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The generation of large amounts of personal data provides data centers with sufficient resources to mine idio- 
syncrasy from private records. User modeling has long been a fundamental task with the goal of capturing 
the latent characteristics of users from their behaviors. However, centralized user modeling on collected data 
has raised concerns about the risk of data misuse and privacy leakage. As a result, federated user modeling 
has come into favor, since it expects to provide secure multi-client collaboration for user modeling through 
federated learning. Unfortunately, to the best of our knowledge, existing federated learning methods that 
ignore the inconsistency among clients cannot be applied directly to practical user modeling scenarios, and 
moreover, they meet the following critical challenges: (1) Statistical heterogeneity . The distributions of user 
data in different clients are not always independently identically distributed (IID) , which leads to unique 
clients with needful personalized information; (2) Privacy heterogeneity . User data contains both public and 
private information, which have different levels of privacy, indicating that we should balance different infor- 
mation shared and protected; (3) Model heterogeneity . The local user models trained with client records are 
heterogeneous, and thus require a flexible aggregation in the server; (4) Quality heterogeneity . Low-quality 
information from inconsistent clients poisons the reliability of user models and offsets the benefit from high- 
quality ones, meaning that we should augment the high-quality information during the process. To address 
the challenges, in this paper, we first propose a novel client-server architecture framework, namely Hierar- 

chical Personalized Federated Learning (HPFL) , with a primary goal of serving federated learning for 
user modeling in inconsistent clients. More specifically, the client trains and delivers the local user model via 
the hierarchical components containing hierarchical information from privacy heterogeneity to join collab- 
oration in federated learning. Moreover, the client updates the personalized user model with a fine-grained 
personalized update strategy for statistical heterogeneity. Correspondingly, the server flexibly aggregates hi- 
erarchical components from heterogeneous user models in the case of privacy and model heterogeneity with 
a differentiated component aggregation strategy. In order to augment high-quality information and generate 
high-quality user models, we expand HPFL to the Augmented-HPFL (AHPFL) framework by incorporat- 
ing the augmented mechanisms, which filters out low-quality information such as noise, sparse information 
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and redundant information. Specially, we construct two implementations of AHPFL, i.e., AHPFL-SVD and 
AHPFL-AE, where the augmented mechanisms follow SVD (singular value decomposition) and AE (au- 

toencoder) , respectively. Finally, we conduct extensive experiments on real-world datasets, which demon- 
strate the effectiveness of both HPFL and AHPFL frameworks. 
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 INTRODUCTION 

assive personalized apps have gained popularity over the past decades, benefiting from the devel-
pment of personal devices. Simultaneously, an unprecedented amount of data is being generated
n individual devices at an astonishing speed [ 68 ]. Naturally, this vast amount of data is effectively
nalyzed to model the users, leading user modeling to become fundamental to capture useful po-
ential characteristics that rely on personal data [ 19 , 110 ]. For example, in intelligent education
ystems, user modeling assists cognitive diagnosis for modeling student capacities [ 88 ]; moreover,
n e-commerce recommender systems, user modeling helps to model customer preferences [ 30 ,
5 ]. Generally speaking, user modeling processes centralized training with collected data, much
f which is private, which results in privacy leakage. Considering the privacy and sensitivity of
ersonal data, regulations such as the General Data Protection Regulation (GDPR) have been
nacted to restrict the centralized use of private data [ 7 , 84 , 87 ]. In this case, data that is forced
o remain local (e.g., personal devices) becomes isolated [ 54 , 90 ]. By focusing on this dilemma,
ederated learning (FL) has attracted widespread attention owing to its ability to achieve secure
istributed user modeling [ 65 , 69 ]. This approach involves building and aggregating user models
hile leaving private data isolated, thereby preserving the data privacy [ 60 ]. 
Broadly speaking, standard federated learning is a centralized system for client collaboration,

ollowing a client-server architecture, as shown in Figure 1 (a). There are two participants in feder-
ted learning, specifically the client and server. In federated learning, the local data in the clients
re not required, while only the models are shared among participants. In particular, the client
rains and delivers models only with the local data, while the server aggregates the homogeneous
ocal models to a global one and distributes it back. In the case of isolated data, federated learn-
ng guarantees user privacy protection on the client-level by silos. In the literature, many efforts
ave been made to improve federated learning from a technical perspective, such as FedSGD, Fe-
Avg [ 60 ], FedAtt [ 38 ], and FedProx [ 47 ]. Though some great performances have been achieved,
revious works are “dance in shackles”, that is, current federated learning frameworks are designed
or consistent clients [ 28 ]. Concretely speaking, on one hand, researchers assume that the data in
he clients are consistent, i.e., independent and identically distributed (IID) . On the other
and, researchers simply initialize the local models of various clients with consistent structures.
hese assumptions limit the ability of federated learning to adapt to inconsistent clients in user
odeling scenarios, where there are clients with variant information and models based on differ-
nt usage habits [ 43 ]. It is therefore necessary to design a superior federated learning framework
hat better fits in federated user modeling tasks for isolated data from inconsistent clients [ 39 ]. 
Nevertheless, the particularity of user modeling with inconsistent clients leads to the following
ultilevel challenges: (1) Statistical heterogeneity : Unlike the traditional scenarios in which the
CM Transactions on Information Systems, Vol. 41, No. 2, Article 46. Publication date: March 2023. 
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Fig. 1. Differences between standard federated learning (left), and our hierarchical personalized federated 
learning (right) for user modeling. 
Standard FL simply aggregates and updates the consistent entire user models indiscriminately, while HPFL 
partitions and processes the different components of the heterogeneous models independently. The top part 
illustrates a server with a global model. The bottom presents clients with Non-IID data and local user models. 
Each round consists of four steps: training a model locally, sending the model to the server, model aggregation 
in the server, and updating models for clients. 
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ata is assumed to be IID [ 5 ], personal records for user modeling are usually non-independently
dentically distributed (Non-IID) , which is the source of personalization among population [ 48 ].
or example, as shown in Figure 1 , the preferences of users in the client 1 are focused on the items
elonging to two different regions, while the users in the client 2 prefer other items from a cer-
ain region. The methods training local models to cover all clients based on the consistent global
odel, inevitably eliminate the personalization of clients and reduce the ability of user models to
epict user characteristics [ 70 ]. Accordingly, it is necessary to integrate the personalized infor-
ation of user models to adapt statistical heterogeneity; (2) Privacy heterogeneity : As suggested
y [ 2 , 21 ], different types of information have different levels of privacy. For example, as shown in
igure 1 , the attribute information of items (e.g., labels and categories) in the clients are relatively
ublic, as they are summarized from prior domain knowledge and rules and are consistent for all
lients [ 49 ]. As we know, for any customer, the labels of a T-shirt (like color and style) are consis-
ent. While information such as representations of users in user models are strictly private since
hey reflect the user idiosyncrasy [ 10 ]. On one hand, in order to expand more information, rashly
haring representations will bring the risk of exposing privacy [ 31 ]. On the other hand, discarding
he sensitive information to protect privacy will lead to a loss of available information. Therefore,
e should securely apply specialized federated learning settings to the hierarchical information
ith privacy heterogeneity so that we can balance the information to be protected or shared across
ser models. Based on the partition of clients for privacy, federated learning can be divided into
wo scenarios: one is cross-device federated learning, that is, data is only stored in personal devices
ith strict privacy requirements; the other is the cross-silo federated learning with general privacy
equirements, that is, data can be centralized in some organizations or geo-distributed datacenters
nd each client could control the data from a number of their respective users [ 43 ]. In our paper,
e focus on the cross-silo federated learning scenario with the different granularity of private
nformation; (3) Model heterogeneity : The mainstream federated learning methods use consistent
ACM Transactions on Information Systems, Vol. 41, No. 2, Article 46. Publication date: March 2023. 
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ser models to model all locals [ 43 ]. However, in practical user modeling applications, due to
he different properties of the private data, the user model structures are often different among
ifferent clients [ 46 ]. As shown in Figure 1 , the different item spaces browsed by users leads to
ifferences in the structures of user models. Therefore, the strategy for flexibly processing hetero-
eneous user models in federated learning also requires a careful design. 
To tackle these challenges, first in our preliminary work [ 97 ], we proposed a novel personalized

ederated learning framework for user modeling, called Hierarchical Personalized Federated

earning (HPFL) framework. Generally speaking, HPFL followed the client-server architecture
s shown in Figure 1 (b). While in the client stage of HPFL, a two-stage process was applied to bal-
nce the protecting and sharing of information. In the first phase, the client defined the hierarchical
nformation as public information and private information from privacy heterogeneity in personal
ata. Accordingly, a general user model with hierarchical components, consisting of both public
omponent and private component was initialized and trained in each client. Afterward, the client
ploaded the local user model by components; more specifically, it directly uploaded the public
omponent, while delivering the drafts of the private component instead of the original informa-
ion to safeguard the data privacy. In the second phase in the client, the client updated the local
ser model by a proposed fine-grained personalized update strategy. The corresponding compo-
ents in the client were updated from a fusion of both the local user model and global model from
he server. As for the server stage, the server flexibly aggregated inconsistent local user models
y components using a differentiated component aggregation strategy. For the public components,
he server executed a weighted aggregation on the same attribute. Correspondingly, for the private
omponent, the server aggregated the universe of local drafts by clustering on representations to
idely expand the available information. In client, we took both the expansion of the user model
nowledge at the global perspective and the inheritance of user model personalization at the lo-
al perspective into consideration, which accommodated statistical heterogeneity. Moreover, in
he server, we safely aggregated inconsistent user models by different components, enabling us to
ddress both privacy heterogeneity and model heterogeneity. 
In HPFL, we carried out federated learning on inconsistent clients to directly aggregate and
pdate the extensive information by components. As a result, it ignored another possible quality
eterogeneity challenge among the clients: (4) Quality Heterogeneity : The success of deep learning-
ased user modeling method is highly dependent on data quality [ 55 , 96 ]. In real scenarios, the
solated data from the clients is not always sufficient and of high quality. Instead, there is partial
ow-quality information, such as noise, sparse information and redundant information, which may
esult in low-quality user models. For example, as shown in Figure 1 (b), the data quality varies
rom client to client. Data quality in Client 1 and 2 may be higher due to the purer data with
ew noises and guide to higher quality user models, while the data in Client 3 may be noisier,
hich eventually leads to low-quality user models. Once the low-quality local models participate
n the aggregation process in federated learning, all user models are later damaged, ultimately
educing the effectiveness of user modeling. Obviously, there is quality heterogeneity in federated
ser modeling. Therefore, we should pay more attention to the high-quality information in the
ser model rather than harnessing all information where the quality is not even. 
In this paper, based on our previous HPFL, we further propose an extended framework,
ugmented-HPFL (AHPFL) to augment the high-quality information of different clients in fed-
rated learning, considering the quality heterogeneity caused by inconsistent clients. More specif-
cally, during the client updating and server aggregation process, rather than using the original
euristic method, we reprovingly augment the information from clients with the augmented mech-
nisms so as to refine the high-quality information. In particular, we implement the augmented
echanisms in the AHPFL framework, following some existing typical augmented mechanisms.
CM Transactions on Information Systems, Vol. 41, No. 2, Article 46. Publication date: March 2023. 
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he first one is a matrix decomposition-based method, i.e., AHPFL-SVD with singular value de-
omposition, which decomposes and truncates all information to lossily compress the original in-
ormation into a higher-quality one. The second is a neural network-based method, i.e., AHPHL-AE
ith autoencoder, which extracts valuable high-quality information from the original information.
Finally, we conduct extensive experiments on some typical user modeling scenarios, including

