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Abstract—Recent years have witnessed the increased in-
terests in exploiting influence in social networks for many
applications. To the best of our knowledge, from the computa-
tional aspect of social influence analysis, most of existing work
focus on either describing the influence propagation process or
identifying the set of most influential seed nodes. However, these
work usually do not distinguish the “independent influence”
of each single seed node after removing other seeds. Since
it is important to quickly figure out the real contribution of
each seed, in this paper we propose to measure the seed’s
independent influence by a linear social influence model.
Specifically, we first describe the linear social influence model,
and then define the independent influence under this model
for eliminating the “mutual enrichment” between seed nodes.
Meanwhile, we find that the influence of a set of nodes is
actually the sum of their independent influence, and we also
give upper bounds for independent influence. Moreover, these
findings are evaluated by two applications, i.e., ranking the
seeds by their independent influence and identifying the Top-
K influential ones. Finally, the experimental results on several
real-world datasets validate the effectiveness and efficiency of
the proposed independent social influence measures.

I. Introduction

Social networks have become very popular and they pro-
vide unparallel opportunities for understanding the human
world and building novel applications. Thus, there is much
research on social network analysis [1]. Indeed, tremendous
efforts have been made to analyze and exploit the social
influence between individuals for marketing, advertisement,
recommendations, and so on [2].

Social influence, as an intuitive and well-accepted phe-
nomenon, refers to the behavioral change (e.g., opinions,
decisions) of individuals (nodes) affected by others in a
network. From the computational aspect (i.e., qualitatively
or quantitatively measuring the social influence), two of the
major research interests are modelling influence propagation
and locating the set of most influential seed nodes by social
influence computation. Actually, several models [3], [4], [5]
have been provided to describe the dynamics of influence
propagation, and among them, Independent Cascade (IC)
model [4] is one of the most popular and widely used
models. However, it is usually hard to directly apply tradi-
tional influence models, like IC model, for social influence
computation, since they are step-by-step algorithms and thus
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are very time consuming for large-scale social networks.
Considering that we are often interested in finding the set
of most influential nodes (called as a set of seeds) for social
influence maximization, several greedy (e.g., CELF [6]) and
heuristic (e.g., DegreeDiscount [7], PMIA [8] and IRIE [9])
approaches based on existing influence models have been
proposed to improve the computational efficiency of the so-
cial influence maximization. Generally, existing approaches
first claim an influence model, and then aim at finding a
set of seed nodes by measuring their total influence, and
finally use the seeds with a maximal influence for further
applications, e.g., viral marketing [8].

However, to the best of our knowledge, few of scholars
pay attention to the problem of efficiently measuring the
independent social influence of these selected seed nodes.
Here, we define the independent social influence of one
node as its influence after removing others from the seed
set (this seed set may be selected manually or by above
algorithms, e.g., CELF). Intuitively, it is very important to
figure out the real contribution (independent influence) of
each seed node. For instance, the system in viral marketing
could pay for the seeds based on their independent influence,
or remove the less influential seeds from the seed set
according to the budget. To that end, we propose to quickly
measure each seed’s independent influence by a linear social
influence model that was preliminarily introduced in [10].
Specifically, we first describe the linear model, and then
define the independent influence for eliminating the “mutual
enrichment” between seed nodes. Meanwhile, we find two
properties of the independent influence under this definition.
The first property is that the influence of a set of nodes is
actually the sum of their independent influence. The second
property is that the independent influence of each single
seed is no bigger than its original influence. Moreover, we
evaluate these properties by two applications, i.e., ranking
the seeds by their independent influence and identifying
the Top-K influential seeds from the seed set. Finally, the
experimental results validate the effectiveness and efficiency
of the proposed independent social influence measures. Our
main contributions can be summarized as follows.

• We propose the idea of efficiently measuring the inde-
pendent social influence of each selected seed. Along
this line, we formalize this computation problem under
a linear social influence model.
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• We provide two properties for the defined independent
influence: the influence of a set of nodes is the sum of
their independent influence; each node’s original influ-
ence is the upper bound of its independent influence.

• The extensive experiments demonstrate that linear com-
putation could efficiently and effectively rank the seeds
by their independent influence, and the upper bounds
could be used for quickly finding the nodes with the
highest independent influence from the seed set.

The rest of this paper is organized as follows. Section II
introduces the related work. In Section III, we present the
linear social influence model and the measurement of inde-
pendent social influence in detail. Section IV first demon-
strates the two properties of the independent influence, and
then applies independent influence for two applications.
In Section V, we show the experimental results. Finally,
Section VI concludes this paper.

II. RelatedWork

Several different kinds of research issues have been pro-
posed in the context of social influence analysis [2]. The
first issue is the measurement of the influence between
two neighbor nodes in a social network. For instance,
Anagnostopoulos et al. [11] differentiate social influence
from homophily or confounding variables by proposing the
shuffle test and edge reversal test. Goyal et al. [12] propose
a model to learn the probabilities on social edges from a log
of actions by the users. Moreover, Steeg et al. [13] introduce
content transfer, an information-theoretic measure with a
predictive interpretation to directly quantify the strength of
the influence effect of one social user’s content on another’s.

