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For a long time, PageRank has been widely used for authority computation and has been adopted as a solid
baseline for evaluating social influence related applications. However, when measuring the authority of net-
work nodes, the traditional PageRank method does not take the nodes’ prior knowledge into consideration.
Also, the connection between PageRank and social influence modeling methods is not clearly established.
To that end, this article provides a focused study on understanding PageRank as well as the relationship
between PageRank and social influence analysis. Along this line, we first propose a linear social influence
model and reveal that this model generalizes the PageRank-based authority computation by introducing
some constraints. Then, we show that the authority computation by PageRank can be enhanced if exploiting
more reasonable constraints (e.g., from prior knowledge). Next, to deal with the computational challenge of
linear model with general constraints, we provide an upper bound for identifying nodes with top authorities.
Moreover, we extend the proposed linear model for better measuring the authority of the given node sets,
and we also demonstrate the way to quickly identify the top authoritative node sets. Finally, extensive exper-
imental evaluations on four real-world networks validate the effectiveness of the proposed linear model with
respect to different constraint settings. The results show that the methods with more reasonable constraints
can lead to better ranking and recommendation performance. Meanwhile, the upper bounds formed by
PageRank values could be used to quickly locate the nodes and node sets with the highest authorities.
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1. INTRODUCTION

Recently, a sizeable amount of network data have been accumulated in many applica-
tion domains [Kwak et al. 2010; Wang et al. 2012; Zafarani et al. 2014; Yu et al. 2015;
Xu et al. 2016]. They provide unparalleled opportunities for the researchers to under-
stand the world and generate useful knowledge. Indeed, tremendous efforts have been
made on these network data for node ranking by measuring node authorities [Farahat
et al. 2006; Kleinberg 1999] or modeling social influence propagation [Aggarwal 2011;
Garg et al. 2012; Goldenberg et al. 2001; Subbian et al. 2014; Zhang et al. 2014].

In practice, both authority and influence can be used for estimating the importance
of a node. Specifically, in traditional network analysis, the term authority is used
for measuring the endorsement that is received by the node from its inlinks. Classic
models include PageRank [Page et al. 1999] and HITS [Kleinberg 1999], both of which
were first proposed for ranking web pages [Jeh and Widom 2003]. However, influence
(or more specifically, social influence) is the impact that an individual has on others
(e.g., leading to the change of their opinions or behaviors) from their outlinks. The
Independent Cascade (IC) model [Goldenberg et al. 2001] and the Linear Threshold
(LT) model [Granovetter 1978] are two of the most popular models for describing
influence propagation. In fact, a web page is ranked high if many authoritative pages
point to it, and an individual is most valuable if he/she influences many influential
people. While authority and influence appear quite different at first glance, several
researchers have sensed that they are essentially the same, e.g., we can interpret this
type of cascade process [Prakash and Faloutsos 2012] as the individual earns authority
by influencing others. Thus, some ranking work does not even distinguish between
these two concepts deliberately [Li et al. 2011; Weng et al. 2010; Yang et al. 2013].
This is also the reason that the PageRank algorithm has been used as a solid baseline
for evaluating influence-related applications [Aggarwal et al. 2011; Chen et al. 2010;
Cheng et al. 2014; Goyal et al. 2011; Tang et al. 2009; Liu et al. 2012].

Nonetheless, there are still several questions, and the answers to these questions may
lead to the better measurement of node importance in large-scale networks. What is
the connection between PageRank and social influence modeling? Can social influence
models help better understand the authority values obtained by PageRank? Can the
answers to the first two questions provide a better way to address some limitations of
PageRank (e.g., the traditional PageRank method does not consider the prior knowledge
of the nodes when measuring the authority of a node or a set of nodes)? To answer some
of these questions, in our preliminary work [Xiang et al. 2013], we propose a linear
and tractable social influence model which is an approximation of the IC model (which
is intractable). Then, we show that this linear model generalizes the PageRank-based
authority computation by introducing some constraints, i.e., PageRank is actually a
special case of this model. Therefore, we argue that the authority of each node is
essentially the collection of its influence on the network. Based on this finding, we
reveal that many similar and effective authority computation methods, which consider
more prior knowledge, can be obtained by simply changing the constraint settings in
the proposed linear model. Meanwhile, we show that the PageRank value can be used to
form an upper bound for the real authority with general constraints. This upper bound
is then used to develop an efficient algorithm for finding the most authoritative nodes.

In this article, we further develop an algorithm for better exploiting the compu-
tation strategy of our proposed linear influence model by the Gauss–Seidel method.
More importantly, we provide a new definition of combined influence/authority that
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Fig. 1. An example of directed network.

measures the influence spread of a set of nodes. Meanwhile, we show how to quickly
estimate these combined influences for ranking sets of nodes with the help of an impor-
tant property, which indicates that the combined influence is no larger than the sum
of the influence of each individual node. Finally, the extensive experimental results
on four real-world network datasets prove the effectiveness of the linear model with
constraints, the upper bounds and the combined influence. For instance, in terms of
the constraints, we can conclude that the more reasonable constraints lead to the bet-
ter ranking and recommendation performance, and when lacking of prior knowledge,
it is a good choice to fix these constraints to be the same. Our contributions can be
summarized as follows:

—By following the general assumptions in social influence analysis, we propose a linear
influence model and reveal that PageRank is actually a special case of this model. In
this way, we could connect PageRank with social influence analysis.

—We propose a solution for better ranking nodes using prior influence constraints.
Then, we demonstrate that the choice of constraint terms in PageRank is exactly
what is needed to get an efficiently solvable linear system. More importantly, we
show the effect of these constraints on the performance of linear model.

—In conjunction with PageRank, we introduce the idea of deriving upper bounds on
the authority/influence of either a node or a set of nodes for general constraints.
Exploiting the upper bounds that are discovered in this article, we develop efficient
algorithms to identify Top-K nodes as well as sets of nodes.

To the best of our knowledge, this is the first comprehensive study exploring the
relationship between ranking and influence, which are two key topics in social network
analysis. Specifically, this study focuses on understanding the traditional PageRank
from an influence perspective. It could further help other types of PageRank related
methods, such as TwitterRank [Weng et al. 2010], for better node ranking. Meanwhile,
the methods developed in this article could be used in the application of social influence
analysis (e.g., viral marketing [Chen et al. 2013; Liu et al. 2014]).

2. BACKGROUND AND RELATED WORK

In this article, we let G = (V,A, W, T) be a network (as shown in Figure 1), where
V = {1, 2, . . . , n} is the node set and edge setA represents all connections between nodes.
W = [wi j]n∗n is the PageRank matrix, wi j represents the strength of the endorsement
from node i to node j. T = [tij]n∗n is a transition matrix for influence propagation,
tij represents the propagation probability from node i to node j. If there is an edge
from j to i in A (i.e., j trusts i), then w ji > 0 and tij > 0,1 otherwise w ji = tij = 0.
Since learning the nonzero tij and wi j [Goyal et al. 2010] is beyond the scope of this
article, we assume they are known and usually

∑n
i=1 tij ≤ 1 [Yang et al. 2012] and∑n

j=1 wi j = 1 [Bianchini et al. 2005]. We present W and T simultaneously because we
will study both PageRank and the influence model within the same network framework.