ntelligent education and recommendation systems. More specifically, the experiments are
pecialized on the student capacities modeling and user preferences modeling task. Experimental
esults on real-world datasets clearly demonstrate the superiority of our HPFL and AHPFL
rameworks in user modeling tasks in terms of quantitative performances and modeling ratio-
ality as well as the augmented extent of AHPFL. To the best of our knowledge, HPFL is the
rst comprehensive attempt to serve federated learning for user modeling by components in
ser models. Furthermore, AHPFL is designed to augment high-quality information from the
nconsistent clients in federated user modeling. 

 RELATED WORK 

n this section, we review the related works from three aspects in terms of user modeling, federated
earning, and augmented mechanism. 

.1 User Modeling 

ser modeling is a fundamental task, with the goal of analyzing behavioral information and in-
erring the unobservable characteristics such as capability, preference, habit, and tendency [ 110 ].
ser modeling has been widely used to model rich user characteristics in various applications. For
xample, based on user capability fitting, researchers have employed user modeling to model user
ision level [ 16 ], lawyer expertise [ 71 ], and gamer competitiveness [ 104 ]; based on user preference
ining, researchers have also applied user modeling to tasks such as personalized search [ 59 ,
4 , 100 ], restaurant recommendation [ 107 ], news recommendation [ 17 ], social network [ 98 , 105 ],
nd other broad recommendation tasks [ 50 , 76 , 80 , 108 ]. To effectively model users based on
arge amounts of data, some artificial neural network-based user modeling methods have been
eveloped and applied into some personalized user modeling tasks. Neural Cognitive Diagnosis
NeuralCD) [ 88 ] provides a general cognitive diagnosis paradigm for fitting student cognitive
bilities in intelligent education system. Neural Collaborative Filtering (NCF) [ 30 ] generalizes
raditional matrix factorization to mine the user interest preferences for collaborative filtering
ecommendation. These methods establish a set of user modeling processing based on neural
etworks to mine unobservable information of users and build the hidden relationship between
sers and items in some particular scenarios. 
Currently, most of the existing user modeling methods expect to fully optimize models with the

entralized training process. However, there are growing concerns regarding the risks of revealing
he user data privacy, leading to obstacles in practical applications. Therefore, we raise the feder-
ted user modeling task, which aims to process user modeling for isolated and inconsistent clients
ia federated learning technique. 

.2 Federated Learning 

ederated learning (FL) has become a promising machine learning technique in recent years.
ederated learning was first proposed to solve the problem of model updating in distributed mobile
erminals [ 60 ]. Clients in the federated learning process are asked to train and deliver their models
ndependently. An aggregated global model from the server is then provided to update the local
odels. In the process, the data is kept locally, and only the models participate in the collaboration,
eaning that the workflow guarantees data isolation and privacy protection. Owing to the growing
ACM Transactions on Information Systems, Vol. 41, No. 2, Article 46. Publication date: March 2023. 
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ocus on privacy protection, regulations such as the General Data Protection Regulation

GDPR) have been developed that limit the collection and use of personal data, meaning that fed-
rated learning has received extensive attention. From a technical perspective, existing federated
earning frameworks can be categorized into three types [ 102 , 103 ], i.e., horizontal federated learn-
ng, vertical federated learning, and federated transfer learning. Specifically, horizontal federated
earning adapts to the cases where the data in the different clients shares the same feature space of
tems, but the users are different; in vertical federated learning, the data shares the same user space,
ut the feature spaces of items are not quite overlapped [ 13 ]; finally, federated transfer learning
aces the scenarios where both the feature spaces and the user spaces are inconsistent [ 41 , 52 , 53 ].
Since then, some model fusion methods for improving the process have been proposed [ 39 ].

edSGD and FedAvg [ 60 ] train the local model in parallel. The server here simply generates a
lobal model by the weighted average of the local model parameters according to data sizes. At-
entive aggregation method, FedAtt [ 38 ] considers the different importances of local models and
ggregates local models by applying a layer-wise soft attention mechanism between local models
nd the global model; And FedAmp [ 34 ] employs federated attentive message passing to facilitate
imilar clients, which does not use a single global model on the cloud server to conduct collabora-
ions. Regularization method, FedProx [ 47 ] subjoins a proximal term to close the local model and
he global model, which aims to avoid excessive drift during optimization. 
However, current works are proposed based on the assumption of consistent clients and

ccordingly provide a uniform model for all clients, which is out of operation in practical
cenarios [ 58 ]. Moreover, the methods discussed above still introduce the risk of privacy leakage,
specially when the models submitted contain sensitive representation information, e.g., the
ser representations in user models. Unfortunately, the common privacy protection method,
ifferential privacy federated learning [ 23 , 61 ], faces the dilemma of that the confidentiality and
ccuracy are not entirely available simultaneously [ 8 , 33 , 82 ]. Therefore, some difficulties in
pplying federated learning still remain. 

.3 Augmented Mechanism 

ata is often corrupted, therefore some augmented mechanisms which aim to augment useful in-
ormation and erase low-quality information such as noise, sparse information, and redundant in-
ormation from the original data, receive extensive attention [ 77 ]. In recent years, some augmented
echanisms have been widely used in audio augmented [ 44 ] and image augmented tasks [ 4 ]. Re-
arding tasks of this kind, SVD (singular value decomposition) -based methods [ 1 , 18 ] and AE
autoencoder) -based methods [ 85 , 86 ] are the typical ones of the representative works. SVD is a
atrix decomposition-based method, which decomposes the original data into different compo-
ents according to singular value decomposition and selects some effective components to recon-
truct new significant information. While AE is a self-supervised deep learning method comprising
oth an encoder and decoder. The former encodes the original representation into the hidden rep-
esentation, while the latter decodes the hidden representation into the original representation
ith the goal of minimizing the reconstruction error. Ultimately, the autoencoder has the ability
o extract more valuable information from the original data while avoiding noise. In this paper,
e adopt these classical augmented methods to filter low-quality information from inconsistent
lients in federated learning, so as to obtain high-quality user models. 

 PRELIMINARIES 

n this section, we first formally introduce the federated user modeling issue and define the hier-
rchical information in the isolated scenarios. We then consider two real scenario specifications
or user modeling. 
CM Transactions on Information Systems, Vol. 41, No. 2, Article 46. Publication date: March 2023. 
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.1 Problem Definition 

efore outlining the framework design, we formally provide the issue of federated user modeling.
t is a cross-silo federated learning scenario. In the federated user modeling scenario, there are | C |
lients which store local user data independently. In a specific client c , there are | U c | users and
| V c | items, which can be represented as: U c = {u 1 , u 2 , . . . } and V c = {v 1 , v 2 , . . . }. The attributes of
tems from different clients are consistent as items of the same type share the labels. In all, there
re K attributes. Moreover, the users interact with the items in the same client, generating | R c |
nteraction records. These interaction records consist of the triplet (u, v, д), which contains user u,
tem v of attribute k and their interaction result д. To tackle the problem in this paper, we expect
o obtain | C | local user models, i.e., {Θ1 , Θ2 , . . . } for each client, where the c-th user model Θc can
odel the potential characteristics of users in the client c for predicting the interaction results
hile maintaining data isolation. 
As mentioned earlier, clients are inconsistent in the federated user modeling scenarios. For fed-

rated user modeling on inconsistent clients, we define different information based on privacy
eterogeneity. Further, we divide the information of both data and model according to it. In the
eal world, some knowledge information is public and shared among all clients, such as attributes
f items, which are relatively public and can be freely communicated. In addition, clients also
ightly hold some strictly private information in personal data for privacy protection, such as dis-
ributions of users and items. In order to reasonably utilize information with different degrees
f privacy intensity as much as possible while avoiding the risk of privacy disclosure, we define
ierarchical information to balance the protection and utilization, which is denoted as follows: 

Public information, In f k . It contains the prior domain knowledge which is shared among clients,
uch as the K attributes from R c . In this case, the public information is relatively private and
ncompetent to expose the sensitive information of users. Obviously, the owner of the data will
olerate the direct access to and use of the public information. 

Private information, In f r . It refers to the sensitive information which is proprietary for clients,
uch as the interaction in R c . The private information is generated from the unique distributions
f users and items among each client, which represents specific characteristic or preference infor-
ation. Apparently, it is expected to be strictly protected. 
Notably, these two kinds of information are also used in the user model. Therefore, each local
ser model Θ can be divided into public components (denoted as Θk ) for public information and
rivate components (denoted as Θr ) corresponding to the hierarchical information. In practical
cenarios, the user data in devices is too proprietary to be collected so that it is hard to conduct
entralized training, which results in isolated and inconsistent user modeling. 

.2 Scenario Specifications 

ser modeling has been applied in many scenarios, including education, e-commerce, catering,
nd so on. In this work, two representative issues in real user modeling scenarios are chosen and
ur frameworks are applied to them. The first task is to model user capability such as student
nowledge state in education. The goal of the task is to predict the student performances [ 51 ].
orrespondingly, the user u, item v and information of K attributes in our problem are denoted
s the student, question, and knowledge concepts in the question, respectively. The result of in-
eractive behavior д is the student’s response to the question, and the target in this scenario is to
odel student’s mastery of questions and predict the student performances. Then the other task is
o model user preferences in scenarios such as recommendation. This task is regarded as customer
ating prediction. Similarly, user u, item v and K attributes are here viewed as customer, product,
nd product categories. The interactive behavior is the user evaluation of the product. The ultimate
ACM Transactions on Information Systems, Vol. 41, No. 2, Article 46. Publication date: March 2023. 
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Fig. 2. Hierarchical Personalized Federated Learning framework, HPFL. 
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bjective is to model customers’ interests to predict the users’ ratings on items. Please note that,
n our paper, we focus on the cross-silo federated learning scenario. In that case, the clients can be
egarded as the data silos or data centers, thus there is more than one user in a client. 