The second and a central problem is to describe the
dynamics of influence propagation in social networks [3],
[4], [5], [14], [8], [15]. Among existing models, the idea of
Independent Cascade (IC) model [4] and Linear Threshold
(LT) model [5] are widely used. For instance, in IC model,
the activated/influenced nodes have a single chance to influ-
ence their neighbors independently with a probability. This
iterative propagation process will not stop until there is no
newly influenced node. The IC model where each link shares
the same propagation probability is called the Uniform IC
Model, and the one with edge weights is called the Weighted
Cascade (WC) Model [16]. Researchers have proved that the
influence spread (i.e., the expected number of nodes that will
be influenced) computation under IC model is #P-hard [8].
As an alternative, Monte-Carlo simulation, which is very-
time-consuming, is employed to approximately calculate
influence. Recently, Yang et al. propose GS (Gauss−S eidel)
algorithm for quick approximation of influence spread under
IC model by solving a linear system [17].

The third research goal is to apply social influence and
social influence models to the real applications. For instance,
by exploiting social influence, Li et al. propose IPRank
algorithm for ranking both individuals and groups [18], and
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Figure 1. An example directed network.

Yang et al. design a recommendation to provide guidance
for a social user to systematically approach his friending
target [19]. Actually, one of the most important application
for social influence is viral marketing, and the research
problem can be summarized as finding a set of seed nodes
which will influence the maximal number of individuals
in the social network for maximizing the word-of-mouth
propagation of one product. Along this line, both greedy
and heuristic approaches have been proposed. For instance,
for finding a set of nodes for social influence maximiza-
tion, Leskovec et al. design the cost-effective lazy forward
(CELF) optimization [6] by taking advantage of submodu-
larity property to reduce the number of searched nodes, and
Chen et al. propose both the Degree Discount heuristic and
the Maximum Influence Path heuristic exploiting the local
structures of each node [7], [8]. However, to the best of our
knowledge, the problem of measuring the independent social
influence of each selected seed remains pretty much open.

III. Independent Social Influence

In this section, we first introduce the linear social influ-
ence model [10] which is both tractable and efficient. Then,
we define the independent influence under this model.

Assume that G = (V, A,T) is a network (as shown in
Figure 1), where V = {1, 2, ..., n} is the node set and edge
set A represents all the connections between nodes. T =
[ti j]n∗n is a transmission matrix for influence propagation, ti j

represents the propagation probability from node i to node
j. If there is an edge from j to i in A (i.e., j trusts i),
then ti j > 01, otherwise ti j = 0. Since learning the non-zero
ti j [12] is beyond the scope of this paper, we assume they

are known and usually
n∑

i=1
ti j ≤ 1 [17]. Here, G is assumed to

be directed, as influence propagation is specific to direction
in the most general case [14]2. For better illustration, Table I
shows some other math notations used in this paper.

A. Linear Social Influence Model

Formulation. In the literature of influence propagation,
there are two well-known assumptions [4], [5]: (1) if one is
the initiator of something (e.g. opinion), he/she will spread
that with 100% probability; (2) otherwise, this probability
will depend on his/her neighbors’ influence. Following them,
we could propose an influence model as:

1If j trusts i, then i influence j.
2The proposed techniques can be applied to undirected networks.
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Table I
Several important mathematical notations.

Notations Description
fi→ j influence from node i to j
fi→T total influence from i to the nodes in set T

fi influence vector for node i
d j parameter, the damping coefficient of node j
νi vector, νi,i is used to guarantee fi→i = 1

P represents (I − dT′)−1, with each
entry pi j, each column P·i

p vector, where pi =
n∑

k=1
pki

S \{i} the nodes in S where node i is excluded
f S \{i}
i→ j influence from node i to j (independent from other nodes in S )

f S \{i}
i→T independent influence from i to the nodes in set T

fS \{i}
i independent influence vector for node i
ν

S \{i}
i vector, i ∈ S and νS \{i}i,i is used to guarantee f S \{i}

i→i = 1

T
S iS i

matrix, removing the rows and columns
corresponding to the members in S \{i} from T

Γ entry Γi j, each column Γ·i

Definition 1: Denote the influence from node i to j by
fi→ j, then

fi→i = 1, (1)

fi→ j = dj

∑

k∈N j

tk j fi→k, f or j � i, (2)

where Nj = { j1, j2, ... jm} is j’s trust-friends set (i.e., ∀k ∈ Nj,
there is a connection ( j, k) ∈ A). The major difference
of this definition from the traditional models is that we
assume the influence flowing to node j is proportional to
the linear combination of the influence to j’s neighbors (see
Equation (2)). Thus, the computation of influence will be in
a linear efficient way. Here, the parameter dj is the damping
coefficient of j for the influence propagation3. It locates in
range [0, 1], and the smaller dj is, the more influence will
be blocked by node j. For simplicity, we choose the same
d for each node. Similarly, we denote fi→T=

∑
j∈T

fi→ j as the

influence spread from node i to a set of nodes T ; that is, it
stands for the total influence to the entire network if T = V .

Influence Computation. Under the above model def-
inition, we can solve the influence spread vector fi =

[ fi→1, fi→2, ... fi→n]′ for each node i as follows. First, we can
rewrite Equation (1) and Equation (2) as

fi = dT′fi + νi = (I − dT′)−1νi (3)

= Pνi, (4)

where νi = [0, 0, ..., νi,i, ...0]′ is a vector with only the i-th
entry νi,i nonzero; that is, νi,i should be equal to a number
to guarantee fi→i = 1 as described in Equation (1). In this
equation, (I − dT′) is invertible because its transpose is
strictly diagonally dominant, and n∗n matrix P = (I−dT′)−1.
As νi is a vector with only νi,i nonzero, Equation (4) could
be rewritten as fi = νi,iP·i. Specifically, fi→i = νi,i pii, with
Equation (1), we could get

νi,i =
1
pii
, and thus, fi =

P·i
pii
. (5)

3Which is similar to that in PageRank [20].