1If j trusts i, then j will endorse i, while i influences j.
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Network G is assumed to be directed, as influence propagation is directed in the most
general case [Aggarwal et al. 2011]. Note that the proposed techniques can also be
applied to undirected networks.

Authority computation by PageRank: PageRank [Page et al. 1999] have been widely
known as a reputable way to obtain the authority score of a node based on network
connectivity. The general PageRank values x = [x1, x2, . . . , xn]′ of the nodes in a network
can be formalized as

x = dW
′
x + (1 − d)

n
e, (1)

where d ∈ (0, 1) is the damping factor, and e = [1, 1, . . . , 1]′. It has been proven that
the above iterative process is stable and the linear system always converges [Bianchini
et al. 2005]. There are also some variants of PageRank to measure nodes’ authorities
better by including a limited amount of domain knowledge. A typical method is to obtain
a nonuniform personalization vector instead of 1

ne [Haveliwala 2003]. An alternative
way is to add different edge weights to get a more precise measurement W [Ding et al.
2009]. Going one step further, if enough ground truth labels or relations between node
pairs are collected, they could be used to guide the PageRank transition matrix W
on the network [Gao et al. 2011; Backstrom and Leskovec 2011]. For instance, Gao
et al. [2011] propose a semi-supervised PageRank, where the transition probabilities
are defined as parametric models. Then, the authors require that the ranking values
should be as close to the stationary distribution of the parametric Markov process
as possible. However, in this article, we consider a more general scenario where the
authority values x are the output while W is given.

Actually, as an effective and efficient algorithm, PageRank model has been applied
to a number of applications for authority computation, such as Web search [Page et al.
1999; Jeh and Widom 2003], bibliometrics analysis [Ding 2011], item recommenda-
tions [Liu et al. 2012], link predictions [Liben-Nowell and Kleinberg 2007] and expert
finding [Zhu et al. 2011] tasks. Some works in these applications choose the ranking
results of PageRank as the ground truth. For instance, in diversified ranking and recom-
mendations, both Tong et al. [2011] and Küçüktunç et al. [2013] view the nodes’ output
by PageRank as the most relevant candidates (e.g., with respect to a specific query)
since there is usually no ground truth in network datasets [Li and Yu 2011]. Then, they
try to quantify the goodness of a given Top-K ranking list by capturing both relevance
and diversity. More often, PageRank serves as a baseline method [Shi et al. 2014]. For
instance, in order to identify influencers on Twitter, Kwak et al. [2010] rank users by
different methods (including PageRank) and make a quantitative comparison. Further,
Liben-Nowell and Kleinberg [2007] experimentally demonstrate that PageRank could
beat several predictors for the task of link predictions, and Bi et al. [2011] also choose
PageRank as the specific baseline for evaluating the importance of each research paper.

However, there are still some shortcomings in the traditional PageRank method. For
instance, it cannot effectively consider the prior knowledge of nodes when measuring
one node’s authority or directly measuring the combined authority of a set of nodes [Li
et al. 2011]. Though Langville and Meyer [2004] present a comprehensive survey of the
research issues related to PageRank, to the best of our knowledge, most existing works
use PageRank to get an overall single value for measuring the node’s importance, and
have limited focus in understanding PageRank by exploiting authority endorsements
between nodes (this will be illustrated later).

Influence models and computation. Several models [Kimura and Saito 2006; Chen
et al. 2010; Aggarwal et al. 2011; Du et al. 2013; Gomez-rodriguez et al. 2013] have
been provided to describe the dynamics of influence propagation. Among them, the
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IC model [Goldenberg et al. 2001] is widely used and studied [Lucier et al. 2015]. In
the IC model, the activated/influenced nodes have a single chance to influence their
neighbors independently with a probability. This iterative propagation process will not
stop until there is no newly influenced node. The IC model with each link sharing
the same propagation probability is called the Uniform IC model, and the one with
different edge weights is called the Weighted Cascade (WC) model [Kempe et al. 2003].

An ultimate goal of social influence models is to find the most influential nodes, e.g.,
for viral marketing [Cheng et al. 2014]. However, most existing models are usually
intractable, and a large number of Monte-Carlo simulations are needed. To improve
computational efficiency, many heuristics have been proposed. For instance, Leskovec
et al. [2007] have designed the cost-effective lazy forward (CELF) optimization, and
Chen et al. [2009, 2010] propose both the Degree Discount heuristic and the Maximum
Influence Path heuristic. Similarly, Kimura and Saito [2006] propose the shortest-
path-based influence algorithm. Aggarwal et al. [2011] propose the SteadyStateSpread
method by solving a system of nonlinear equations. Moreover, Yang et al. [2012] observe
that propagation probabilities in real-world networks are usually quite small, and
thus propose a quick approximation of influence spread by solving a linear system. In
addition, many researchers also consider some constraints in practice, e.g., Tang et al.
propose topical affinity propagation to model topic-level social influence [Tang et al.
2009].

Similar to PageRank, many existing influence propagation models follow the idea of
a random walk. From this viewpoint, though influence modeling and PageRank rank-
ing are conducted in different contexts, both of them can be viewed as estimating the
importance of each node in terms of information diffusion [Yang et al. 2013]. Actu-
ally, if we simply ignore the meaning (e.g., node similarity or influence probability) of
the edges, all these methods (e.g., PageRank and influence models) could be applied
to this network for node ranking. Thus, Li et al. [2011] enhance PageRank through
influence propagation and Weng et al. [2010] propose TwitterRank, an extension of
PageRank, to measure the influence of users in Twitter. Meanwhile, PageRank has
been used as a solid baseline for evaluating influence related applications, e.g., social
influence maximization [Chen et al. 2010; Aggarwal et al. 2011; Goyal et al. 2011; Jung
et al. 2012], estimating node’s reputation [Yang et al. 2013] and finding the Trend-
setters [Saez-Trumper et al. 2012]. However, as stated in Section 1, discovering the
connection between PageRank and influence modeling is still an open question.