 HIERARCHICAL PERSONALIZED FEDERATED LEARNING 

n this section, we describe our Hierarchical Personalized Federated Learning (HPFL) frame-
ork [ 97 ] for user modeling in more detail. Specifically, we first sketch out an overview of our
ramework. We then cover the technical details of the client and server design. Next we design a
eneral user model as the local user model for hierarchical information, namely GUM . Finally,
e review the entire workflow of HPFL. 

.1 Model Overview 

eterogeneities impede user collaboration in federated learning [ 47 ]. To resolve this dilemma, we
ropose a novel Hierarchical Personalized Federated Learning (HPFL) framework as illustrated in
igure 2 . HPFL is developed from the client-server architecture of federated learning. The client
s responsible for training a simple while proprietary user model with private records, that is a
eneral user model (GUM) in our framework. Besides, it delivers the different components of the
ser model and updates a personalized user model using the fine-grained personalized update
trategy based on the global model received. The server is in charge of fusing heterogeneous local
ser models to a global one by different components with the differentiated component aggrega-
ion strategy. In a nutshell, the client maintains the personalization from Non-IID user data and
he server allows to aggregate different components of the heterogeneous user models without
ompromising privacy. We will introduce the technical details of the two parts in the following
ubsections, respectively. 

.2 Client Design 

n isolated client only holds and processes its own data. While in our framework, the client par-
icipates the federated learning workflow by two phases: one is to upload the trained local user
odel, and the other is to obtain the global model to update its personalized user model. Specially,
he client first independently initializes and trains a general user model named GUM. The GUM
ontains both the public and private components, which are designed for hierarchical information
CM Transactions on Information Systems, Vol. 41, No. 2, Article 46. Publication date: March 2023. 
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GUM will be introduced in more detail in Section 4.4 ). The user model is trained with only local
ata and aims to model local user characteristics appropriately. 
To join the federated learning with an upload phase, the client delivers the local user model.

pecially, a submission by different components that makes full use of the information is adopted.
n particular, the public component with public information is delivered directly. While the pri-
acy component is maintained by the client, since it is sensitive and its centralized use can lead
o privacy leaks. Instead, the client only provides some drafts, which are generated as a rough es-
imation for user or item representations. Specifically, as shown in Figure 2 , the client is required
o process a clustering task on Θr to obtain the local cluster centers as drafts, which are represen-
ative for representations in the user model, but low sensitive. In some special situations, such as
nly one user in a client, we can simply mask the embedding with noises to generate the drafts, or
e can maintain the user embedding while only delivering the drafts of item embeddings. Then
he two components will be aggregated in the server, which will be introduced in Section 4.3 . 
To obtain the benefit from federated learning with update phase, after accepting the aggre-

ated global model, the client is mainly responsible for absorbing the abundant information from
he global model to update the local GUM. An appropriate user model will then be applied to
urther applications. However, clients in federated user modeling have personalized information
ue to statistical heterogeneity. Methods such as model interpolation [ 58 , 63 ] are utilized to re-
ain personalized information and customize user models for clients. To some extent, it enhances
he adaptability of the framework to inconsistent scenarios. Unfortunately, since the black-box
odel interpolation may introduce poor results [ 3 ], we regulate a fine-grained personalized up-
ate strategy to fuse the local personalized information and global generalized information into
UMs by different components as shown in Algorithm 1 . The fusion process is in reference to a
ertain weight, which can reflect the importance of the local model. Note that the comparison on
eights is not our focus. Therefore, we choose local test accuracy as an intuitive dynamic weight
n principle. 
For public component in GUM, that is, the knowledge vectors of attributes, at round t , client i

dds the local attribute knowledge vector c t 
k,i 

and the global attribute knowledge c t,д 
k 

on attribute

via the corresponding accuracy Ac c t 
k,i 

to accuracy-weighted update the new knowledge vector
s: 

c 
t 
k,i = c 

t 
k,i ×Ac c t k,i + c t,д k 

× (1 −Ac c t k,i ). (1)

pparently, the better the performances achieved by the local attribute knowledge, the more likely
t is to retain its own knowledge. However, the poor knowledge vector that requires a further
ptimization will be out of the local optima after synthesizing the global information. 
Correspondingly, for private component in GUM, that is, the user and item representations, the

lient i distance-weighted updates new representation with all of the N global cluster centers to
acilitate extensive collaboration with other participants, via the distances between the j - th local
mbedding in the client i ( Emb j,i ) and global centers Θ

д 
r . The update process can be denoted as

ollows: 

Emb 
д = 

N ∑ 

n= 1 

| | Emb j,i − Θд 
r,n | | × Θд 

r,n ∑ N 

m= 1 | | Emb j,i − Θд 
r,m 

| | , 

Emb j,i = Emb j,i × Acc i + Emb 
д × (1 − Acc i ). (2)

n particular, Acc i is an accuracy vector, representing the accuracy of the local model on each
ttribute. Similarly, we maintain the more accurate representations and initialize the more incom-
etent representation to a general one before the next local iteration. 
ACM Transactions on Information Systems, Vol. 41, No. 2, Article 46. Publication date: March 2023. 
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ALGORITHM 1 : Fine-grained Personalized Update. 

Input: The aggregated global public components, Θ
д 

k 
; The aggregated global private components, Θ

д 
r ; The 

original local public components, Θk and private components, Θr ; 
Output: The updated local public components, Θk and private components, Θr ; 
1: Update ( Θk , Θ

д 

k 
, Θr , Θ

д 
r ) : 

2: compute new local Θk on attributes by Equation ( 1 ) 
3: If HPFL: 
4: compute new local Θr by Equation ( 2 ) 
5: If AHPFL: 
6: compute new local Θr following augmented mechanism by Equations ( 10 ) or ( 11 ) 
7: return Θk and Θr 
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.3 Server Design 

PFL extends the available information as much as possible with aggregation of local user models
o the global user model in the server. In existing federated learning frameworks, the server follows
he conventional aggregation strategy to fuse all local models. However, the client inconsistency
n federated user modeling causes privacy heterogeneity and model heterogeneity, which makes
imple strategy inappropriate [ 2 ]. In HPFL, we propose a flexible aggregation for inconsistent
ser models to separately aggregate the different components in GUM, i.e., the public components
nd private components. It is the differentiated component aggregation strategy as presented in
lgorithm 2 . 
For the public component Θk in GUM, that is the user and item embeddings, which is with

elative openness and tolerated to be directly fused, the server weighted aggregates the same at-
ribute to obtain the global public components in Figure 2 . In particular, in round t , after the local
ublic components are delivered from clients, the server fuses each knowledge vector ( c t 

k,i 
) on at-

ribute k from clients i in reference to both the number of iterations on attribute k ( I t 
k,i 

) as well as

he local validation accuracy ( Ac c t 
k,i 

). Finally, the global attribute knowledge, c t,д 
k 

in global public

omponent Θд 

k 
is denoted as: 

c 
t,д 

k 
= 

∑ C 
i= 1 δ (Ac c 

t 
k,i 
, p ) × (I t 

k,i 
×Ac c t 

k,i 
) × c t 

k,i ∑ C 
i= 1 δ (Ac c 

t 
k,i 
, p ) × (I t 

k,i 
×Ac c t 

k,i 
) 
. (3)

n particular, δ (x , p) is an indicator function with a dynamic threshold p, where δ (x , p) = 1, if
 > p ; otherwise, δ (x , p ) = 0. That is, the server randomly discards some knowledge vectors to
ynamically select vectors in user models that are eligible to partake their knowledge. 
For the private component Θr in GUM, it is strictly private. Since it is proprietary, unscrupu-

ous alignment and fusion processes will reveal private preference information [ 31 ]. Therefore, the
erver receives the cluster centers in the clients which are regarded as the drafts of their represen-
ations from local user models. Subsequently, the server aggregates the information in representa-
ions via further clustering with all cluster centers as shown in Figure 2 . The new cluster centers
n the server, which are defined as the global private components Θд 

r , represent the comprehensive
epresentations of the bunches which involve similar users or items from different clients. 

.4 Local User Model Design 

lients use the local user model to properly model the characteristics of the users in various tasks.
ndeed, more complex models (e.g., Neural Cognitive Diagnosis (NeuralCD) [ 88 ] and Neural
ollaborative Filtering (NCF) [ 30 ]) are likely to be more suitable for the corresponding scenario,
CM Transactions on Information Systems, Vol. 41, No. 2, Article 46. Publication date: March 2023. 
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Fig. 3. General user model, GUM. 

ALGORITHM 2 : Differentiated Component Aggregation. 

Input: The set of public components from clients, S k ; The set of drafts of private components from clients, 
S r ; The set of local validation results from clients, S acc ; 

Output: The aggregated global public components, Θ
д 

k 
; The aggregated global private components, Θ

д 
r ; 

1: initialize p. 
2: Aggregation ( S k , S r , S acc ) : 
3: If HPFL: 
4: compute Θ

д 

k 
on attributes with S k , S acc and p by Equation ( 3 ) 

5: If AHPFL: 
6: compute Θ

д 

k 
on attributes following augmented mechanism by Equations ( 13 ) or ( 14 ) 

7: Θ
д 
r ← Cluster ( S r ) 

8: return Θ
д 

k 
and Θ

д 
r 
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hile it has weak generalization for other tasks [ 9 ]. In addition, both of the above two models
ocus on low dimensions for user and item representations on attributes that lack the ability to
odel deep information [ 91 ]. We therefore propose a General User Model (GUM) with the deep
epresentation as the Θ in our proposed HPFL framework, as shown in Figure 3 . 
GUM aims to model the potential characteristics of users and can be divided into public and pri-

ate components, which are correspondingly designed for the hierarchical information. As shown
n Figure 3 , we use the triplet record (u, v, д) as the input of GUM. We then fetch the K-dimensional
ser embedding ( Emb u ) and item embedding ( Emb v ) via the user id and item id, respectively. The
mbeddings reflect the distributions of the inputs on the attributes. As mentioned before, the em-
eddings contain extremely private information, which can be used to infer local data distributions,
o that they are defined as private components. In addition, we convert the attribute ids of the item
into the multi-hot vectors, which are used to correspondingly strengthen the information of cer-
ain attributes. 
Next, we fuse the distributions on the attributes to the multidimensional vector representation.
he representations of a user or item are treated as the summary of the characteristics. We design
hree matrixes as the mapping matrixes: i.e., the knowledge matrix u ( KM u ), relation matrix ( RM),
nd knowledge matrix v ( KM v ) in Figure 3 . KM u and KM v are K × N matrixes which represent
he N-dimensional knowledge vectors of K attributes at user and item perspectives, respectively.
oreover, RM is a K × K matrix that indicates the knowledge relation among K attributes. With

he multi-hot vector of the attribute information of the current item, we fetch the K-dimensional
ttribute vector ( Emb c ) from RM , which is on behalf of the relation of attributes. Finally, we com-
ute the user representation ( R u ) and item representation ( R v ) as follows: 