Since P is a positive definite matrix, pii > 0. Then, the total
influence from node i to the entire network G should be

fi→V = f′ie =
n∑

j=1

fi→ j =
1
pii

n∑

j=1

p ji =
pi

pii
, (6)

where pi = (P·i)′e =
n∑

j=1
pji. Given parameter d, and the

influence transmission matrix T, to get the influence vector
fi, we only need to compute the i-th column of P (P·i), which
can be computed in O(|A|) since P−1P·i = ei is a linear system
and it satisfies the Gauss-Seidel condition. The computation
process is shown in Algorithm 1, where the i-th entry in ei

(ei,i) is 1, otherwise, 0.

Algorithm 1: Gauss-Seidel: (I − dT
′
)P·i = ei for P·i

input : T, d, i
output: P·i=[p1i, ..., pni]

′
: the i-th column of P.

for (j=0;j<n;j++) do
p(0)

ji = 0; //Initialization

iter=0;
while NOT-Converge do

for (j=0;j<n;j++) do

p(iter+1)
ji = (ei, j +

j−1∑
k=1

dtk j p
(iter+1)
ki +

n∑
k= j+1

dtk j p
(iter)
ki );

iter++;
return P·i

Relationships with Traditional Models. Actually, in this
paper, we use a specialization of the linear influence model
proposed in [10] with the prior probability αi = 1 for
each node, and this linear model has close relationship with
the traditional ones. For instance, it is easy to prove that
the linear approximation method for the IC model [17] is
actually a specialization of our linear model when d =
1. Also, the non-linear stochastic model [14] can be well
approximated by this model when d ∈ ( 1

2 , 1]. Finally, it is
worth noting that both PageRank and our model are random
walk based methods, while in PageRank fi→i = pii (a value
for quick computation) rather than 1, and the detailed proof
and explanations could be found in [10].

B. Independent Social Influence Computation

Definition. One drawback when applying the influence
model illustrated in Section III-A is that it does not consider
the “mutual enrichment” and “influence overlap” of different
nodes. For instance, in a scientific collaboration network, if
node (researcher) i is a close collaborator of j, and j is one
of the most influential researcher in the network. Though i
has limited influence herself, with the help of j (i.e., some
of j’s influence will flow to i), the computed influence of i
will be much higher than its real value.

However, it seems hard to compute the real independent
influence, since influence is always spread with the help of
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others. Even though, given a node set S and a node i ∈ S , it
is still possible to evaluate the independent influence f S \{i}

i→ j
from node i to j, independent from other nodes in S , i.e.,
S \{i}. Based on the linear model, it could be defined as:

Definition 2: Denote the independent influence from node
i to j (independent from other nodes in S , and i ∈ S ) by
f S \{i}
i→ j , then

f S \{i}
i→i = 1, (7)

f S \{i}
i→ j = 0, j ∈ S & j � i, (8)

f S \{i}
i→ j = d

∑

k�S

tk j f S \{i}
i→k , j � S . (9)

From this definition we can see that f S \{i}
i→ j is essentially

the influence of i when other nodes of S are “removed” from
the network, i.e., these nodes stop receiving and forwarding
the information from i. Similarly, the independent influence
spread from node i to a set of nodes T could be denoted as
f S \{i}
i→T =

∑
j∈T

f S \{i}
i→ j .

Independent Influence Computation. Similar to the in-
fluence computation illustrated in Section III-A, the indepen-
dent influence spread vector fS \{i}

i = [ f S \{i}
i→1 , f S \{i}

i→2 , ... f
S \{i}
i→n ]′

for node i could be computed as follows. First, we rewrite
the equations in Definition 2 and have

fS \{i}
i = (I − dT

′

S iS i
)−1ν

S \{i}
i , (10)

4where TS iS i is the matrix reduced from T by removing it’s
rows and columns corresponding to the members in S \{i},
and νS \{i}

i = [0, 0, ..., νS \{i}
i,i , ...0]′ is a vector with only the

i-th entry νS \{i}
i,i nonzero, i.e., νS \{i}

i,i should be equal to a

number to guarantee f S \{i}
i→i = 1. We could find Equation (10)

is similar to Equation (3), and thus independent influence
can be solved in the same way as shown in Section III-A.
Specifically, if we denote Γ = (I − dT

′

S iS i
)−1, then

νS \{i}
i,i =

1
Γii
, and thus, fS \{i}

i =
Γ·i
Γii
, (11)

f S \{i}
i→V = (fS \{i}

i )′e =
∑

j∈V−S

f S \{i}
i→ j =

1
Γii

∑

j∈V−S

Γ ji. (12)

IV. Properties and Applications

In this section, we first demonstrate two properties of
the proposed independent influence. With the help of these
properties, we then apply independent influence to two
possible applications.

A. Properties

Total Influence and Independent Influence. Following
the definition in Section III-A, total influence spread from a

4Note that the dimension of both fS \{i}
i and νS \{i}i can be viewed as

n − |S | + 1, since for ∀ j ∈ S and j � i, f S \{i}
i→ j = 0 and νS \{i}i, j =0.

node set S 5 to the network is fS→V=
∑
k∈V

fS→k, and the influence

spread vector fS = [ fS→1, fS→2, ... fS→n]′ could be solved by

fS = dT′fS + νS = (I − dT′)−1νS (13)

= PνS, (14)

where νS = [0, 0, ..., νS,i, ...0]′ is a vector with only the entries
νS,i (i ∈ S ) nonzero; that is, νS,i should be equal to a number
to guarantee fS→i = 1. Equation (14) could be solved the
same as Equation (4). In this way, a single influence value
fS→V is output, but it can not distinguish the contribution
from each single node in S .