Node set mining and ranking. In this research domain, most current work focuses on
mining a specific set of nodes. For instance, network community detection is one of the
active research directions [Fortunato 2010; Zhang and Yu 2015]. Recently, researchers
have paid more attention to community analysis with specific constraints. For instance,
Tang et al. [2012] try to address the evolving group identification problem in dynamic
multimode networks, and Wang et al. [2012] initiate the study of magnet community
(the communities that attract significantly more peoples interests) mining problem.
This type of research also includes finding Top-K nodes for diversified ranking [Tong
et al. 2011] and influence maximization [Kempe et al. 2003]. In another direction,
for ranking nodes in a given node set, Liu et al. [2013] propose a linear approach to
compute independent influence. Though the similar way of modeling social influence
prorogation is adopted, Liu et al. [2013] is significantly different from this article, for
instance, it only uses the same constraint value for each node and does not try to
improve the procedure of social influence modeling. To the best of our knowledge, the
work of Li et al. [2011] is the most similar to the work in this article, where it also aim
to rank given node sets based on their influence. However, the work of Li et al. [2011]
simply views the node set as a big node and does not provide the solution for quickly
identifying the Top-K influential node sets.
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Table I. Several Important Mathematical Notations

Notations Description
W PageRank transition matrix
T Transition matrix for influence propagation

fi→ j Influence from node i to j
fi→T Total influence from i to the nodes in set T
fi Influence vector for node i
αi Parameter, the influence constraint of node i
λ j Parameter, the damping coefficient of node j
νi Vector, νi,i is used to guarantee fi→i = αi
P Represents both (I + λI − T′)−1 and (I + λI − W)−1,

with each entry pij and each column P·i
p Vector, where pi =∑n

j=1 pji

x Vector, where xi is the PageRank value of node i
xi→ j Similar to fi→ j , the pairwise PageRank value

ei vector, the ith entry in ei (ei ,i) is 1, otherwise, 0
Tt Node set which stores all the nodes in domain t

fS→ j Combined influence from node set S to j
fS→T Combined influence from S to the nodes in set T
fS Influence vector for node set S
νS Vector, νS,i (i ∈ S) is used to guarantee fS→i = αi
αααS |S|-dimensional constraint vector, [αs1 , αs2 , . . . , αs|S| ]

′

PSS Matrix, where the rows and columns not corresponding to
the members of S are removed from P

3. SOCIAL INFLUENCE MODELING

In this section, we propose a linear social influence model which is both tractable and
efficient. For better illustration, Table I shows some mathematical notations.

3.1. Problem Formulation

In the literature of influence propagation [Goldenberg et al. 2001; Granovetter 1978],
there are two well-known assumptions on the acceptance of propagated informa-
tion (e.g., opinion): (1) if someone is the original initiator, he/she will accept, while
spread that information with full preference; (2) otherwise, this value will depends on
his/her neighbors’ influence.

However, due to many internal or external profile factors, there may be some varia-
tions on the initiator’s preference that are shown to the social neighbors. Let us consider
a scenario where two Twitter users are advocating for the same thing (e.g., a movie),
separately. For the first user (a famous critic), he frequently uses the strong words like
“great” and “fantastic” to express his opinion, while the words chosen by the second
user (a normal guy) are just “good” and “fine”. We can see that the first initiator shows
more confidence and preference; thus, he may spread more influence on other users
than the second initiator. That is, for precisely computing the influence on the social
network, we should also consider the prior knowledge (e.g., confidence and preference)
of the initiator. To that end, we measure initiator profiles by generally including some
constraints into the first assumption, and then propose an influence model as follows.

Definition 3.1. Denote the influence from node i to node j by fi→ j , then

fi→ j = 1
1 + λ j

∑
k∈Nj

tkj fi→k, (2)

s.t., fi→i = αi, for j = i and αi > 0, (3)

where Nj = { j1, j2, . . . jm} is j’s trust-friend set (i.e., ∀k ∈ Nj , connection ( j, k) ∈ A) and
tkj (one entry in T) is the given propagation probability from k to j. In this definition, we
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assign each node i a constraint value αi, which is learned from prior content or domain
knowledge. Specifically, if i shows full confidence or preference to the information,
this value should be the maximum (e.g., 1).2 In another direction, if i becomes of no
interest at all, it will be 0. Meanwhile, another major difference from the traditional
models is that we assume the influence flowing to node j is proportional to the linear
combination of the influence to j’s neighbors (see Equation (2)). Thus, the computation
of influence will be linearly efficient. Parameter λ j is the damping coefficient of j for the
influence propagation. It locates in range (0,+∞), and the smaller the λ j is, the less the
influence will be blocked. For simplicity, we choose the same λ for each node, and name
λI the damping matrix. We denote fi→T =∑

j∈T fi→ j as the influence spread from node i
to a group of nodes T ; that is, it stands for the total influence to the entire network
if T = V.

3.2. Influence Computation

Under the above model definition, in this subsection we show the way to solve the
influence spread vector fi = [ fi→1, fi→2, . . . fi→n]′ for each node i.

First, we can rewrite Equations (3) and (2) as

fi→ j = 1
1 + λ

⎛
⎝∑

k∈Nj

tkj fi→k + νi→ j

⎞
⎠ . (4)

Here, νi→ j is the jth entry in vector νi = [0, 0, . . . , νi,i, . . . 0]′, where only the ith entry
νi,i is not zero; that is, νi,i should be equal to a number to guarantee fi→i = αi as
described in Equation (3). Based on Equation (4), fi could be further represented by
the following equations:

fi = (I + λI)−1(T′fi + νi)
= (I + λI − T′)−1νi (5)
= Pνi. (6)

In these equations, (I + λI − T′) is invertible because it is strictly diagonally domi-
nant, and we denote n∗ n matrix P equals (I + λI − T′)−1. As νi is a vector with only νi,i
being nonzero, Equation (6) could be rewritten as

fi = νi,iP·i. (7)

Specifically, the ith entry in fi, i.e., fi→i, is νi,i pii. With the help of Equation (3), we
could get

νi,i = αi

pii
, and thus, fi = αi

pii
P·i. (8)

Since matrix P is both positive definite and nonnegative, pii > 0. In summary, given
two types of parameters αi and λ, and the influence propagation matrix T, to get
the influence vector fi for node i, we only need to compute the ith column of P (P·i).
Since P−1P·i = ei is a linear system which satisfies the Gauss–Seidel condition (i.e.,
P−1 = (I+λI−T′) is strictly diagonally dominant), P·i can be computed iteratively and
the iterative procedure converges to the exact solution for any initial values [Ding et al.
2008; Golub and Van Loan 1996]. In this way, we can get P·i in O(|A|). The computation
is summarized and shown in Algorithm 1, where in each iteration the elements of P·i
(e.g., p(iter+1)

ji ) are computed sequentially using forward substitution.3

2If initially αi > 1, we could normalize it into (0,1].
3http://en.wikipedia.org/wiki/Gauss-Seidel_method.
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In summary, given the influence transition matrix T and constraint αi, for computing
influence spread vector fi for node i, we first fix fi→i as αi, then we use Algorithm 1 and
Equation (8) to get other entries in fi (e.g., fi→ j). Finally, the total influence from node
i to the entire network G ( fi→V ) should be computed by

fi→V = f ′
ie =

n∑
j=1

fi→ j = αi

pii

n∑
j=1

pji. (9)

ALGORITHM 1: Gauss–Seidel: (I + λI − T′)P·i = ei for P·i
input : T, λ, i
output: P·i = [p1i, . . ., pni]