R u = Emb u · Emb c 
T · KM u . (4)

R v = Emb v · Emb c 
T · KM v . (5)
ACM Transactions on Information Systems, Vol. 41, No. 2, Article 46. Publication date: March 2023. 
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bviously, the three mapping matrixes represent attributes with some multidimensional vectors,
here the knowledge is relatively public and difficult to be used to detect private information.
herefore, we define these elements of GUM as public components. 
Finally, we simply calculate the differences between the representations of user and item as the
ser reflex on an item as: 

P uv = R u − R v . (6)

he reflex P uv measures the relation between user and item and can be used for different tasks.
n our work, we use it to predict the objective in user modeling tasks. In particular, we multiply it
ith a simple N × 1 hidden mapping matrix (HM) to obtain a continuous value, representing
he final prediction as: 

F uv = P uv · HM . (7)

n addition, we can represent the hidden characteristic, e.g., capability or preference of user out of
he items based on the multidimensional representations as: 

h u = Emb u · (KM u · HM ) . (8)

GUM can be the function structure for federated user modeling. Specially, GUM establishes both
he private and public components for hierarchical information. The private components are su-
erficial private representations of users and items, while the public components contain the mul-
idimensional knowledge information on attributes. GUM can map the private representations to
he multidimensional representation vectors, i.e., user representations and item representations,
ith mapping matrixes. Finally, a reflex between user and item is calculated for further prediction
n user modeling tasks. Our proposed GUM is a flexible basic user model, so that it can be trans-
ormed to other common models. For instance, if we remove all the mapping matrix, the GUM
ill degenerate into a matrix factorization-like model. It is noting that we focus on serving fed-
rated learning for general user modeling tasks, GUM is selected due to the convenience, and the
omparison between user models is not important. 

.5 HPFL Workflow 

lgorithm 3 presents the iteration workflow of HPFL between clients and the server. For each
lobal round, the client first processes local training with only local data on GUM and then de-
ivers the local model to the server via different components. Hereafter, as shown in Algorithm 2 ,
he server aggregates all local public components and private components by the differentiated
omponent aggregation strategy and distributes the global components to all clients. Finally, as
hown in Algorithm 1 , the client receives the different aggregated components from the server
nd executes a fine-grained personalized update to improve its own user model. It is worth noting
hat, in our process, clients can independently initialize the local user models, since the federated
earning on different information and structures of user models is achieved. 

 AUGMENTED HIERARCHICAL PERSONALIZED FEDERATED LEARNING 

PFL can effectively overcome the statistical, privacy, and model heterogeneities arising due to
nconsistent client scenarios in federated learning. However, HPFL expects to absorb an extensive
mount of information. Specially, clients indiscriminately fuse all global clustering centers to local
epresentations as in Equation ( 2 ), and the server fuses the knowledge vectors from clients by a
aint selection according to test indicators as in Equation ( 3 ). In fact, these naive methods may
ead to harmness to the subsequent user models because of quality heterogeneity. In federated
ser modeling, local data distributions are not always of high quality as shown in Figure 1 (b). For
xample, in the clients, there are always various reasons for low data quality; for example, the
CM Transactions on Information Systems, Vol. 41, No. 2, Article 46. Publication date: March 2023. 
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Fig. 4. Augmented Hierarchical Personalized Federated Learning framework, AHPFL. 

ALGORITHM 3 : The HPFL framework. 
1: Server executes: 

2: initialize Θ0 
k 
. 

3: for each round t = 1, 2,. . . do 
4: initialize S k = { } , S r = { } , S acc = { } 
5: for each client index c ∈ C in parallel do 

6: Θt+1 
k,c 
, Lc t+1 c , Acc 

t+1 
c ← ClientUpdate ( c , Θ

t,д 
k 
, Θ

t,д 
r ) 

7: S k = S k ∪ Θt+1 
k,c 
, S r = S r ∪ Lc t+1 c , S acc = S acc ∪ Acc t+1 c 

8: Θ
д,t+1 
k 

, Θ
д,t+1 
r ← Aggregation ( S k , S r , S acc ) according to Algorithm 2 

1: ClientUpdate ( c, Θ
д 

k 
, Θ

д 
r ) : 

2: Θk , Θr ← Update ( Θk , Θ
д 

k 
, Θr , Θ

д 
r ) according to Algorithm 1 

3: Θk , Θr , Acc ← LocalTraining ( c, Θk , Θr ) 
4: Lc ← Cluster ( Θr ) 
5: return Θk , Lc and Acc to server 
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oise caused by an accidental touch, sparse or missing values due to disconnection of applica-
ions and redundant ones resulting from repeated operations, all of which result in user models
f different quality. The naive methods mentioned for information fusion inevitably introduce
uch low-quality information. Naturally, reasonable augmented of high-quality information in the
lients for local user models is beneficial to the user modeling tasks. 
From this view, in this section, we further address the quality heterogeneity challenge in feder-

ted learning. We extend the current HPFL and propose an Augmented Hierarchical Personalized
ederated Learning (AHPFL) framework by introducing the augmented mechanism, indicated by
he yellow parts shown in Figure 4 . In both aggregation in the server and update process in the
lient, we introduce the augmented mechanism to filter the original information, where some low-
uality information has been incorporated. Specifically, we replace the distance-weighted update
Equation ( 2 )) in the client and the weighted aggregation for knowledge (Equation ( 3 )) in the server
ith some typical augmented mechanisms, such as SVD and AE as the augmented mechanism in
ur framework to implement the AHPFL-SVD and AHPFL-AE, respectively. In the following, we
ill introduce the details of the augmented client and server design. 
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.1 Augmented Client Design 

n clients, AHPFL follows the same upload phase. As for the update phase, different from the client
esign in HPFL, we add an augmented mechanism to update the high-quality private components
s Algorithm 2 . The original distance-weighted aggregation strategy is easily affected by low-
uality information, such as outliers in clustering centers, resulting in damages for user models.
herefore, we design an augmented mechanism to filter out low-quality centers and integrate
igh-quality ones to j - th local embeddings in the client i Emb j,i as shown in Figure 4 , which is
ransformed from Equation ( 2 ) as: 

Emb 
д = AM ({Θд 

r,1 , Θ
д 
r,2 , . . . , Θ

д 

r,N 

}), 
Emb j,i = Emb j,i × Acc i + Emb 

д × (1 − Acc i ). (9)

here AM (·) is the augmented mechanism used in our framework. AM (·) receives all global public
omponents ( N clustering centers) as the input and then outputs a high-quality vector representing
urification of the embedding centers. There are many ways to achieve it, in this paper, we choose
wo of the typical methods, SVD and AE. In particular, we propose two implementations, namely
VD-based augmented and AE-based augmented mechanism. 
For SVD-based AM (·) , we first implement a matrix decomposition process on the matrix from

ll of N global clustering centers. Subsequently, we intercept the parameters with the largest M
ingular values and carry out weighted aggregation to compress all global clustering centers lossy.
he SVD-based AM (·) is denoted as Equation ( 10 ). With the SVD augmented mechanism, the
seless information, which is always with lower singular values, is filtered out, while the high-
uality global components participate in fine-grained personalized update instead of the original
nformation. 

{Θд 
r,1 , Θ

д 
r,2 , . . . , Θ

д 

r,N 

} = U ΣV 

T , 

Emb 
д = 

M ∑ 

m= 1 

U m 

· Σm ∑ M 

i= 1 Σi 
·V 

T 
m 

. (10)

For AE-based AM (·) , we design a regularization autoencoder to directly mine the useful infor-
ation vectors from the global clustering centers. All of N global clustering centers are encoded
o a compressed vector, which contains valuable information. The vector is then decoded back to
he unfolded vectors. The goal of the autoencoder is to reconstruct the original information as ac-
urately as possible. The process is denoted as Equation ( 11 ). With the AE augmented mechanism,
e can effectively mine the potential distribution information of components from the centers. 

X = {Θд 
r,1 , Θ

д 
r,2 , . . . , Θ

д 

r,N 

}, 
Emb 

д = Encoder (X ), 

Y = De code r ( Emb 
д ), 

loss = | | X − Y | | + λ |w |. (11)

.2 Augmented Server Design 

ifferent from the previous server design, we also add an augmented mechanism to replace the
eighted aggregation for knowledge as Algorithm 1 . The original heuristic method for public com-
onents does not intuitively filter out the low-quality information. Therefore, in the differentiated
omponent aggregation, we add an augmented mechanism to filter out low-quality knowledge
nformation from C clients and integrate the high-quality knowledge information as shown in
CM Transactions on Information Systems, Vol. 41, No. 2, Article 46. Publication date: March 2023. 
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igure 4 , which is modified from Equation ( 3 ) as: 

c 
д = AM ({c 1 , c 2 , . . . , c C }). (12)

imilarly, AM (·) processes all the local knowledge vectors from clients by attributes and outputs
igh-quality vectors representing purification of the knowledge information. We further use two
ugmented mechanisms as mentioned earlier, that is SVD and AE-based augmented mechanisms.
For SVD-based AM (·) , we first process a matrix decomposition process on the matrix of all
nowledge vectors from clients on a certain attribute k . After that, we intercept the parameters
ith the largest M singular values and carry out the weighted aggregation to compress knowledge
nformation. The SVD-based AM (·) is denoted as Equation ( 13 ). With the SVD augmented mech-
nism, the useless knowledge, which always has lower singular values, is filtered out, while the
igh-quality knowledge information is retained. 