Actually, by the following theorem, we could find that
this total influence ( fS→V ) is the sum of each single node’s
independent influence (

∑
i∈S

f S \{i}
i→V ).

Theorem 1: For ∀k ∈ V , fS→k =
∑
i∈S

f S \{i}
i→k and thus

fS→V=
∑
i∈S

f S \{i}
i→V .

Proof: First, we define an auxiliary function as g(a) =
[g1(a), g2(a), ...gn(a)]

′
, where a = [a1, a2, ..., a|S |]

′
and

gi(a) = ai, i ∈ S , (15)

gj(a) = d
∑

k=1

tk jgk(a), j � S , (16)

From Appendix 1, we could prove that g(a + b) = g(a) +
g(b) and gk(a+b) = gk(a)+gk(b), where b is another vector
with size equals to |S |.

In the following, denote e = [1, 1, ..., 1]
′

as a vector with
|S | entries. Also, we choose another |S | vectors with sizes
equal to |S |, e.g., e1 = [1, 0, ..., 0]

′
, e2 = [0, 1, ..., 0]

′
and e|S | =

[0, 0, ..., 1]
′
. Thus, e = e1 + e2 + ... + e|S |. In this way, g(e) =

g(e1) + g(e2) + ... + g(e|S |) and gk(e) = gk(e1) + gk(e2) + ... +
gk(e|S |).

According to the definition, gk(e) = fS→k and gk(ei) =
f S \{i}
i→k . Thus, fS→k =

∑
i∈S

f S \{i}
i→k holds.

Since fS→V=
∑
k∈V

fS→k, we could get

fS→V=
∑

k∈V

∑
i∈S

f S \{i}
i→k =

∑
i∈S

∑
k∈V

f S \{i}
i→k =

∑
i∈S

f S \{i}
i→V .

Upper Bounds. Given node set S , we find that the
independent influence for each node i ( f S \{i}

i→V , i ∈ S ) is no
bigger than its original influence ( fi→V ), and the original
influence is no bigger than pi =

n∑
k=1

pki.

Theorem 2: f S \{i}
i→V ≤ fi→V ≤ pi

Proof: First, let us prove f S \{i}
i→V ≤ fi→V by f S \{i}

i→ j ≤ fi→ j

for ∀ j ∈ V . From Definition 1, there is

fi→i = 1

fi→ j = d
∑

k∈N j

tk j fi→k, f or j � i.

5Here is a node set but a single node.
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which could be transformed into the following equivalent
formation

fi→i = 1,

fi→ j = d
∑

l∈N j

tl j fi→l = a j, f or j ∈ S & j � i,

fi→k = d
∑

l∈Nk

tlk fi→l, f or k � S ,

where aj must be a number no less than 0 (for d, tl j and fi→l

are all no less than 0). Following the notations in Theorem
1, there is fi = g(ai), where ai = [a1, a2, ...ai = 1, ...a|S |]′6.

Meanwhile, fS \{i}
i = g(ei). Then, we have

fi = fS \{i}
i + (g(ai) − g(ei)) = fS \{i}

i + g(a′i), where a′i =
ai − ei = [a1, a2, ...ai = 0, ...a|S |]′ ≥ 0. Since g(a′i) ≥ g(0) = 0,
fi ≥ fS \{i}

i .
That is ∀ j ∈ V , fi→ j ≥ f S \{i}

i→ j holds.
Second, fi→V ≤ pi can be proved in the following way.

By Equation (4), we have P−1fi = (I − dT′)fi = νi. Thus
1 − d

∑
k�i tki fi→k = νi,i.

Since both tki ≥ 0 and fi→k ≥ 0, we can get νi,i ≤ 1.
Meanwhile, as fi→k = pkiνi,i, fi→k ≤ pki.

Thus, fi→V =
n∑

k=1
fi→k ≤ pi holds.

In this way, f S \{i}
i→V ≤ fi→V ≤ pi holds.

B. Applications

Given a set of seed nodes S (e.g., the seeds selected
by CELF [6] or PMIA [8] for viral marketing), we could
evaluate the proposed independent influence computation
by a number of applications. With the help of the above
two properties, in this paper, we choose two of the most
important and intuitive ones: rank the seeds based on their
independent influence, and quickly find the Top-K influential
seed nodes from S .

Seeds Ranking. From Theorem 1, we can see that the
influence of set S is actually the sum of each node’s
independent influence, which means the system or the agent
could figure out the real influence contribution of each
selected seed. Thus, the system can rank and pay the seeds
based on their independent influence, or further remove the
ones which borrow lots of influence from other seeds in
current seed set.

Specifically, these independent influence could be com-
puted by Equation (11) and Equation (12). Let’s take the
node i ∈ S as an example. For computing i’s independent in-
fluence, we first compute the νS \{i}

i,i and fS \{i}
i in Equation (11)

by the Gauss-Seidel method, which is similar to Algorithm 1
in O(|A|) except that we will solve (I−dT

′

S iS i
)Γ·i = ei at this

time. Then, the independent influence of i, f S \{i}
i→V , could be

summarized by Equation (12). Under the linear definition,
the above procedure could be run for all the nodes in S in

6Without loss of generality, we set S = {1, 2, ...|S |.}

O(|S ||A|). Finally, we can better understand each seed, e.g.,
by ranking them based on their independent influence.