′ : the ith column of P.
for (j=0;j<n;j++) do

p(0)
ji = 0; //Initialization

iter=0;
while NOT-Converge do

for (j=0;j<n;j++) do

p(iter+1)
ji = 1

1+λ
(ei , j +

j−1∑
k=1

tkj p(iter+1)
ki +

n∑
k= j+1

tkj p(iter)
ki );

iter++;
return P·i

Relationship with traditional social influence models: This linear influence model
is closely related to the traditional ones. In the following, we demonstrate that it
approximates the IC model [Goldenberg et al. 2001]. To this end, we refer to Yang et al.
[2012], where the authors prove that the influence propagation under the IC model
could be well approximated by

fi→ j =
∞∑

t=0

p( j(t)) =
∞∑

t=0

p( j̃(t − 1))(1 −
∏

k∈Nj

(1 − tkj p(k(t − 1)))), (10)

where p( j(t)) is the probability that node j will take the action (be influenced) in step t
and p( j̃(t)) is the probability that node j has not taken the action until step t. Therefore,
under the IC model, fi→ j is exactly the sum of the probabilities that j will take the
action in each step. Equation (10) gives a tractable-like stochastic way to represent the
IC model; however, fi→ j is still intractable for p( j(t)) is intractable. Though it cannot
be directly used to solve the IC model, Equation (10) helps to reveal the relationship
between the linear model and the IC. Specifically, since p( j̃(t)) ≤ 1, Equation (10) can
be represented by

fi→ j ≤
∞∑

t=0

(1 −
∏

k∈Nj

(1 − tkj p(k(t − 1)))) ≤
∞∑

t=0

∑
k∈Nj

tkj p(k(t − 1))

=
∑
k∈Nj

tkj

∞∑
t=0

p(k(t − 1)) =
∑
k∈Nj

tkj fi→k.

That is, the inequality of fi→ j ≤ ∑
k∈Nj

tkj fi→k holds for the IC model, and this
inequality could also be represented by Equation (2) in Definition 3.1. Thus, we can
conclude that the IC and linear models describe the influence propagation process
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similarly. One step further, the influence spread result under the IC model is actually
a special case of the linear model with specific λ j and αi settings.

We can prove that the nonlinear stochastic model [Aggarwal et al. 2011] can be
also approximated by our model. The detailed proof is omitted since it is not very
significant to the work in this article. Indeed, the following discussions and experiments
mainly focus on exploring the relationship between PageRank and the proposed linear
influence model. The aim is to precisely measure each node’s importance and to get
better node or node set ranking results effectively and efficiently.

4. PAGERANK WITH CONSTRAINTS

In this section, we first reveal that the linear model can generalize PageRank and
introduce several interesting observations. Then, we provide an implication for the
constraints automatically chosen by PageRank. Next, we discover an upper bound
for quickly estimating authority/influence, and apply it to Top-K authoritative nodes
identification.

4.1. General PageRank

For discovering the relationship between the linear social influence model and PageR-
ank, let us first solve the general PageRank vector x (i.e., Equation (1)) algebraically:

x = (I − dW
′
)−1 (1 − d)

n
e

1
d =1+λ= (I + λI − W

′
)−1λ

e
n

.

Since W′
is actually a specification of influence propagation matrix T (Section 2), we

can further replace matrix (I + λI − W′
)−1 with matrix P′ (Equation (5)), that is

x = λ

n
P′e, Specifically xi = λ

n

n∑
j=1

pji, (11)

where xi (the ith entry in vector x) is the total PageRank value of node i. Comparing
Equation (11) with Equation (9), we find that

xi = fi→V , s.t., αi = λ

n
pii, for i = 1, 2, . . . , n,

which proves the following theorem.

THEOREM 4.1. The PageRank value of one node (xi) is equal to its total influence to the
entire network ( fi→V ) under linear influence model when T = W′ and αi = λ

n pii.

If we further use [xi→1, xi→2, . . . , xi→n]′ to denote the authority obtained by node i
from each endorsement, we have

xi =
n∑

j=1

xi→ j, and xi→ j = λ

n
pji, (12)

which means PageRank value (xi) is also a collection of pairwise authorities (e.g., xi→ j).
Based on the above, we deduce the following:

—PageRank is a special case of our linear social influence model. Thus, PageRank
has close connections with existing social influence models which is the reason that
PageRank serves as a strong baseline in social influence related applications [Chen
et al. 2010; Aggarwal et al. 2011; Goyal et al. 2011; Jung et al. 2012; Yang et al.
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2013; Saez-Trumper et al. 2012]. Meanwhile, αi = λ
n pii enables the computation

of PageRank to be linear in time (we will explain this later). However, is λ
n pii an

appropriate constraint? Do there exist more accurate ones? In the following, we will
present other possible constraints along this line;

—Similar to social influence, one node’s authority in the network is also the collection of
its authority from others. When computing authority and influence, the major differ-
ence is just using w ji or tij . In most existing works, they are determined in the same
way, i.e., equal to or proportional to Weight(A ji )

OutWeight( j) [Bianchini et al. 2005; Kempe et al.
2003], so the authority and influence computed are actually the same thing. In other
words, the amount of authority endorsement given from node j to node i depends
on the number of influence flows from i to j (xi→ j ∝ fi→ j), and vice versa. Going
one step further, we argue that each node’s authority (influence) is essentially the
collection of its influence (authority) on the network or a subnetwork (e.g., domain).

In the following, we use the expression in Equation (11) to represent PageRank.
Since influence spread and authority are essentially one concept for measuring node’s
importance and they can be distinguished from the context, we use both “authority”
and “influence” without distinction. Also, as λ

n is a constant and could be omitted, we
usually consider αi to be pii instead of λ

n pii in PageRank.

4.2. Implications

From the previous subsection, we know that node i’s PageRank value xi is actually
fi→V with a specific αi (i.e., αi ∝ pii). Here, we will further demonstrate that since
the traditional PageRank algorithm just considers the total authority (or influence
spread) of each node, αi ∝ pii is the only way to finish the computation of authority in a
linear time. Meanwhile, we discuss the strengths and weaknesses for other alternative
settings of αi.

We denote f = [ f1→V , . . . , fn→V ]′ as the vector4 storing all the nodes’ total authori-
ties/influences, and denote vector p = P′e = [p1, . . . , pn]′, where pi = (P·i)′e =∑n

j=1 pji,
i.e., pi is the sum of the values in the ith column of P. Then, both our linear social in-
fluence model and PageRank aim to get f. Specifically, based on Equations (8) and (9):

f =
[

α1

p11
P·1, . . . ,

αn

pnn
P·n

]′
e

=
[

α1

p11
p1,

α2

p22
p2, . . . ,

αn

pnn
pn

]′
.

We can see that for solving f, if αi is not proportional to pii (i.e., αi 
∝ pii), we have to
compute the inverse matrix P (the inverse of (I + λI − T′)), and the time complexity is
O(n2). Otherwise (i.e., αi ∝ pii), just as PageRank does, we can get f ∝ P′e = p, and
this can be further represented as

(I + λI − T) p= e. (13)

In this way, we only need to know the sum of these values (i.e., vector p) instead of
the exact value of each entry in P. Thus, both f and pcan be quickly computed in O(|A|)
based on the Gauss–Seidel method (the computation process for solving Equation (13)
is similar to that in Algorithm 1).

