0.40%

0.80%

1.6%

3.1%

6.2%

12.5%

25%

50%

100%
α=0.75

size of seed set
1 10 20 30 40 50

0.20%

0.40%

0.80%

1.6%

3.1%

6.2%

12.5%

25%

50%

100%
random α

size of seed set

SSSbyStep
GSbyStep
GS
MIP
SSS
SP1M
GICM200

Fig. 8. Average Error Rate Comparison on email-Enron Network Data

1 10 20 30 40 50

0.20%

0.40%

0.80%

1.6%

3.1%

6.2%

12.5%

25%

50%

100%
α=0.5

size of seed set

A
ve

ra
ge

 E
rr

or
 R

at
e

 

 

1 10 20 30 40 50

1.6%

3.1%

6.2%

12.5%

25%

50%

100%
α=0.75

size of seed set
1 10 20 30 40 50

0.20%

0.40%

0.80%

1.6%

3.1%

6.2%

12.5%

25%

50%

100%
random α

size of seed set

SSSbyStep
GSbyStep
GS
MIP
SSS
SP1M
GICM200

Fig. 9. Average Error Rate Comparison on ca-AstroPh Network Data

1 10 20 30 40 50
0.001s

0.01s

0.1s

1s

10s

100s
wiki−vote

size of seed set

Av
er

ag
e P

ro
ce

ss
in

g 
Ti

m
e(

s.)

 

 

1 10 20 30 40 50
0.001s

0.01s

0.1s

1s

10s
p2p−Gnutella04

size of seed set
1 10 20 30 40 50

0.01s

0.1s

1s

10s

100s
email−Enron

size of seed set
1 10 20 30 40 50

0.01s

0.1s

1s

10s

100s
ca−AstroPh

size of seed set

SSSbyStep GSbyStep GS MIP SSS SP1M GICM200 GICM

Fig. 10. Average Processing Time(α = 0.75)

5.4 Effectiveness of Iteration Threshold

In previous experiments, we set step[v] + 1 as the iteration threshold for each
node v. In this subsection, we provide an experimental proof of this value. We set
α = 0.75 and use GSbyStep algorithm as an example for evaluation, and similar
results can be observed for other parameter settings and algorithm SSSbyStep.
Let step[v] + r be the iteration threshold that we set in GSbyStep algorithm for
node v. We did 11 groups of experiments of computing influence spreads of the
1000 nodes we picked in Section 5.3 by setting r = 0, 1, 2, 3..., 10, respectively.
The corresponding average error rates for each r are shown in Fig.11.



On Approximation of Real-World Influence Spread 563

0 1 2 3 4 5 6 7 8 910
0

2.5%

5%

10%

15%

20%

25%
wiki−vote

r

Av
era

ge
 Er

ror
 Ra

te

0 1 2 3 4 5 6 7 8 910
0

2.5%

5%

10%

15%

20%

25%
p2p−Gnutella04

r
0 1 2 3 4 5 6 7 8 910

0

2.5%

5%

10%

15%

20%

25%
email−Enron

r
0 1 2 3 4 5 6 7 8 910

0

2.5%

5%

10%

15%

20%

25%
ca−AstroPh

r

Fig. 11. Average Error Rate under Different Iteration Threshold Settings

From Fig.11 we can see that error rates under different iteration thresholds do
not vary very much for the two directed networks, wiki-Vote and p2p-Gnutella04.
These results are similar to that in Fig.6 and Fig.7, where the error rates of
algorithms incorporating MIP heuristic(GSbyStep and SSSbyStep) are close to
the algorithms not considering such heuristic(GS and SSS ). In contrast, for the
two undirected networks, email-Enron and ca-AstroPh, when setting iteration
threshold to be step[v] + 1(r = 1) we can get the smallest error rate.

In all, the above results verify that setting iteration threshold to be step[v]+1
is reasonable for both directed and undirected networks. In this way, we can not
only achieve a better approximation for the real influence spread but also has
low computational cost(as shown in Fig.10).