Top-K Influential Seeds Identification. In some scenar-
ios, the seed set S is usually very large, and at this time we
are more interested in the seeds at both ends, i.e., finding
the Top-K or Bottom-K independent influential seeds from
S . Actually, in this paper, we focus on quickly identifying
the Top-K influential seeds, and leave the Bottom-K identi-
fication problem for future work.

The most straightforward way to select the Top-K influ-
ential seeds is computing the independent influence for each
seed, and then ranking them. However, as illustrated before,
this will take O(|S ||A|) for our linear definition, and much
more time consuming for IC model. Luckily, Theorem 2
provides two upper bounds for independent influence, and
one of them can be used to develop an efficient algorithm.
Specifically, the vector p = P′e = [p1, ..., pn]′ contains the
upper bounds (e.g., pj) for all the seeds7, and it could
be finished in O(|A|) by the Gauss-Seidel method. This
computation is also similar to Algorithm 1 except that we
will solve

(I − dT)p = e, (17)

as (P′)−1p = e and P=(I− dT′)−1. It is worth noting that the
computation of PageRank values follows the same procedure
and time complexity.

Then, these upper bounds are used to save computations,
and the entire framework is shown in Algorithm 28. In
a nutshell, if we only have to compute the independent
influence value for N seeds (i.e., we have to search for N
candidate nodes), the time complexity of Algorithm 2 is
O((N+1)|A|). From the experiments, we can see that usually
N << |S | when K is small, which means our upper bounds
are effective.

V. Experimental Results

In this section, we provide empirical validation on several
networks. Specifically, we demonstrate: 1) Two case studies,
which illustrate that it is important to distinguish the inde-
pendent influence of each node i by removing other seeds
i.e., S \{i}; 2) The effectiveness and efficiency of our method
on ranking the seeds by independent influence computation;
3) The effectiveness of our upper bound for quickly identi-
fying the Top-K influential seeds (i.e., Algorithm 2).

A. Experimental Setup

We conduct experiments on the following five datasets:

• MovieLens is a movie consumption network [21] that
we constructed from the MovieLens dataset9;

• Polblogs is a network showing the links between politi-
cian blogs [22];

7Actually, the upper bounds of other nodes can be also computed.
8This way of using upper bounds is similar to that in [10].
9http://www.grouplens.org/node/73
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Algorithm 2: Top-K Independent Influential Seeds Iden-
tification

input : G = (V, A,T);
d is the damping factor;
S is the given set of seed nodes;
K is number of the most influential seeds.

output: SK : Top-K independent influential seeds.
SK=∅;
Compute p = [p1, ..., pn]′ in O(|A|); //Equation (17)

for each node i in S do
Ui = pi; // Upper bound

IsBoundi = True;
while |SK | < K do

Find node i with the biggest Ui in S ;
if IsBoundi == True then

Compute f S \{i}
i→k =

Γki

Γii
for all ks in O(|A|);

//Solve (I − dT
′
S iS i

)Γ·i = ei by Algorithm 1

Ui = f S \{i}
i→V ; //Equation (12)

IsBoundi = False;

else
SK = SK

⋃
i;

Ui =MINIM; //E.g., 0

return SK;

Table II
Statistics of five networks.

Networks MovieLens Polblogs DBLP-DM Epinion Amazon
#Nodes 1,682 1,490 53,872 75,879 262,111
#Edges/Arcs 312,400 19,090 160,968 508,837 1,234,877

• DBLP-DM is a scientific collaboration network from
DBLP10. We select the research papers published before
Jan. 2013 in several typical top-ranked journals (e.g.,
DMKD,TKDE) and conferences (e.g., KDD, ICDM,
SDM) in data mining, and the authors are used as nodes
to construct the scientific collaboration network;

• Epinion11 is a who-trust-whom online social network
of a general consumer review site Epinions.com;

• Amazon12 is a co-purchase network of the products
from Amazon.com.

Some basic statistics about these directed networks are given
in Table II. Note that we use MovieLens and Polblogs
mainly for case studies, since they are comparably small
and the time-consuming greedy algorithm CELF could be
finished quickly. For experiments, the transmission matrix T
is set the same as the transmission matrix of WC model [16],
i.e., ti j on edge( j, i) equals to Weight(A ji)

OutWeight( j) .
Benchmark Methods. In the following, we call our

method as Linear, and we compare Linear with several
benchmark methods:

10http://dblp.uni-trier.de/xml/
11http://snap.stanford.edu/data/soc-Epinions1.html
12http://snap.stanford.edu/data/amazon0302.html

• Degree measures the independent influence based on
the node’s degree or its DegreeDiscount value [7]. Each
time the best result of these two metrics are chosen for
comparison.

• InfluenceRank is a method recently proposed in [9],
where the independent influence is measured by the
InfluenceRank value.

• PageRank [20] measures the independent influence of
each node by the independent PageRank value.

For computing the independent influence, all the bench-
marks are run after removing the given nodes (S \{i}) from
the network. Note that, to the best of our knowledge, none
of these benchmarks follow the similar properties that we
have found in Linear (i.e., Theorem 1 and Theorem 2).

The following experiments are conducted on the same
platform. For the purpose of comparison, we record the best
performance of each algorithm by tuning their parameters,
e.g., the damping factor d in InfluenceRank, PageRank and
Linear is set to be 0.85, and the propagation probability
p = 0.01 for DegreeDiscount [7].