Now we know why PageRank is efficient. However, setting αi ∝ pii may not be a
good choice for effectively measuring a node’s authority since the value of pii could be

4Actually, PageRank vector x is also a specification of f.
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meaningless (as we show in Figure 3 in the experiments). It seems that it is more rea-
sonable to set each αi to be a positive constant (e.g., αi = 1) when lacking of prior knowl-
edge, or using some prior or domain knowledge for guiding this value. For instance, to
mine the most influential researchers in a scientific collaboration network, we can use
the number of their publications to generate a constraint (e.g., αi = log(#Publicationi)).

However, if αi 
∝ pii, we need to compute the value of each entry in P·i to get fi→V (or xi)
as noted previously (e.g., Equation (9)), which will take O(|A|) for each i. In total, it takes
O(n|A|) to compute vector f for all nodes, i.e., n times of the PageRank computation. We
are usually more interested in finding Top-K authoritative ones [Zheng et al. 2015],
the problem then becomes how to quickly estimate each node’s authority and filter out
insignificant ones. Indeed, we find out that, for each α, the aforementioned vector p,
computed in O(|A|), can be used to form an upper bound for speedup.

4.3. Upper Bound and Applications

In this subsection, we first show that for a given constraint αi, the total authority of
node i under linear model (for consistency, we note it as fi→V rather than xi) is no
larger than (1 + λ)αi pi. Then, we design an algorithm for the quick selection of Top-K
authoritative nodes. Finally, we demonstrate that this algorithm is useful in a number
of application scenarios.

THEOREM 4.2. For ∀αi , fi→V ≤ (1 + λ)αi pi, where pi = (P·i)′e =∑n
j=1 pji.

PROOF. By Equation (6) fi = Pνi and since P = (I + λI − T′)−1, we have

P−1fi = (I + λI − T′)fi = νi,

and specifically the ith entry in νi is

(1 + λ)αi −
∑
k
=i

tki fi→k = νi,i.

As both tki ≥ 0 and fi→k ≥ 0, we can get νi,i ≤ (1 + λ)αi.
Meanwhile, from Equation (7) fi→ j = pjiνi,i, thus fi→ j ≤ (1 + λ)αi pji. In this way,

fi→V = ∑n
j=1 fi→ j ≤ (1 + λ)αi pi holds.

For finding the Top-K authoritative nodes (when αi 
∝ pii), we first compute all the
upper bounds [(1 + λ)αi pi]s in O(|A|), and then use them to save computations by only
computing the real authority of the nodes with the biggest upper bounds. Algorithm 2
describes the process of the proposed framework. In a nutshell, if we only have to
compute the real authority value for N nodes, the time complexity of Algorithm 2 is
O((N + 1)|A|). From the experiments, we can see that N << n, i.e., the upper bounds
are very effective.

Since our linear model generalizes the PageRank-based authority computation by
introducing constraint (αi), Algorithm 2 is also a general framework that will be useful
in a number of scenarios, for instance, the most authoritative node identification in
a specific domain. Indeed, with the help of the linear model and Algorithm 2, we
can now effectively and efficiently solve this domain-specific authority computation as
long as we collect the domain profiles (e.g., age, country or research interest) of each
individual. Specifically, in Algorithm 2, we just need to change the target node set (V)
from the entire network to the ones that we are interested in (e.g., the subgroup Tt) by
summarizing and comparing fi→Tt=

∑
i∈Tt

fi→ j for each authoritative candidate node i.
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ALGORITHM 2: Top-K Nodes Selection (G, λ, α, K)
input : G = (V,A, T, W), λ, [α1, . . ., αn], K
output: S: the set of Top-K authoritative nodes.
S=∅;
Compute p = [p1, . . ., pn]′ in O(|A|) time; //Equation (13)
for each node i do

Ui = (1 + λ)αi pi ; // Upper bound
IsBoundi = True;

while |S| < K do
Find node i with the biggest Ui in U ;
if IsBoundi == True then

Compute fi→ j = αi
pii

pji for all j ’s in O(|A|) time;
//Solve P−1P·i = e·i by Gauss–Seidel method

Ui = fi→V ; // Equation (9)
IsBoundi = False;

else
S = S

⋃
i;

Ui = MINIM; // e.g.,0

return S;

5. COMBINED INFLUENCE AND AUTHORITY

Considering that we are also usually interested in studying the combined influence/
authority of sets of nodes (e.g., the node sets with different preferences for one product)
rather than just the single nodes, in this section we extend our proposed linear influence
model for measuring the influence spread of node sets. Specifically, we first give the
definition of a node set’s combined influence, and then show the computation process
under this definition. Next, we find two upper bounds for this combined influence.
Finally, we demonstrate that these two upper bounds could be applied for two possible
applications.

5.1. Definition and Computation

In the following, we denote the combined influence/authority from node set S to single
node j by fS→ j , and denote fS→T = ∑

j∈T fS→ j as the combined influence from S to
a group of nodes T (e.g., T = V). Let us use PageRank algorithm to introduce our
definition of combined influence. Actually, PageRank does not define the authority of a
set, and with respect to traditional PageRank, we could have total influence from node
set S to network G as the sum of each single node’s influence:

fS→V =
∑
i∈S

fi→V =
∑
i∈S

λ

n
pi. (14)

However, this kind of definition does not consider the “mutual enrichment” and
“influence/authority overlap” of the nodes in a set. For instance, suppose node i ∈ S
and node j ∈ S in Figure 1, then i’s influence will be enriched by node j and vice
versa. If we simply sum up these two nodes’ total influence (i.e., by Equation (14)),
some influence will be counted more than once, making the value much higher than
their true influence [Liu et al. 2013]. Notice that it is also unwise to simply remove the
edges between nodes in the given set and then treat these nodes as a single node, since
the graph structure will be changed in this way and some information will be lost. As
the influence always spreads with the help of other nodes, it is not easy to figure out
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the real influence of each node. Alternatively, we could treat the nodes in set S as a
whole, then we have the following definition for the combined influence.

Definition 5.1. Denote the influence from node set S to j by fS→ j , then

fS→ j = 1
1 + λ j

∑
k∈Nj

tkj fS→k, (15)

s.t., fS→i = αi, for i ∈ S and αi > 0. (16)

By fixing the influence constraints in the given node set (Equation (16)) and then
treating these nodes like a single node (Equation (15)), the mutual enrichment of
social influence can be addressed naturally without changing the network structure or
information loss [Liu et al. 2014].