{c k,1 , c k,2 , . . . , c k,C } = U ΣV 

T , 

c 
д 

k 
= 

M ∑ 

m= 1 

U m 

· Σm ∑ M 

i= 1 Σi 
·V 

T 
m 

. (13)

For AE-based AM (·) , we also use a regularization autoencoder to directly mine the useful infor-
ation from the knowledge vectors on a certain attribute k . Similarly, the autoencoder encodes
he knowledge vectors to a pure vector and expects to reconstruct the original information as ac-
urately as possible. The AE-based AM (·) is denoted as Equation ( 14 ). With the AE augmented
echanism, we can mine the more valuable information on attributes as: 

X = {c k,1 , c k,2 , . . . , c k,C }, 
c 
д 

k 
= Encoder (X ), 

Y = De code r (c 
д 

k 
), 

loss = | | X − Y | | + λ |w |. (14)

.3 Framework Summary 

n summary, our proposed HPFL framework, which focuses on the federated user modeling sce-
arios with inconsistent clients, has the following advantages. First, HPFL achieves a personalized
odel update through fine-gained model fusion without neglecting statistical heterogeneity. Fur-
hermore, through the aggregation process, we specifically aggregate the model components with
ifferent privacy intensity to make use of as much information as possible on the premise of pro-
ecting the privacy information, which conforms to privacy heterogeneity. At the same time, HPFL
oes not need to align the original representations in user models, so it is adaptive to the hetero-
eneous representation spaces among user models to suit model heterogeneity. In all, through the
ggregation and updating of user models by components, HPFL enables expansion for extensive
nformation from clients and inheritance for personalized information locally under the premise
f privacy protection. Further, our proposed AHPFL adds augmented mechanisms based on the
PFL framework. First, AHPFL inherits the effective inconsistent client collaboration features.
hen with the augmented high-quality information, AHPFL provides high-quality user models for
nconsistent clients, which mitigates the damage from quality heterogeneity. Finally, our frame-
ork achieves good performances on multiple user modeling tasks, as covered in the next section.

 EXPERIMENTS 

n this section, we conduct extensive experiments to demonstrate the advancements achieved
y our proposed HPFL and AHPFL frameworks. Specifically, we first introduce our experimental
ACM Transactions on Information Systems, Vol. 41, No. 2, Article 46. Publication date: March 2023. 
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Table 1. Statistics of the Datasets: ASSIST and MovieLens 

Statistics ASSIST MovieLens-100K MovieLens-1M 

# of clients 59 10 10 
# of records 327,058 96,538 1,000,209 
# of users 3,477 925 6040 
# of items 17,561 1,679 3,883 
# of attributes 122 19 18 
# attributes per item 1.20 1.72 1.65 
# attributes per record 1.20 2.21 2.10 
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atasets related to the real tasks and experimental settings for the two frameworks in detail (Sec-
ions 6.1 and 6.2 ). We then carry out experiments from the following three aspects: (1) We demon-
trate the quantitative performances on prediction tasks for two user modeling scenarios (Sec-
ion 6.3 ); (2) We illustrate the modeling rationality at the parameter level by components (Sec-
ion 6.4 ); (3) We compare the augmented extent of AHPFL with other methods (Section 6.5 ). 

.1 Experimental Datasets 

n experiments, three real-world public datasets for two typical user modeling tasks, which are re-
erred to in Section 3.2 are employed to verify our proposed HPFL and AHPFL frameworks, namely
SSIST and MovieLens. ASSIST (short for Assistments ) is a common educational dataset for user
apability modeling on students. In ASSIST (2009-2010 “Non-skill builder”1 ), mathematics learning
ogs were collected during the online learning activities on the online tutoring program. The others
re MovieLens-100K and MovieLens-1M, 2 which are commonly used for user preference model-
ng in recommendation tasks. In MovieLens-100K and MovieLens-1M, there are rating records for
ovies obtained through the MovieLens website. 
We conduct experiments in the form of the cross-silo federated learning. To simulate the real

solated scenario, we try to divide the two datasets as naturally as possible. To be specific, in AS-
IST, we divide the data into clients by teacher ids, which causes isolation between classes. We
urther filter out some clients which are not sufficient to support local user modeling training,
uch as those for which the average number of records or students is fewer than five in the client.
inally, we generate a pruned dataset from ASSIST, where there are over 3,477 students and over
7K questions which belong to 122 concepts (i.e., “Equivalent Fractions” and “Pythagorean The-
rem”) and are responded to on a two-point scale. During the learning process, there are over
00K interaction records between the above students and questions. All of the data is naturally
ispersed in 59 clients. Similarly, we divide the data in MovieLens-100K and MovieLens-1M ac-
ording to users’ location via national area in zipcode (e.g., 1xxxx–Delaware, New York, Pennsyl-
ania), which causes a geographic isolation scenario in the data. To support the training, we delete
lients with fewer than five customers as before. We subsequently obtain a divided dataset from
ovieLens. There are over 96K records, where 925 customers rate on 1,676 products (i.e., movies)
elonging to 19 categories (i.e., “Comedy” and “Romance”) on a five-point scale in Movielens-100K,
hile there are over 1M records, where 6,040 customers rate on 3,883 products belonging to 18 cat-
gories (“unknown” type is removed) on a five-point scale in Movielens-1M. All of the data is nat-
rally dispersed in 10 clients. Table 1 summarizes more basic statistics. Specifically, as defined in
ection 3.1 , there is both public and private information in the data. Obviously, the attributes,
 https://sites.google.com/site/assistmentsdata/home/assistment- 2009- 2010- data/non _ skill- builder- data- 2009- 2010 . 
 https://grouplens.org/datasets/movielens . 
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Fig. 5. Distribution of attributes by clients of three datasets: ASSIST (left), MovieLens-100K, and MovieLens- 
1M (right). 
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uch as the concepts of questions and categories of products are often public and shared between
lients. Correspondingly, the interaction records of users and items, like answer logs to questions
f students and users’ rating logs on movies are private, since they contain some sensitive infor-
ation, which represent the preferences of users used in user modeling. It is worth noting that,

n our isolated scenario, each client processes user modeling only with its own data during the
raining process. We aim to update local GUMs with isolated and inconsistent datasets in such a
ay that we provide high-quality user models for clients. Consequently, we solve the federated
ser modeling problem for inconsistent local clients. 
In isolated scenarios, the distributions of data in the clients are the important influence factor

or federated learning. We then analyze the data to compare the data distributions on the attributes
f different clients. Figure 5 shows the distributions of all the attributes of both datasets. For illus-
rative purposes, we choose 10 clients with the largest data volumes. In the figure, different colors
epresent different attributes in the client and cover areas representing the frequency of attribute
ccurrence; the larger the area, the more frequent the occurrences of a certain attribute. Taking
he line of client 8 in Figure 5 (a) as an example, there is an orange area in the line that is larger
han the others; this reflects that distributions of the attributes represented by orange color, appear
ore frequently than those of any other clients. The inconsistent color distributions apparently
how that the frequency of occurrence of attributes is inconsistent, which results in Non-IID data
cross clients in ASSIST. On the contrary, the distributions of attributes in MovieLens are almost
onsistent, which demonstrates that the data in MovieLens-100K is closer to being IID. There-
ore, ASSIST is a natural Non-IID dataset, whereas MovieLens-100K is used as an approximate IID
ataset in our experiments. While the distributions in MovieLens-1M are compromised between
ID and Non-IID. Although the distribution of attributes in Movielens-100K is IID, there are still
nconsistencies in the user space and item space that bring inconsistency to the structures of user
odels. Thus, we conduct experiments on both natural IID and Non-IID datasets to compare the
ser modeling effects of HPFL and AHPFL frameworks under different distribution scenarios. A
table framework is expected to fit not only simple but also complex scenarios. 

.2 Experimental Settings 

n this subsection, we clarify the technical details to set up our HPFL and AHPFL frameworks.
hen, we introduce the comparison baselines and evaluation metrics. 

6.2.1 Data Partition. The user records in both datasets, i.e., scores on questions in ASSIST and
ating on movies in MovieLens, are randomly partitioned into 80%/20% training/testing subsets.
t is worth noting that, during the training process, the local data is kept in each client and is not
llowed to be shared across clients in the experiments for federated user modeling methods, while
e make no guarantees on the data privacy in the client across users. 
ACM Transactions on Information Systems, Vol. 41, No. 2, Article 46. Publication date: March 2023. 
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6.2.2 Model Implementations. To better illustrate the implementation of our frameworks, we
ill introduce the framework settings as well as training settings in detail. 

Framework settings . We specify the framework settings in HPFL and AHPFL from local model
ettings and framework settings. As for the local model, we proposed a general neural user model,
amely GUM, with N dimensions of knowledge vector (N) in KM u and KM v equal to 5. As for
ramework settings, in both frameworks, we process the K-means [ 57 ] as the clustering methods
o achieve desensitization of private components. Furthermore, we set the adaptive number of ini-
ial centers in clustering, that is, 1/10 of the number of individuals participating in the clustering.
n addition, in AHPFL, we retain the largest 90% of information to filter the low-quality infor-
ation and we adopt the regularized autoencoder with one hidden layer as the two augmented
echanisms. 

Training settings . We initialize all parameters in both the HPFL and AHPFL with xavier initial-
zation following [ 25 ] with the uniform distribution in the range ( −√ 

( 6 /ni + no ) , 
√ 

(6 /ni + no ) ),
here ni and no are the dimensions of the input and output, respectively. We then train the GUM
odels with mini-batches of 32 and a learning rate of 0.001 under the Adam optimizer. As for train-

ng the autoencoders, an Adam optimizer with learning rate of 0.005 and L1 regularization weight
f 0.001 is employed. To facilitate further research into HPFL and AHPFL, we have published our
ode. 3 

6.2.3 Baselines. First, we compare the effectiveness of our proposed GUM with two typical user
odeling methods, i.e., NeuralCD and NCF , in the centralized training process on all collected
ata. NeuralCD and NCF are two common user modeling models, which focus on cognitive di-
gnosis and collaborative filtering recommendation tasks, respectively. 

• NeuralCD [ 88 ] is a state-of-the-art cognitive diagnosis model, which models the complex
cognitive relationships of shallow representations of both students and questions. 

• NCF [ 30 ] is also a state-of-the-art collaborative filtering model based on deep neural net-
works, which models the shallow features of both users and items. 

Then, we conduct experiments in data isolated scenarios. To refine the contrast, we train the
ser models locally without any collaboration with other clients, which is denoted as Distributed .
urthermore, we repeat some representative universal model fusion methods of federated learning,
hich achieve the collaboration among clients to extend the available information. All federated
ethods are built on our proposed GUM for user modeling tasks. These methods are primarily
sed for processing in inconsistent scenarios by simply using the general settings. 