Evaluation Metrics. Since it is hard for measuring the
real influence of each node, we refer to the result output by
WC model [16] as the ground truth. The major reason is
that as a kind of IC model, WC model is the most widely
accepted influence computation model, and it could simulate
the real-world influence propagation process more accurately
than the Uniform IC Model [17]. Specifically, we run Monte-
Carlo simulation under the WC model for sufficiently many
(i.e., 20,000) times, and each time we sum up the influence
spread (i.e., the expected number of nodes that will be
influenced) on the network, then the average influence spread
is used for estimating the real influence. Meanwhile, for
making more meaningful and persuasive illustrations, in this
paper we mainly focus on evaluating the node ranking of
each method based on their output independent influence.
In other words, the better methods could output the ranking
list more similar to that output by WC model.

B. Case Studies

In this section, we use two case studies to illustrate the
importance of measuring independent influence. Specifically,
the first case study illustrates that if we select a set of seeds S
for viral marketing, the contribution (independent influence)
of each single seed is quite different. The second case study
illustrates that the seed’s independent influence is affected
by other seeds (i.e., S \{i}).

Case Study 1. In this case study, we first use CELF
method (a greedy algorithm based on IC model) [6] to select
a set of seed nodes (i.e., |S | = 8) for viral marketing. Then
we show the percentage of the independent influence of each
seed in this set. Also, we re-rank the seeds based on their
independent influence computed by WC model and Linear
model, respectively. This experiment is performed on two
small datasets MovieLens and Polblogs, since CELF is very
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Table III
Case study of the seed set (Top-8) inMovieLens (Movie Name) and Polblogs (Node Id).

Data Alg. Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8

MovieLens
CELF The English Patient Scream Star Wars Contact Titanic Liar Liar Twelve Monkeys The Saint
WC The English Patient(59.1) Contact(54.8) Scream(52.4) Titanic(49.8) Star Wars(51.7) Liar Liar(49.6) The Saint(45.3) Twelve Monkeys(44.6)

Linear The English Patient(34.9) Contact(31.3) Star Wars(30.1) Scream(29.6) Titanic(28.1) Liar Liar(27.9) The Saint(25.0) Twelve Monkeys(24.1)

Polblogs
CELF 962 154 1152 54 978 640 1050 999
WC 962(87.0) 154(79.7) 1152(52.0) 640(42.9) 54(42.6) 1050(37.8) 999(35.0) 978(33.2)

Linear 962(84.1) 154(63.9) 1152(40.1) 640(34.2) 54(33.7) 1050(30.0) 999(26.7) 978(26.4)
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Figure 2. The independent influence pie graph of Movielens seeds.

962
21%1050

999
9%

21%

640

9%

154

640
11%

154
19%

54

978
8%

1152
13%

54
10%

(a) WC model

962
25%

1050

999
8%

25%

640

9%

978

10%

154
19%54

978
7%

1152
12%

54
10%
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Figure 3. The independent influence pie graph of Polblogs seeds.

time consuming. The final results are shown in Table III and
Figure 2 and Figure 3, respectively.

For each dataset, the first row in Table III are the seeds
selected by CELF, and the rank orders of these seeds are also
given. Then, the second and the third row rank these seeds
based on their independent influence ( f S \{i}

i→V , the number in
each bracket (.) of this specific seed) computed by WC
model and linear model, respectively. Let’s take MovieLens
as an example, we can see the seeds selected by CELF
are well-known movies and they cover a number of movie
genres. Thus, they may lead to the maximization of influence
spread. However, the rank of the nodes based on their
independent influence (independent from other seven seeds)
is quite different from the CELF selection. For instance,
movie “Contact” is actually more influential (Rank 2) under
both WC model and Linear model. Meanwhile, we could
see that the ranking lists of WC model and Linear model
are quite similar. For deeper understanding, we quantify each
node’s independent influence, and normalize them into pie
graphs13(Figure 2 and Figure 3). From these two figures
we have the following interesting observations: First, the
independent influence varies a lot for different seeds. This
implies that the seed set S selected by CELF can not
guarantee that each seed is useful, and it is necessary to

13It is worth noting that the total influence and independent influence
output by WC model do not follow Theorem 1.

figure out the seed’s real influence; Second, the pie graphs
got by WC model and Linear model are quite similar to
each other, i.e., the Linear estimation is consistent with the
estimation of WC model.

Case study 2. This is an even more straightforward yet
complex case study, where the most influential and inde-
pendent influential nodes in two datasets (MovieLens and
DBLP-DM) are illustrated. In this case study, we first use
different methods (i.e., WC, Linear, Degree, InfluenceRank,
PageRank) select the Top-8 influential nodes. Then, we
manually choose two set of nodes (5 movies or researchers
as S \{i}) from each dataset and find the most influential
nodes independent from the nodes in these two sets. The
final results are illustrated in Table IV and Table V.