Computation: If we further denote the influence spread vector fS = [ fS→1,
fS→2, . . . fS→n]′ for node set S, fS can be computed similarly to vector fi (Section 3.2).
Specifically, Equations (16) and (15) could be first rewritten as

fS→ j = 1
1 + λ

⎛
⎝∑

k∈Nj

tkj fS→k + νS, j

⎞
⎠ . (17)

νS = [0, 0, . . . , νS,i, . . . 0]′ is a vector with only the entries νS,i (i ∈ S) nonzero, and νS,i
is equal to a number to guarantee fS→i = αi. One step further, influence spread vector
fS can be represented by the following equation:

fS = PνS. (18)

Here, matrix P is also equal to (I + λI − T′)−1. Suppose S = {s1, s2, . . . , s|S|}, where
|S| is the cardinality of S, and without loss of generality we assume the node id s1 <
s2 < · · · < s|S|. We denote νSS = [νS,s1 , νS,s2 , . . . , νS,s|S| ]

′, i.e., the subvector after removing
0’s from νS, and the matrix PSS is cut down from P by removing the columns and rows
not corresponding to the members of S. Then, for the nodes in S, Equation (18) could
be rewritten as

αααS = PSSνSS, (19)

where αααS is a |S|-dimensional vector [αs1 , αs2 , . . . , αs|S| ]
′. As νSS = P−1

SSαααS, we get

νS,si = [
P−1

SSαααS
]

i. (20)

Indeed, PSS is a principal submatrix of P (a positive definite matrix), and thus P−1
SS

exists and is also a positive definite matrix. Based on Equation (20), we get νSS and νS.
One step further, fS can be solved by Equation (18). In this way, for computing fS, we
have to first compute two inverse matrices, P (i.e., (I + λI − T′)−1) and P−1

SS; thus, the
time complexity will be at least O(n2). Since the νS, j is 0, if j /∈ S, Equation (18) can be
rewritten as

fS =
∑
i∈S

νS,iP·i. (21)

From this equation, we observe that fS is actually a linear combination of the corre-
sponding columns in P. Specifically, if S only contains one element, e.g., node i, then
Equation (21) will turn into Equation (7). Thus, the total influence from node set S
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to the entire network or subnetwork (domain-specific combined influence) of G (e.g.,
fS→V ) is

fS→V = f ′
Se =

n∑
j=1

fS→ j =
∑
i∈S

νS,i pi. (22)

Meanwhile, with the representation of Equation (21), we only need to compute |S|
columns of matrix P for getting fS and fS→V . These values could be computed in
O(|S||A|) by the Gauss–Seidel method (the computation of one column is shown in
Algorithm 1). Notably, S often contains a limited number of nodes, then |S| is small
and the computation of P−1

SS is very quick; thus, fS can be computed in nearly O(|A|).
5.2. Upper Bounds and Applications

However, when |S| is comparably large, the computation of influence spread vector fS
will become very time consuming (at least O(|S|2 + |S||A|)). Luckily, we can estimate
fS and fS→V by using two upper bounds, e.g., the sum of each single node’s influence
spread (i.e.,

∑
i∈S fi).

Upper bound: Given αααS, node set S’s total social influence under the linear model is
no larger than the sum of each single node’s influence.

THEOREM 5.2. For ∀S, fS→V ≤ ∑
i∈S fi→V ≤ ∑

i∈S(1 + λ)αi pi.

PROOF. First, let us prove fS→V ≤ ∑
i∈S fi→V by fS ≤ ∑

i∈S fi (based on Equations (22)
and (9)) for ∀S.

Suppose i ∈ S, we rewrite the definition of linear social influence (Definition 3.1) as

fi→ j =
⎧⎨
⎩

αi, j = i,
1

1+λ

∑
k∈Nj

tkj fi→k = βi j, j 
= i& j ∈ S,
1

1+λ

∑
k∈Nj

tkj fi→k, j /∈ S.

Specifically, we first conclude fi→ j ≥ 0 for each k. Then, we denote function f (αααi) = fi,
where αααi = [βsis1 , βsis2 , . . . , βsisi = αsi , . . . , βsis|S| ]

′. According to the definition of fi, if
αααi ≥ ααα j (i.e., βsisk ≥ βsjsk for ∀k), we have f (αααi) ≥ f (ααα j). Similarly, we can denote
f (αααS) = fS, where αααS = [αs1 , αs2 , . . . , αs|S| ]

′. Thus,

∑
i∈S

fi =
∑
i∈S

f (αααi) = f

(∑
i∈S

αααi

)
. (23)

Denote
∑

i∈S αααi = [βs1 , βs2 , . . . , βs|S| ]
′, where βsl = ∑|S|

i=1 βsisl , i.e.,

βsl = βslsl +
|S|∑

i=1,i 
=l

βsisl = αsl +
|S|∑

i=1,i 
=l

βsisl ≥ αsl . (24)

That is, each value in vector αααS is no bigger than the corresponding value in vector∑
i∈S αααi; thus, f (αααS) ≤ f (

∑
i∈S αααi). Combining with Equation (23), we could get fS ≤∑

i∈S fi, and one step further fS→V ≤ ∑
i∈S fi→V holds.

Second, from Theorem 4.2, we can easily prove
∑

i∈S fi→V ≤ ∑
i∈S(1 + λ)αi pi by the

fact that fi→V ≤ (1 + λ)αi pi.
In this way, fS→V ≤ ∑

i∈S fi→V ≤ ∑
i∈S(1 + λ)αi pi holds.

Applications: We have proposed two upper bounds for the combined influence ( fS→V ).
The first bound

∑
i∈S fi→V is much tighter but the computation is as time consuming

as the combined influence. In contrast, the second upper bound
∑

i∈S(1 + λ)αi pi is
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Table II. Statistics of the Four Real-World Networks

Networks DBLP Epinions Flixster WebND
#Node 53,872 405,176 787,213 325,729
#Edge/Arc 160,968 717,667 7,058,819 1,497,134
Type Undirected Directed Undirected Directed

very efficient (please refer to Section 4.3). These two upper bounds are useful in some
scenarios of influence and authority analysis, and in this article, we mainly focus on
two of them, i.e., one application for each bound.

First, the more the influence overlap among the nodes in set S, the bigger the
difference between

∑
i∈S fi→V and fS→V . Thus, upper bound

∑
i∈S fi→V can help us

measure the closeness of the nodes. Specifically, we can define the overall Inf luence
Overlap Rate (IOR) for one node set as

IOR =

∑
i∈S

fi→V − fS→V∑
i∈S

fi→V
. (25)

For instance, we could use this IOR metric (in the range of [0,1]) to find the closest
collaborators in the scientific collaboration network. That is, the bigger IOR stands for
the closer relationship among researchers in set S (more influence overlap), and vice
versa.

Second, given a number of node sets, the upper bound
∑

i∈S(1 + λ)αi pi can be used
to develop an efficient algorithm which helps us quickly identify the Top-K influential
node sets. To this end, the computation process is similar to Algorithm 2. Specifically,
we can first compute the upper bound ((1 + λ)αi pi) for each node’s influence in O(|A|),
then sum up the upper bounds for each node set (e.g.,

∑
i∈S(1 + λ)αi pi for S) and

rank these node sets based on their upper bounds. Then, we only have to compute
the real influence (e.g., fS→V ) for the node sets with the biggest upper bounds (e.g.,
O(|S|2 + |S||A|) for S), and if one set’s real influence is still larger than other sets’
upper bounds, we select this set as the candidate. The entire procedure does not stop
until we have selected K candidates (i.e., Top-K influential node sets). In this scenario,
if we have to compute the real social influence for N node sets, and suppose the average
size of one node set is |S|, then the time complexity will be O(N(|S|2 + |S||A|)).