• FedSGD [ 60 ] is a standard federated learning method based on stochastic gradient descent,
where the server takes a simple weighted average of all models to obtain a united global
model and clients perform one epoch of gradient descent per training process. 

• FedAvg [ 60 ] also aggregates models to a united global model. However, FedAvg processes
more computation steps in gradient descent to accelerate the training and convergence. 

• Fednoise is an extension method based on a traditional federated process. It follows local
differential privacy [ 14 , 20 , 92 ] which adds some random disturbances, like Laplace noise
to local models before transmission. 

• FedProx [ 47 ] adds a reference loss in local training for each client, that is, the distances
between the local model and the global model, so that it constrains the local personalized
optimization process not to drift excessively. 
 https://github.com/bigdata- ustc/hierarchical- personalized-federated-learning . 
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• FedAtt [ 38 ] incorporates soft-attention for aggregation. The server considers the impor-
tance of the models and aggregates local models in layers with the distances between the
global model and local models. It then weighted aggregates local models to obtain the global
model. 

• FedAmp [ 34 ] employs federated attentive message passing to facilitate similar clients,
which does not use a single global model on the cloud server to conduct collaborations. 

In addition to verifying the different federated processing, we conduct experiments on the
ser modeling tasks to compare our proposed HPFL [ 97 ] and AHPFL based frameworks, i.e.,
HPFL-SVD and AHPFL-AE , which implement the augmented mechanism following SVD (sin-
ular value decomposition) and AE (autoencoder), respectively. In the following experiments, all
bove-mentioned baselines and our proposed HPFL and AHPFL are implemented by PyTorch.
or fairness, all the methods are trained on the same Linux server with four 2.20GHz Intel Xeon
5-2620 CPUs, two NVIDIA Tesla K80 GPUs ,and 256GB memory to achieve the best performance
or comparison. 

6.2.4 Evaluation Metrics. A qualifying user model should achieve good results in our two sce-
arios from regression and classification perspectives. In this paper, we observe the accuracy per-
ormances of our proposed methods in user modeling tasks by employing widely used metrics
 15 , 22 , 36 ]. 
In the experiments on ASSIST, which is the dataset for user capability modeling in education to
redict the two-point student performances, we use the ROC Curve (AUC) and Prediction Accu-
acy (ACC) to measure the prediction from a classification perspective in the range of [0 , 1] , the
arger the values are, the better the results. Correspondingly, in MovieLens, which is the dataset
or continuous 5-point rating prediction, the ACC is not suitable for evaluating the prediction per-
ormances. For example, we can round a prediction score 3.5 to 3 or 4. However, it will make great
umerical differences in ACC, which leads to errors in results. Therefore, we use the widely used
oefficient of Determination ( R 

2 ) and Mean Absolute Error (MAE) to measure the proximity
etween prediction and ground truth from a regression perspective. The ranges of both metrics
re [0 , 1] , the higher the values are, the better the R 

2 ; while the lower the values are, the better
AE. Besides, for both scenarios, we use the Root Mean Square Error (RMSE) to quantify the
istance between predicted and the actual ones with the range of [0 , 1] , the lower the values, the
etter the results. 
In the practical user modeling tasks, we should be successful in predicting the extent of the
reference of a user, rather than simply reporting whether he is interested in the item or not [ 65 ].
herefore, we adopt some commonly used ranking measurement indicators to count whether or
ot the predicted ranking of the practically more preferred item is higher. In this case, Degree
f Agreement (DOA) [ 35 ] and Normalized Discounted Cumulative Gain (NDCG) [ 29 ] are
avored to reflect the ranking effectiveness of the models. 

.3 Quantitative Performances 

6.3.1 Accuracy Performances. To evaluate the quantitative performances of our frameworks,
e first evaluate the accuracy performances in isolated user modeling scenarios and conduct the
rediction tasks as discussed before. We implement the tasks as student performance prediction
nd user rating prediction and use F uv to predict the interactions for two typical user modeling
asks, i.e., cognitive diagnosis and collaborative filtering recommendation, respectively. Since we
ocused on serve model fusion of federated learning for general user modeling task, the comparison
etween user models is not important and we select some typical and universal federated user
odeling frameworks for a general user model fusion and update. We repeat the experiments five
ACM Transactions on Information Systems, Vol. 41, No. 2, Article 46. Publication date: March 2023. 
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imes and summarize the average of the results. Table 2 lists the overall results on both datasets
ith the evaluation metrics mentioned. It should be noted that for student performance prediction
f a two-point scale, we usually focus on AUC and ACC. While for rating prediction, especially
or non-two-point scale rates, R 

2 and MAE are the more reasonable indicators. 
Some key observations are as follows: (1) Our proposed GUM model performs better than NCF

nd NeuralCD on both central and distributed datasets. It shows our general user model that is
apable of deep representation for users and items is general and appropriate for user modeling
asks. (2) Most federated methods perform better than distributed training processes. It shows fed-
rated learning settings can harness more information and promote collaboration among isolated
lients, which usually results in better user models. Obviously, our proposed HPFL and AHPFL-
ased methods achieve better performances than any other methods on both datasets. This means
hat our methods can more effectively accommodate user modeling tasks. (3) Among our pro-
osed frameworks, we find that AHPFL-based methods (AHPFL-SVD, AHPFL-AE) outperform
he HPFL, indicating the effectiveness of the augmented mechanism in promoting a high-quality
ser model for inconsistent clients. (4) Specially, there is a little performance lift across ASSIST
nd MovieLens (MovieLens-100K, MovieLens-1M). It may be due to the two reasons as follows:
1) As we mentioned in Section 6.1 , the fundamental difference between the two datasets is the
ata distribution. ASSIST is a natural Non-IID dataset, whereas the MovieLens datasets are used
s an approximate IID dataset in our experiments. For the IID dataset, our design for public infor-
ation probably worked better, which facilitates collaboration among clients. (2) In addition, the
umbers of users and items in ASSIST datasets are very different among clients. Perhaps a finer
esign for the number of cluster centers will help improve the effect on the data. 
Specially, we do the Student t-test to clarify whether the AHPFL-based methods perform better

han HFPL. We choose the important and concerned indicators of the different tasks respectively,
hat is, AUC on Assist and R 

2 on Movielens. The p-value results are shown in Table 3 . Most results
re smaller than the significance level 0.05, thus we reject the hypothesis that the performances
etween AHPFL and HPFL are approximate. It suggests that AHPFL-based methods are more ef-
ective than HPFL in most tasks. 

6.3.2 Individual Improvement. In our federated user modeling task, while overall performances
re important, our primary concern is with the percentage of distributed clients that will benefit.
hus, we compare the performances of clients in the distributed training method with federated
ethods and accordingly count the “proportion” of clients with improvements according to the
etrics. In this way, we can determine which method will improve more participants in real sce-
arios, which will be beneficial to the application of the method. 
Table 4 reports the proportion of clients with individual improvements. From the table, we can
raw the following conclusions: (1) Federated learning methods generally bring effectiveness to
lients on both datasets. However, the differential privacy settings cause a loss of performances
s a result of Fednoise. (2) Our methods significantly increase the proportion of clients with in-
ividual improvements. It illustrates that the aggregation and update by components can expand
nformation from other participants and are helpful for training local user models. In particular,
ur AHPFL-based methods, i.e., AHPFL-SVD and AHPFL-AE have a higher proportion, indicating
hat the augmented mechanisms augment high-quality information from clients, which ultimately
eads to more high-quality user models. 

6.3.3 Ablation Study. To verify the effectiveness of different components in our proposed
rameworks, i.e., HPFL and AHPFL, we conduct several ablation experiments. Specifically, for
ll the implementations, i.e., HPFL, AHPFL-SVD, and AHPFL-AE, we compare the complete
ramework with two simplified versions: *-K and *-R , which process only on public or private
CM Transactions on Information Systems, Vol. 41, No. 2, Article 46. Publication date: March 2023. 



Federated User Modeling from Hierarchical Information 46:21 

Table 2. Accuracy Performances of User Modeling Tasks for Metrics on Datasets 

(a) Accuracy performances on ASSIST 

Methods ASSIST 

ACC AUC RMSE 

NeuralCD 0.724 ± .0017 0.739 ± .0038 0.434 ± .0016 
GUM 0.740 ± .0017 0.775 ± .0003 0.419 ± .0007 
Distributed-NeuralCD 0.689 ± .0025 0.697 ± .0015 0.451 ± .0010 
Distributed-GUM 0.701 ± .0038 0.719 ± .0009 0.442 ± .0008 
FedSGD 0.698 ± .0032 0.711 ± .0021 0.449 ± .0022 
FedAvg 0.705 ± .0012 0.721 ± .0028 0.445 ± .0012 
Fednoise 0.707 ± .0039 0.720 ± .0032 0.443 ± .0021 
FedProx 0.706 ± .0014 0.722 ± .0018 0.443 ± .0015 
FedAtt 0.712 ± .0019 0.726 ± .0007 0.439 ± .0005 
FedAmp 0.720 ± .0017 0.732 ± .0006 0.435 ± .0007 
HPFL 0.725 ± .0013 0.740 ± .0020 0.433 ± .0011 
AHPFL-SVD 0.727 ± .0007 0.743 ± .0002 0.431 ± .0002 
AHPFL-AE 0.725 ± .0012 0.742 ± .0011 0.431 ± .0004 

(b) Accuracy performances on MovieLens-100K 

Methods MovieLens-100K 

R 

2 MAE RMSE 

NCF 0.288 ± .0026 0.761 ± .0021 0.955 ± .0017 
GUM 0.310 ± .0035 0.742 ± .0010 0.940 ± .0023 
Distributed-NCF 0.138 ± .0030 0.822 ± .0010 1.038 ± .0020 
Distributed-GUM 0.167 ± .0094 0.804 ± .0045 1.018 ± .0086 
FedSGD 0.114 ± .0072 0.856 ± .0044 1.052 ± .0043 
FedAvg 0.210 ± .0023 0.799 ± .0020 0.994 ± .0017 
Fednoise 0.194 ± .0017 0.795 ± .0037 1.008 ± .0045 
FedProx 0.223 ± .0026 0.792 ± .0028 0.989 ± .0007 
FedAtt 0.219 ± .0019 0.791 ± .0023 0.989 ± .0010 
FedAmp 0.227 ± .0018 0.780 ± .0020 0.983 ± .0008 
HPFL 0.234 ± .0012 0.776 ± .0003 0.981 ± .0008 
AHPFL-SVD 0.239 ± .0014 0.775 ± .0009 0.977 ± .0009 
AHPFL-AE 0.236 ± .0006 0.774 ± .0007 0.978 ± .0003 