6 Conclusion

In this paper, we exploited the fact that propagation probabilities in real-world
social networks are quite small for developing an iterative algorithm GS to
quickly compute the real influence spread, under IC model. Specifically, we
first explain that the influence spread can be well approximated by solving a
linear system. Then, we point out the structure defect problem existing in so-
cial networks which bothers many iterative computation algorithms. Based on
this discovery, we further improve both our GS algorithm and the SteadyState-
Spread algorithm by incorporating the MIP heuristic. Experimental results on
four real-world data sets demonstrate that GS algorithm can approximate the
real influence spread very well. Meanwhile, the improved algorithms(GSbyStep
and SSSbyStep) can achieve better approximations and save computational cost.

Acknowledgments. The work described in this paper was supported by grants
from Natural Science Foundation of China (Grant No. 61073110), The National
Major Special Science & Technology Projects (Grant No. 2011ZX04016-071),
and Research Fund for the Doctoral Program of Higher Education of China
(20113402110024), the Key Program of National Natural Science Foundation of
China (Grant No. 60933013).



564 Y. Yang et al.

References

1. Aggarwal, C.C., Khan, A., Yan, X.: On Flow Authority Discovery in Social Net-
works. In: SDM, pp. 522–533 (2011)

2. Anagnostopoulos, A., Kumar, R., Mahdian, M.: Influence and correlation in social
networks. In: KDD, pp. 7–15 (2008)

3. Aral, S., Muchnik, L., Sundararajan, A.: Distinguishing influence-based contagion
from homophily-driven diffusion in dynamic networks. Proceedings of the National
Academy of Sciences 106(51), 21544–21549 (2009)

4. Backstrom, L., Huttenlocher, D., Kleinberg, J., Lan, X.: Group formation in large
social networks: Membership, growth, and evolution. In: KDD, pp. 44–54 (2006)

5. Bakshy, E., Rosenn, I., Marlow, C., Adamic, L.A.: The Role of Social Networks in
Information Diffusion. In: WWW, pp. 519–528 (2012)

6. Bus, J.C.P.: Convergence of Newton-Like Methods for Solving Systems of Nonlinear
Equations. Numer. Math. 27(3), 271–281 (1977)

7. Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent viral
marketing in large-scale social networks. In: KDD, pp. 1029–1038 (2010)

8. Domingos, P., Richardson, M.: Mining the network value of customers. In: KDD,
pp. 57–66 (2001)

9. Goldenberg, K.J., Libai, B., Muller, E.: Talk of the network: A complex systems
look at the underlying process of word-of-mouth. Marketing Letters 12(3), 211–223
(2001)

10. Grosan, C., Abraham, A.: Multiple Solutions for a System of Nonlinear Equations.
International Journal of Innovative Computing, Information and Control 4(9),
2161–2170 (2008)

11. Keller, E., Berry, J.: The influentials: One American in ten tells the other nine how
to vote, where to eat, and what to buy. The Free Press (2003)

12. Kempe, D., Kleinberg, J.M., Tardos, É.: Maximizing the spread of influence
through a social network. In: KDD, pp. 137–146 (2003)

13. Kimura, M., Saito, K.: Tractable Models for Information Diffusion in Social Net-
works. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS
(LNAI), vol. 4213, pp. 259–271. Springer, Heidelberg (2006)

14. Langville, A.N., Meyer, C.D.: Deeper Inside PageRank. Internet Mathematics 1(3),
335–380 (2004)

15. Leskovec, J., Adamic, L.A., Huberman, B.A.: The dynamics of viral marketing.
ACM Transactions on the Web 1(1), 5 (2007)

16. Lewis, K., Gonzalez, M., Kaufman, J.: Social selection and peer influence in an
online social network. Proceedings of the National Academy of Sciences 109(1),
68–72 (2012)


	On Approximation of Real-World Influence Spread
	Introduction
	Related Work
	Approximating Influence Spread by Linear System
	Preliminary Observation
	Approximation of Real-World Influence Probability
	Linear System Formulation
	A Simple Iterative Algorithm

	Algorithms Incorporating MIP Heuristic
	Structural Defect
	Incorporating Maximum Influence Path Heuristic

	Experimental Evaluation
	Experimental Setup
	Ranking Problem
	Estimation of Influence Spread
	Effectiveness of Iteration Threshold

	Conclusion
	References