6. EXPERIMENTAL RESULTS

We conduct experiments on four real-world networks. Specifically, we demonstrate5:
(1) the results of the Top-K nodes selection with respect to different constraints; (2) the
combined influence analysis; (3) the effectiveness of our upper bounds; (4) the perfor-
mance of the combined influence computation for research committee recommendation;
and (5) a study of the correlations of the output of different methods.

6.1. Experimental Setup

Datasets: The datasets are collected from different domains and platforms (Table II):
DBLP is a scientific collaboration network6; Epinions is a given who-trust-whom social
network of consumer review site Epinions.com [Massa and Avesani 2006]; Flixster is

5Some data and code used in this article could be reached from http://staff.ustc.edu.cn/∼qiliuql/
PageRankPriors.html.
6http://dblp.uni-trier.de/xml/.
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Table III. Detailed DBLP Data Statistics

AI CV DB DM IR ML
Jour. AI, JAIR PAMI, IJCV VLDBJ, TODS DMKD, TKDE TOIS ML, JMLR
Conf. AAAI, IJCAI CVPR, ICCV SIGMOD, VLDB, ICDE KDD, ICDM, SDM SIGIR, WWW, WSDM ICML, NIPS, UAI
#Pape. 14,279 13,357 10,611 8,301 6,888 11,570
#Auth. 11,531 10,431 10,174 10,347 8,958 8,896

Table IV. The Selected Methods with Different Constraints
��������αi

Met. PageRank WPageRank Prior(α) Same(α) Random(α)

αi pii pii ∗ Const(i) Const(i) 1 random(0, . . . ,1)

a social rating network7 constructed from Flixster [Jamali and Ester 2010]; WebND
(web-NotreDame8) is a famous web page linkage network [Albert et al. 1999].

From these networks, we can collect the prior information from DBLP data. Since
the experimental results are comparatively easier for understanding [Aggarwal et al.
2011; Subbian et al. 2014; Zhou and Liu 2015], we also give several carefully designed
case studies on this data so as to get more intuitive conclusions. Specifically, we focus on
six research domains (six subnetworks), which are “Artificial Intelligence” (AI), “Com-
puter Vision” (CV), “Database” (DB), “Data Mining” (DM), “Information Retrieval” (IR)
and “Machine Learning” (ML). We select the research papers published before
January 2013 in several top-ranked journals and conferences from each domain, and
the authors are treated as nodes to construct the scientific collaboration network G
(the statistics can be found in Table III). An edge A ji is added when two researchers
have at least one co-authored paper, and the weight is accumulated by the contribution
of this author pair on each of their collaborated paper; that is, the contribution of two
researchers for one paper with k authors is 1/

(k
2

)
. Finally, each A ji is normalized into

w ji by Weight(A ji )
OutWeight( j) [Bianchini et al. 2005; Kempe et al. 2003]. Meanwhile, for domain-

specific authority, if the researcher has publications in the conferences/journals of this
research topic/domain (e.g., AI), then this researcher is classified into the target group
T of this domain, and the nodes’ authorities on T are computed.

Methods: Since we focus on evaluating the effectiveness of the linear model with
respect to different constraint settings (αi) and the upper bounds (e.g., Algorithm 2),
we choose five ranking methods listed in Table IV for comparison, where PageRank
can also be viewed as a baseline and WPageRank is the abbreviation for weighted
PageRank. Since the choice of constraint αi is application-specific, it is hard to find
an αi that works for different applications. Generally speaking, we think there are
two ways to determine an effective αi: We can design the constraints based on the
prior knowledge that we can get; Without useful prior knowledge, we could fix αi to
be the same (e.g., 1) for each node i. Following this, we design methods Prior(αi) and
Same(αi), respectively. Specifically, the constraint αi in Prior(αi) is noted by Const(i).
Here, Const(i) is computed by log(1 + #Publicationi) (i.e., #Publicationi is the total
number of publications of node i) for DBLP. As we have no such content information for
the rest of the networks, we simply set Const(i) to be proportional to log(1 + Degreei)
for the nodes in Epinions, Flixster and WebND. Meanwhile, to better test the impact
of different constraints, we also randomly generate some constraints and get another
baseline Random(αi).

Finally, from Theorem 4.2, we can determine that the upper bounds for the Same(α)
method are linear to PageRank, and the upper bounds for the Prior(α) method are

7http://www.sfu.ca/∼sja25/datasets/flixster.zip.
8http://snap.stanford.edu/data/web-NotreDame.html.
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linear to WPageRank. Thus, the corresponding ranking results of these upper bounds
should be the same as PageRank and WPageRank, respectively. For each method, we
choose the same λ = 0.176, since d = 1

1+λ
= 0.85.

Evaluation metrics: Directly evaluating the results is not easy since there is no
general way to get the ground truth of node ranking based on authority. As an alter-
native, we refer to the research of social influence analysis, where the output of the
WC influence model [Kempe et al. 2003] is often chosen as the evaluation metric [Jung
et al. 2012; Liu et al. 2013]. The major reason is that as a kind of the IC model [Yang
et al. 2012], WC is the most widely accepted for simulating the influence propagation
process. In each task, given the selected nodes (node sets) by different methods, we
run a Monte-Carlo simulation under the WC model for sufficiently many (e.g., 20,000)
times and sum up the influence spread (i.e., the expected number of nodes that will be
influenced) as an estimation of the real influence/authority. We then evaluate the per-
formance of each method based on the correlations between their output and the WC
model. That is, we assume higher ranking correlations lead to better ranking results.

We also choose H-index to measure the ranking results on DBLP. Though there are
several limitations for evaluating researchers by H-index, we do so for the following
reasons: First, H-index can measure both quality and quantity of the published works
of researchers, and we do not include the citation information for constructing the
DBLP network; Second, H-index is well accepted and widely used, e.g., in bibliometric
analysis [Ding et al. 2009] and network role analysis [Jin et al. 2014]; Third, we have
observed the positive correlations between H-indexes and researcher authorities (which
also proves the similar assumption in Subbian et al. [2014]). For instance, the average
spearman correlation between the ranking lists based on H-indexes and PageRank
values of 20 randomly selected researchers is nearly 0.4.