(c) Accuracy performances on MovieLens-1M 

Methods MovieLens-1M 

R 

2 MAE RMSE 

NCF 0.266 ± .0006 0.767 ± .0008 0.957 ± .0004 
GUM 0.282 ± .0010 0.752 ± .0005 0.947 ± .0007 
Distributed-NCF 0.231 ± .0025 0.779 ± .0005 0.992 ± .0013 
Distributed-GUM 0.242 ± .0005 0.768 ± .0002 0.985 ± .0003 
FedSGD 0.176 ± .0047 0.834 ± .0055 1.028 ± .0058 
FedAvg 0.275 ± .0025 0.774 ± .0014 0.965 ± .0011 
Fednoise 0.254 ± .0051 0.779 ± .0095 0.977 ± .0062 
FedProx 0.273 ± .0015 0.774 ± .0014 0.965 ± .0011 
FedAtt 0.275 ± .0025 0.772 ± .0024 0.963 ± .0017 
FedAmp 0.299 ± .0020 0.745 ± .0019 0.947 ± .0009 
HPFL 0.304 ± .0004 0.742 ± .0003 0.944 ± .0003 
AHPFL-SVD 0.307 ± .0007 0.740 ± .0003 0.942 ± .0005 
AHPFL-AE 0.309 ± .0009 0.739 ± .0003 0.940 ± .0006 
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Table 3. P-value between AHPFL and HPFL on Datasets 

Methods ASSIST MovieLens-100K MovieLens-1M 

AHPFL-SVD/HPFL 0.040 0.002 0.00017 
AHPFL-AE/HPFL 0.061 0.022 0.00022 

Table 4. Proportion of Clients with Individual Improvement on Both Datasets 

(a) Proportion on ASSIST 

FedAvg Fednoise FedProx FedAtt FedAmp HPFL AHPFL-SVD AHPFL-AE 

Rate 0.559 0.457 0.559 0.372 0.576 0.847 0.864 0.847 

(b) Proportion on MovieLens-100K 

FedAvg Fednoise FedProx FedAtt FedAmp HPFL AHPFL-SVD AHPFL-AE 

Rate 0.40 0.20 0.50 0.50 0.50 0.70 1.00 1.00 

(c) Proportion on MovieLens-1M 

FedAvg Fednoise FedProx FedAtt FedAmp HPFL AHPFL-SVD AHPFL-AE 

Rate 0.80 0.60 0.80 0.80 0.9 1.00 1.00 1.00 

Table 5. Results of Ablation Experiment 

Methods 
ASSIST MovieLens-100K MovieLens-1M 

ACC AUC RMSE R 

2 MAE RMSE R 

2 MAE RMSE 

HPFL 0.725 0.740 0.433 0.234 0.776 0.981 0.304 0.742 0.944 

HPFL-K 0.715 0.730 0.437 0.221 0.792 0.987 0.299 0.754 0.946 
HPFL-R 0.723 0.738 0.433 0.229 0.798 0.991 0.296 0.745 0.949 
AHPFL-SVD 0.727 0.743 0.431 0.239 0.775 0.977 0.307 0.740 0.942 

AHPFL-SVD-K 0.721 0.733 0.438 0.231 0.777 0.981 0.304 0.743 0.943 
AHPFL-SVD-R 0.723 0.740 0.432 0.226 0.780 0.984 0.303 0.742 0.944 
AHPFL-AE 0.725 0.742 0.431 0.236 0.774 0.978 0.309 0.739 0.940 

AHPFL-AE-K 0.719 0.731 0.437 0.231 0.775 0.981 0.306 0.741 0.941 
AHPFL-AE-R 0.720 0.738 0.433 0.228 0.780 0.983 0.305 0.740 0.943 
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omponents, respectively. Table 5 reports the results of each case. From the results, we can con-
lude the following: (1) HPFL and AHPFL perform the best performances on both tasks. While the
erformances of the simplified methods, *-K and *-R are poorer than complete HPFL and AHPFL
rameworks, because both of these methods lack some information of model components, i.e., lack
f private component and public component, respectively. (2) Relatively, the *-R methods perform
 better result than the *-K methods in the Non-IID datasets, ASSIST; while in the IID datasets,
verall, *-K methods are better. It shows that for Non-IID scenarios, the private information is
ore important, since it represents the personalized characteristics of the clients better; while in
ID scenarios, public information is suggested to be focused for accurately user modeling, since
he private information may be consistent. 

6.3.4 Ranking Effectiveness. In practice, rather than simply classifying the reflex on the item,
e are more concerned about whether we can more accurately model the partial order of hid-
en characteristics. Specifically, in the recommendation domain the characteristics refer to the
ser’s preference, while in the education domain the characteristics refer to students’ knowledge
CM Transactions on Information Systems, Vol. 41, No. 2, Article 46. Publication date: March 2023. 
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Fig. 6. Ranking effectiveness for metrics on both datasets.: ASSIST (left), MovieLens-100K (right). 

p  

u  

c  

u  

t  

m  

w  

n  

A  

w  

o

 

i  

b  

a  

f  

k  

e  

t
 

s  

a  

w

 

 

T  

w  

a  

[
 

f  

d  
roficiency. In recommendation systems, applications expect to rank the most preferred items to
sers. In the field of education, the determination of partial order of ability among students is
oncerned with comparability and test equating problem [ 45 ]. As some works on intelligent ed-
cation [ 88 ] suggest, compared to the scores the knowledge proficiency of students is the output
o be concerned of the cognitive diagnosis model. Similar requirements apply to models in recom-
endation system. Thus, we evaluate the ranking effectiveness of our frameworks on both datasets
ith some commonly used indicators. We adopt two indicators to measure the ranking effective-
ess from two aspects: one is the extra ranking effectiveness, for which we use the Degree of
greement (DOA) to measure the consistency of preferences and predictions in the group. That is,
hether one prefers the same item over another user as the user model reflects or one outperforms
n the same item than another. Specifically, a DOA result on a specific attribute k is defined as: 

DOA( k ) = 

|U c 1 | ∑ 

a= 1 

|U c 2 | ∑ 

b= 1 

I abk 
δ ( h ak , h bk ) ∩ δ ( ̄д ak , д̄ bk ) 

δ ( h ak , h bk ) 
. (15)

Here, U c 1 and U c 2 denote the two different users in two different clients c 1 and c 2 , while h ak 

ndicates the hidden characteristic, e.g., capability or preference of user a on attribute k obtained
y our user models as Equation ( 8 ), and д̄ ak is the average response of user a on attribute k. δ (x , y) is
n indicator function, where δ (x , y) = 1, if x > y ; otherwise, δ (x , y ) = 0. I abk is another indicator
unction, where I abk = 1 if both user a and user b have previously interacted on the attribute
. Furthermore, we average the DOA(k) of all attributes as DOA to measure the extra ranking
ffectiveness, which is denoted as DOA = 

∑ K 

k= 1 DOA(k )/K , DOA ∈ [0 . 0 , 1 . 0] , the larger the DOA,
he better the extra ranking. 
The other is the inter ranking with Normalized Discounted Cumulative Gain (NDCG) for mea-

uring the consistency of real preferences and predictions for users. That is, whether one prefers
n item to another item as the user model reflects. First, we define the DCG of a specific user u,
hich is formulated as follows: 

DCG (u) = 
K ∑ 

k= 1 

h uk 

log 2 k + 1 
. (16)

Here, K denotes the total attributes and the K attributes are ordered by д̄ uk as the recall order.
hen we define N DCG (u) = DCG (u)/IDCG (u), where the IDCG (u) is the ideal DCG (u), that is,
e apply the h uk descending sorted to DCG (u). Furthermore, we average the NDCG(u) of all users
s NDCG to measure the inter ranking effectiveness as N DCG = 

∑ |U | 
u= 1 N DCG (u)/ | U | , N DCG ∈

0 . 0 , 1 . 0] . A larger NDCG indicates a better inter ranking performance. 
Figure 6 reports the ranking effectiveness on DOA and NDCG. We can conclude the following

rom the results: (1) GUM performs better than other centralized methods, meaning that our high-
imensional user model adds more comparability for both inter and extra ranking. (2) HPFL and
ACM Transactions on Information Systems, Vol. 41, No. 2, Article 46. Publication date: March 2023. 
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Table 6. Similarity of Different Methods on 
Both Datasets 

Methods ASSIST MovieLens 
Distributed 3.259 3.309 
FedAvg 0.191 0.773 
HPFL 0.472 0.155 
AHPFL-SVD 4.032 1.583 
AHPFL-AE 14.143 2.274 
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HPFL-based methods (AHPFL-SVD, AHPFL-AE) perform outstanding results, while AHPFL-SVD
erforms better than AHPFL-AE, since the matrix decomposition method retains more original
nformation than the autoencoder method when compressing the user modeling information from
lients. (3) Compared with standard federated learning methods, the distributed training method
erforms a comparable result in NDCG, while it performs inferior results in DOA. It demonstrates
hat standard federated methods bring a coordination among clients so that it is beneficial to extra
anking but causes weakness in inter ranking to some extent for user modeling. 

.4 Modeling Rationality 

n addition to quantitatively comparing the effects of our frameworks on some application tasks,
e further analyze the rationality of user models at the parameter level. We expect HPFL and
HPFL to facilitate the creation of more rational user models. As mentioned earlier in Section 4.4 ,
here are two components in local GUMs, i.e., public component and private component for hi-
rarchical information. In our framework, we process the local user models by components to
btain appropriate user models. In order to compare the effects of hierarchical information, we
eeply analyze the user models from different frameworks by different components. In particu-
ar, we conduct similarity analysis of public components and personalization analysis of private
omponents to observe the similarities and differences between clients in federated learning. 