In the first five rows (row 1-5) of each table are the most
influential nodes (at this time S \{i} = ∅, i.e., S = {i})
selected by each method, and row 6-10 and row 11-15
are the most independent influential nodes with respect
to two seed sets, respectively. Let’s take Table V as an
example, all the researchers in first five rows are famous
researchers. Though the algorithms are quite different from
each other, the influential researchers determined are quite
similar. Meanwhile, the researchers’ independent influence
is affected by the given seeds (S \{i}). It is hard to find useful
information in row 6-10 and row 11-15 at the first glance,
however, some interesting observations could be explained.
For instance, in our collected data, both Dr. Ming-Syan Chen
and Dr. Charu C. Aggarwal have close collaboration with Dr.
Philip S. Yu, thus when Philip S. Yu is chosen in the given
seed set, the independent influence of Ming-Syan Chen and
Charu C. Aggarwal is affected a lot (this can be seen from
their ranking orders in row 6-10). In contrast, when Ming-
Syan Chen and Charu C. Aggarwal are included in the given
seed set, Philip S. Yu will lost some independent influence
(row 11-15). In summary, this case study illustrates that the
nodes’ independent influence is affected by other nodes in
the seed sets, and the closer the nodes the more influence
will be lost. Meanwhile, different algorithms output different
node ranking lists, since they compute independent influence
following different strategies.

C. Independent Influence Computation

In this section, we present the performance comparison
on seeds ranking by independent influence computation
between Linear and the benchmark methods. Specifically,
we first generate a seed set S by randomly selecting given
number (|S |=20, 40, 60 or 80) of seeds from the Top-
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Table IV
Most Influential or Independent Influential (Given two different sets) Nodes (Movies) inMovieLens.

Given (S \{i}) Alg. Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8
WC The English Patient Contact Star Wars Liar Liar Fargo Scream L.A. Confidential Air Force One

Linear The English Patient Contact Star Wars Scream Fargo Titanic Liar Liar Air Force One
Degree Star Wars Contact Fargo Return of the Jedi Liar Liar Scream The English Patient Toy Story

InfluenceRank The English Patient Contact Star Wars Fargo Scream Titanic Liar Liar Return of the Jedi
PageRank The English Patient Contact Star Wars Scream Fargo Titanic Liar Liar Air Force One

{Star Wars
Liar Liar
Contact
Fargo

The English Patient}

WC Scream Titanic Chasing Amy L.A. Confidential Air Force One The Fully Monty Return of the Jedi Conspiracy Theory
Linear Scream Titanic Air Force One The Fully Monty L.A. Confidential Return of the Jedi Chasing Amy Evita
Degree Return of the Jedi Scream Toy Story Twelve Monkeys Air Force One The Godfather Independent Day(ID4) Pulp Fiction

InfluenceRank Scream Titanic Return of the Jedi The Full Monty L.A. Confidential Air Force One Twelve Monkeys The Godfather
PageRank Scream Titanic Air Force One The Full Monty L.A. Confidential Return of the Jedi Chasing Amy Evita

{Scream
Air Force One

Titanic
Toy Story

Return of the Jedi}

WC The English Patient Contact Star Wars Liar Liar Fargo The Fully Monty L.A. Confidential The Game
Linear The English Patient Contact Star Wars Fargo Liar Liar The Fully Monty L.A. Confidential Chasing Amy
Degree Star Wars Contact Fargo Liar Liar The English patient Twelve Monkeys The Godfather Independence Day(ID4)

InfluenceRank The English Patient Contact Fargo Star Wars Liar Liar The Fully Monty L.A. Confidential Twelve Monkeys
PageRank The English Patient Contact Star Wars Fargo Liar Liar The Fully Monty L.A. Confidential Chasing Amy

Table V
Most Influential or Independent Influential (Given two different sets) Nodes (Researchers) in DBLP-DM.

Given (S \{i}) Alg. Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8
WC P. S. Yu J. Han C. Faloutsos H. Wang E. J. Keogh C. C. Aggarwal J. Pei K. Wang

Linear P. S. Yu J. Han C. Faloutsos M. Chen Eamonn J. Keogh K. Wang J. Pei C. C. Aggarwal
Degree J. Han P. S. Yu C. Faloutsos J. Pei Q. Yang E. J. Keogh K. Wang H. Mannila

InfluenceRank P. S. Yu J. Han C. Faloutsos M. Chen E. J. Keogh K. Wang J. Pei C. C. Aggarwal
PageRank P. S. Yu J. Han C. Faloutsos M. Chen E. J. Keogh K. Wang J. Pei C. C. Aggarwal

{P. S. Yu, J. Han
C. Faloutsos

E. J. Keogh, H. Wang}

WC H. Mannila H. Kargupta V. Kumar J. Pei P. Melville T. Jiang N. Abe J. Sun
Linear H. Mannila Q. Yang K. Wang E. Bertino S. Parthasarathy V. Kumar H. Kriegel M. Chen
Degree Q. Yang H. Mannila Z. Chen H. Xiong H. Kriegel M. J. Zaki J. X. Yu V. Kumar

InfluenceRank M. Chen K. Wang Q. Yang S. Parthasarathy E. Bertino H. Mannila H. Kargupta J. Pei
PageRank H. Mannila Q. Yang K. Wang E. Bertino S. Parthasarathy V. Kumar H. Kriegel M. Chen

{M. Chen, J. Pei
C. C. Aggarwal

K. Wang, Q. Yang}

WC J. Han C. Faloutsos P. S. Yu A. Gionis E. J. Keogh T. Jiang H. Mannila J. Wang
Linear J. Han P. S. Yu C. Faloutsos E. J. Keogh H. Mannila E. Bertino T. Li P. Smyth
Degree C. Faloutsos J. Han E. J. Keogh H. Mannila H. Xiong W. Fan J. X. Yu H. Kriegel

InfluenceRank J. Han P. S. Yu C. Faloutsos E. J. Keogh E. Bertino H. Mannila S. Parthasarathy P. Smyth
PageRank J. Han P. S. Yu C. Faloutsos E. J. Keogh H. Mannila E. Bertino T. Li P. Smyth

100 nodes with highest degree. Then, we rank these seeds
by Linear and the benchmarks, respectively. Finally, we
compute and compare the Spearman correlations (the bigger
the better)14 between these rankings with the ground truth
(i.e., 20,000 times Monte-Carlo simulation of WC model).
Meanwhile, we record the running time. With respect to
each dataset, the above procedure will be run 4 times for
each size of seed set, and the average results are used for
final comparison.