6.4.1 Similarity Analysis of Public Components. We expect public components to represent in-
ormation collaboration between clients. Therefore, we calculate the similarity of public compo-
ents from clients of different methods. Specifically, we compare the multi-client methods, such
s distributed training process, the standard and clear FedAvg and our methods, then we calculate
he similarity of the corresponding public component between different clients. We define total
imilarity as: 

S imi = 

∑ K 

k= 1 

∑ C 
i= 1 
∑ C 

j= 1 d is (c k,i , c k, j ) 

K 

, (17)

here the dis (x , y) is the cosine distance function in the range of [0.0, 2.0] and it is applied to
he pair-wise knowledge vectors in user models from different clients. The lower the value of
imi, the higher the similarity. To facilitate better comparison, we choose 10 clients with the
argest data volumes on both datasets. Table 6 reports the results of similarity in models from
oth datasets. According to the results, we obtain the following conclusions: (1) On both datasets,
ublic components across clients in the distributed training method differ more significantly, since
here is no federated process that clients communicate on public components. (2) The similarity
n ASSIST, which is Non-IID is much higher than those on MovieLens which is more IID, it shows
hat models trained on IID data are more likely to learn a similar distribution for parameters
hat represent the global distribution to some extent to obtain a better local user model, GUM.
hile models on Non-IID data should have some personalization, because in case the consistent
ser models can lead to errors. Just as FedAvg has lower similarity, while it performs worse on
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Fig. 7. The user characteristics of different methods reduced dimension by t-SNE on five clients in ASSIST. 
Cluster centers are marked with “center”. 
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SSIST as shown in Table 2 . (3) It is worth noting that on both datasets, AHPFL-AE makes the
lients more diverse than AHPHL-SVD or HPFL, since the augmented mechanism, especially a
egularized autoencoder, may augment the special valuable information, which leads to loss of
o-occurring low-quality information. 

6.4.2 Personalization Analysis of Private Components. We expect to validate the ability of pri-
ate components to capture personalized information. Specifically, we choose the conventional
raining methods, i.e., centralized and distributed training process for user modeling with our
ethods to analyze the rationality of embeddings in user models on clustering impressions. Specif-

cally, we visualize the user characteristics from Equation ( 8 ) after reducing their dimension by
-SNE [ 56 ], which is commonly used for the visualization of high-dimensional data, to reduce the
imensionality of each exercise vector to a 2D data. For better illustration, we choose five clients
ith the most data. In particular, we annotate the cluster centers of users on figures of HPFL and
HPFL. Finally, we label users from each client with different colors. 
Figures 7 and 8 illustrate the user characteristics on both datasets. Through analyzing the visual

epresentation of the figures, we come to the following conclusions: (1) On both datasets, private
omponents in user models are not distinguishable in the centralized training process, while a
istributed training process may enhance the gathering effect. (2) We observe that on both datasets,
PFL has a stronger ability to promote collaboration among clients and discover clusters than
HPFL methods, especially the cross-client clusters. It reveals that the augmented mechanism may
ocus on augmenting the high-quality personalized information. (3) In MovieLens, the aggregation
ffect, even in the distributed training method, is not noticeable, since the IID distributions weaken
he personality of the clients. Under such severe cases, our HPFL and AHPFL methods that process
he private components, still capture the personalized information, which shows that on both
ypes of distributions, our methods have advantages when it comes to mining the idiosyncrasies
f clients from user characteristics in user modeling. 

.5 Augmented Extent 

urthermore, we observe the augmented extent of AHPFL-based methods. AHPFL is able to ag-
regate information from inconsistent clients lossily and augment the high-quality information. 
ACM Transactions on Information Systems, Vol. 41, No. 2, Article 46. Publication date: March 2023. 
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Fig. 8. The user characteristics of different methods reduced dimension by t-SNE on five clients in Movielens. 
Cluster centers are marked with “center”. 

Table 7. Augmented Performances between 
Centralized and Federated Methods for 

OAR on Both Datasets 

Methods ASSIST MovieLens 
FedAvg 9.361 2.047 
HPFL 7.495 2.532 
AHPFL-SVD 9.916 3.603 
AHPFL-AE 10.066 4.087 
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6.5.1 Augmented Performances on Public Components. In order to compare the effects of the
wo augmented mechanisms-based frameworks, we contrast global public components from cen-
ralized and federated methods to observe the quality of information aggregated and come up
ith a metric, OAR (original information to augmented information ratio) , which is similar
o SNR (signal-to-noise ratio) [ 42 ]. Generally, a substantial amount of comprehensive data can
uarantee the stability of neural network architectures during training, resulting in high-quality
odels [ 40 , 66 ]. Therefore, we calculate the OAR of global public components in the server un-
er different methods with the components in the centralized method, which are considered to be
f higher quality. Specifically, we analyze the federated methods without augmented mechanism,
hat is FedAvg and HPFL, with our AHPFL, and calculate the OAR as: 

OAR = 

∑ K 

i= 1 
∑ N 

j= 1 Θ
2 
k, i, j ∑ K 

i= 1 
∑ N 

j= 1 (Θk, i, j − Θд 

k, i, j 
) 2 
, (18)

here Θk denotes the public components of the centralized training method and the Θд 

k, i, j 
is the

lobal components of a certain federated learning method. The higher the OAR, the closer the
omponents, which means information with higher quality and lower impurity. Table 7 reports
he results of augmented performances on OAR from both datasets. According to the results, we
btain the following conclusions: (1) On both datasets, there is a higher OAR between central-
zed training method with AHPFL-based methods, i.e., AHPFL-SVD and AHPFL-AE. It shows that
CM Transactions on Information Systems, Vol. 41, No. 2, Article 46. Publication date: March 2023. 
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Fig. 9. The item characteristics of different methods with reduced dimension by t-SNE on five clients in 
ASSIST. 

Fig. 10. The item characteristics of different methods reduced dimension by t-SNE on five clients in 
Movielens. 
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HPFL-based methods can better purify the original information from inconsistent clients, so as
o obtain the more reliable global components. (2) Further, AHPFL-AE has stronger augmented
bility than AHPFL-SVD, since the autoencoder is more capable of mining the effective potential
istributions of components than the naive matrix factorization method. 

6.5.2 Augmented Analysis on Private Components. Further, we expect to validate the augmented
xtent on private components to capture high-quality information. Similarly, we choose the above
raining methods and visualize the item characteristics after reducing their dimensions by t-SNE.
or better illustration, we choose five attributes with the most data and label the items with dif-
erent attributes using different colors. 
Figures 9 and 10 illustrate the item characteristics on both datasets. Through the visual repre-

entation of the figures, we come to the following conclusions: (1) Centralized training process can
hare and gather the attribute knowledge to some extent. This shows that a centralized training
ethod with sufficient data can learn valuable knowledge, especially in an IID dataset. (2) Indeed,
PFL is able to aggregate representations of the same attributes across clients due to the collab-
ration, while AHPFL gathers the same attributes more accurately. It shows that the augmented
echanisms better augment the special valuable information for attributes. Specially, AHPFL-AE
hows purer information for items of different attributes, which means the autoencoder method
s notably robust for low-quality information that mines high-quality information. 

 DISCUSSION AND EMERGING TRENDS 

enerally, there are two ways of evaluating federated learning. One focuses on global effects [ 60 ],
hich tests the effects of the global model locally, or using a global validation set. In such scenarios,
n order to prevent the local model from over-fitting and leading to drift in the global model,
esearchers usually train several epochs (5-20) in each local model and then aggregate the local
odels. In such a setup, it needs multiple communication processes for aggregation to make sure
hat the global model works best, so communication efficiency is a point of concern. The other is
he personalized federated learning [ 34 , 58 ], which pays more attention to the effect of the local
odels updated by federated learning on respective local datasets. In such a scenario, the training
ettings can be different for each client to get the better local performances [ 32 , 47 , 64 ]. In that
ACM Transactions on Information Systems, Vol. 41, No. 2, Article 46. Publication date: March 2023. 
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ase, more training processes can be done locally, even if it brings in the risk of over-fitting locally.
aturally, in such scenarios, the global effect tends to converge quickly in several epochs. 
In recent years, federated learning has gained a lot of attention. In addition to global or per-

onalized federated learning, a number of federated learning paradigms have also emerged [ 39 ].
hese federated learning approaches focus on applying federated learning to different scenarios
nd tasks. Few shot [ 26 ], semi-supervised [ 37 ], or unsupervised federated learning [ 106 ] face the
ata scarce scenes. Multitask [ 78 ], transfer [ 52 , 53 ], or domain adaptive [ 67 ] federated learning face
he vastly different federated learning scenarios among clients. Besides, cluster federated learn-
ng [ 24 , 65 ] and federated distillation learning [ 46 ] face the clients with different distributions or
tructures. Some work focuses on combining federated learning with practical applications, such
s education [ 96 ], news recommendation [ 69 ], recommendation systems [ 101 ], medical [ 6 , 11 ], and
nancial [ 81 ]. 
Federated learning is also being combined with other machine learning approaches to address
rivacy concerns in applications. Federated graph learning [ 62 , 95 , 99 , 109 ] applies the federated
earning into graph neural network for privacy-preserving. As a distributed algorithm with pri-
acy protection characteristics, federated learning is also applied into the multi-agent [ 49 , 94 ] or
einforcement learning [ 89 ] domain. 
In addition to the development of federated learning paradigms, there are efforts to improve the

ffectiveness of universal federated learning. Some works focus on enhancing privacy guarantees
or federated learning [ 79 , 83 , 93 ]. Some works hope to improve the efficiency of federated learning,
rom model compression [ 27 , 72 , 73 ], asynchronous communication [ 12 ], and other methods. There
as also been a lot of research on general scenarios to improve the effectiveness of model fusion in
ederated learning [ 34 , 38 , 47 ]. As our work, we expect HPFL/AHPFL to provide a general method
or model fusion in federated user modeling. We believe that these research directions could help
he federated learning framework. 

 CONCLUSION 

n this article, we focused on the federated user modeling problem with inconsistent clients. We
rst proposed a novel federated user modeling framework, called Hierarchical Personalized Fed-
rated Learning (HPFL) to serve federated learning in user modeling. More specifically, the HPFL
ggregated and updated the local user models by components with isolated data. It greatly ex-
anded the available information from multiple clients and flexibly allowed for information fu-
ion and inheritance. Though HPFL effectively processed user models, overcoming statistical, pri-
acy and model heterogeneity, it ignored the existence of quality heterogeneity in federated user
odeling. We therefore further extended HPFL to the Augmented Hierarchical Personalized Fed-
rated Learning (AHPFL) by incorporating the typical augmented mechanisms. Specially, we de-
igned two implementations, i.e., AHPFL-SVD and AHPFL-AE following SVD and AE, respectively.
HPFL could selectively filter out low-quality information from clients, which ultimately en-
anced the availability of the local models and created a more robust framework. Our results on
eal-world user modeling tasks additionally demonstrated that our methods outperform existing
ederated learning methods, revealing them to be more suitable in wide user modeling scenarios. 
In the future, we will consider various encryption techniques to give the framework even tighter
rivacy. Further, we hope to apply the framework to more scenarios in combination with the
ractical requirements. We hope that our work will lead to more studies in the future. 
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