The experimental results on DBLP-DM, Epinion and
Amazion are shown in Figure 4, Figure 5 and Figure 6,
respectively. We could find the similar observations from
these figures: For the effectiveness comparison, the rankings
of Linear method have the highest Spearman Correlation
values with the ground truth for most of the time, while
Degree based methods perform the worst since the nodes
with the highest degree may not be most influential and vice
versa; For the efficiency issue, we could see that it is most
time consuming to run the WC model and our Linear method
is as fast as PageRank, while degree based methods are very
efficient since they only need to search the nodes once. In
summary, Linear method could effectively and efficiently
rank the seeds based on their independent influence.

D. Top-K Influential Seeds Identification

In this section, we provide empirical validation on the
second application, Top-K independent influential seeds i-

14http://en.wikipedia.org/wiki/Spearman’s rank correlation coefficient
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Figure 4. Independent influence computation on DBLP-DM.
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Figure 5. Independent influence computation on Epinion.

dentification from seed set S . The experimental setup is
similar to that in Section V-C: First, we generate a seed
set S by randomly selecting given number (|S |=20, 40,
60 or 80) of seeds from the Top-100 nodes with highest
degree. Then, we identify the Top-10 (i.e., we fix K=10)
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Figure 6. Independent influence computation on Amazon.

independent influential seeds from each of these sets by
Linear (Algorithm 2) and the benchmarks. For comparing
the effectiveness of each method, we compute the Jaccard
similarity (the bigger the better)15 of their outputs with the
ground truth (i.e., Top-10 seeds output by the 20,000 times
Monte-Carlo simulation of WC model). Also, this procedure
is run 4 times for each size of seed set on each dataset, and
the average values are used for final comparison.

Besides computing the Jaccard similarity of the Top-10
seeds, we also compare each method’s running time and the
effectiveness of our proposed upper bounds in Algorithm
2. Along this line, the experimental results on DBLP-DM,
Epinion and Amazion can be found in Figure 7, Figure 8 and
Figure 9, respectively. For the Jaccard similarity comparison
(the leftmost subfigures), we can see that the most influential
seeds identified by Linear have the largest overlaps with
the ground truth, with the average Jaccard similarity value
bigger than 0.79. For the running time comparison (the
middle subfigures), WC model and InfluenceRank are the
most and second most time consuming algorithms. Among
these algorithms, Degree is the fastest algorithm, howev-
er, it performs the worst with respect to Top-10 seeds
identification (Figure 7(a), Figure 8(a) and Figure 9(a)).
Meanwhile, in this experiment Linear becomes much faster
than PageRank, and this is due to the help of our upper
bounds. More specifically, we demonstrate the effectiveness
of our upper bounds by presenting the number of searched
nodes (i.e., N) for finding the Top-10 independent influential
seeds in each seed set (the rightmost subfigures). We can
observe that this number is comparably small with respect
to the size of the entire seed set, which also indicates that
Algorithm 2 is scalable.

VI. Concluding Remarks And FutureWork

In this paper, we provided a focused study on measuring
the node’s independent influence by a linear social influence
model. Along this line, we first presented the definition of
linear social influence model and the independent influence
in detail. Then, we found two properties of the proposed
independent influence, i.e., the influence of a set of nodes

15http://en.wikipedia.org/wiki/Jaccard index

(this node set may be selected manually or by some algo-
rithms, e.g., CELF) is actually the sum of their indepen-
dent influence and the independent influence is no bigger
than each seed’s original influence. Moreover, we applied
this independent influence computation for seeds ranking
and quickly identifying Top-K independent influential seeds
from the seed set. Finally, an empirical study was conducted
on five network datasets, and the results demonstrated the
effectiveness and efficiency of the proposed independent
influence measures.

This paper provides an introduction of the problem space
in independent social influence analysis. The area is still
in its infancy, and we anticipate that more techniques will
be developed. Specifically, in the future, we plan to find
more reasonable metrics on influence evaluation. Mean-
while, quickly identifying the Bottom-K influential seeds
and the topic-sensitive [23] independent social influence
computations are also possible directions for future research.
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Appendix 1

In this section, we prove that g(a + b) = g(a) + g(b) and
gk(a + b) = gk(a) + gk(b) for Theorem 1.

First, we rewrite g(a) as
gi(a) = d

∑
k=1 tkigk(a) + νi(a) for i = 1, 2..., n.

When i � S , νi(a) equals to 0. Otherwise, νi(a) is a value
to make sure gi(a) = ai.

Similar to Equation (3) and Equation (13), we have
g(a) = (I − dT′)−1ν(a) = Pν(a), and ν(a) = P−1g(a).
Then, just considering the nodes in S , we could get

νS (a) = P−1
S S a, where νS (a) and P−1

S S are the remaining entries
in ν(a) and P−1, respectively.

Since νS (a)+νS (b)=P−1
S S a + P−1

S S b=P−1
S S (a + b)=νS (a + b),

thus, g(a + b) = Pν(a + b) = g(a) + g(b) holds, and
incorrespondingly, gk(a + b) = gk(a) + gk(b).
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