6.2. Selection of Top-K Nodes

First, we show a case study by illustrating the names of the Top-10 authoritative re-
searchers in each research domain of DBLP network in Table V, where “Total” means
the entire DBLP collaboration network. In Table V, we can see that the results con-
tain influential researchers from different research domains. Even though the methods
(or constraints) are different from each other, the authoritative nodes determined are
quite similar [Aggarwal et al. 2011]. Meanwhile, the results obtained by Random(α) are
comparatively different from others, but its outputs are also well-known researchers
that demonstrate that not only the constraint but also the network structure con-
tribute to the final result. Furthermore, Table VI lists the average H-index results
for Top-50 ranked researchers, where the H-indexes are collected simultaneously in
May, 2012. In Table VI, we can see that the methods considering reasonable prior
knowledge (e.g., Prior(α), Same(α) and WPageRank) generally perform better than
those that do not (i.e., PageRank and Random(α)), and Prior(α) could figure out the top
researchers with the highest H-indexes.

Next, we evaluate each method’s effectiveness based on influence spread. Since it
is very time consuming to run the Monte-Carlo simulation under the WC model, we
design the following evaluation strategy. We first run the PageRank algorithm on each
network and get the Top-50 nodes, then rank these nodes by other methods and the WC
influence model, respectively. Finally, we compute the Spearman correlations9 and the
Kendall’s tau coefficients10 between each ranking list with the output of the WC model,
the results for which are shown in Figure 2. From this figure, we can see that the output

9http://en.wikipedia.org/wiki/Spearman’s_rank_correlation_coefficient.
10http://en.wikipedia.org/wiki/Kendall_tau_rank_correlation_coefficient.
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Table VI. The Average H-Indexes for Top-50 Researchers (DBLP)

AI CV DB DM IR ML Total Ave.
PageRank 42.26 43.14 51.98 42.92 40.00 37.98 55.84 44.87
WPageRank 44.10 46.34 52.12 46.32 42.42 42.18 56.60 47.15
Same(α) 43.06 45.40 52.92 43.30 42.44 38.46 57.00 46.08
Prior(α) 45.24 47.02 53.08 45.24 44.30 43.64 56.70 47.87
Random(α) 39.70 39.80 46.90 39.60 41.58 38.80 52.56 42.70
The values given in bold are used to highlight the algorithms with the best performance.

Fig. 2. Ranking results comparison for Top-50 nodes.

Fig. 3. The pii values of the Top-50 Researchers (DBLP).

of Spearman correlations (Figure 2(a)) and Kendall’s tau coefficient (Figure 2(b)) are
very similar. Generally, Prior(α) and Same(α) have the same performance for DBLP,
and Same(α) performs best for Epinions, Flixster and WebND, indicating that without
useful prior knowledge it is more reasonable to assign αi to be the same. Though there
may be bias in the constraints (i.e., the simple Const(i) for Prior(α)), Prior(α) still
outperforms WPageRank, PageRank and Random(α).

To better understand the constraints automatically chosen in PageRank, Figure 3
presents the pii values (PageRank constraints) of the Top-50 researchers (ordered by
nodes’ degrees) from DBLP and it also gives the names of the researchers at both ends
(those with the highest or lowest constraints). From this figure, it is intractable for
us to find meaningful patterns, and the results again demonstrate that it is not the
best choice to use these values as the constraint αi for evaluating the importance of
each candidate node. For instance, it is improper to set the constraint of Dr. Charu C.
Aggarwal much lower. However, this observation does help us understand the results
in Table V.
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6.3. Combined Influence Analysis

In this subsection, we pay attention to the analysis of combined influence for node
sets. Without loss of generality, we fix the size of each set (i.e., |S|) as 2 or 3 in the
experiment.

Following Li et al. [2011], we also design a case study for influence overlap analy-
sis. First, we manually select one famous researcher from each domain of the DBLP
data (i.e., T. Sandholm, T. S. Huang, H. Garcia-Molina, P. S. Yu, W. B. Craft and M. I.
Jordan), and find the Top-8 co-authors (based on the numbers of co-authored papers)
for each of them. Then, we compose many node sets with these researchers and their
collaborators, i.e., each node set contains one chosen researcher and one of his collab-
orators (e.g., S = (T. Sandholm, V. Conitzer)). Next, we rank these nodes sets (more
specifically, the collaborators) by their authority reduction (

∑
i∈S fi→V − fS→V , noted

as Red.), IOR (Equation (25)), number of co-authored papers (CoAuthors) and number
of co-neighbors (CoNeighbors), respectively. The final results are shown in Table VII,
where each row represents the ranking list of one corresponding method (e.g., Same(α))
under different metrics (Tasks, e.g., Red.). Notice that the scalar in each bracket (.) of
the Same(α)) output stands for the IOR value (e.g., the computed IOR value for the set
of (T. Sandholm, V. Conitzer) is 0.29). Here, we put the ranking lists of CoAuthors and
CoNeighbors into the task of Red.11 for better comparing the Spearman correlation
results between each ranking list and the ranking of the WC model (shown in the
last column). For simplicity, we just give the final results (Table VII) by the Same(α)
ranking method (Actually, Prior(α) and Same(α) perform quite similarly for this task).
Note that both PageRank and WPageRank cannot be adopted for this comparison since
they cannot consider the authority overlap of the nodes. From this table, we have the
following observations: First, the rank of the collaborators based on Same(α) is very
similar to the output of WC for both Red. and IOR, while the output of CoAuthors and
CoNeighbors is quite different; Second, for the same method (e.g., Same(α), WC), the
ranking lists with respect to different tasks/metrics (i.e., Red. or IOR) are also differ-
ent, which implies that the node sets with the maximum authority reduction may not
lead to the biggest IOR.

Next, we show a more comprehensive comparison on combined influence by mining
top authoritative node sets. We first illustrate the Top-5 authoritative researcher sets
(|S| = 2) from DBLP in Table VIII, where most of the researchers in each selected set are
authoritative researchers in each domain. The results of PageRank and WPageRank
are based on Equation (14), and we do not give the results of Random(α) due to limited
space. Though the top researcher sets of different methods are also different, it is still
difficult to directly make conclusive judgments on the performance of each method.
Therefore, we refer to the average H-index results. We first compute the “H-index” of
each researcher set, where the researchers in this set are viewed as a single researcher,
and if two researchers have collaborated on one paper, we only count the citation of
this paper once. Table IX shows the average H-index results for Top-50 researcher
sets (|S| = 2). Similar to Table VI, the results in Table IX also demonstrate that the
combined influence by Prior(α) can measure the real authority of each researcher set
much better, as the chosen sets have higher H-indexes than that of other methods.
However, compared with Table VI, the improvements of Prior(α) shown in Table IX
are even more obvious, and here Same(α) also outperforms PageRank and WPageRank.

Finally, we report the quantitative evaluations on four datasets. We first run PageR-
ank algorithm and then get the top node sets. Next, we rank these node sets by other
methods and the WC influence model, respectively. The Spearman correlations and

11We do not put CoAuthors and CoNeighbors into IOR since both the methods cannot measure influence
overlap rate.
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Table IX. The Average H-Indexes for Top-50 Researcher Sets (DBLP)

AI CV DB DM IR ML Total Ave.
PageRank 46.92 64.32 83.28 71.22 58.38 61.46 80.18 66.53

WPageRank 52.22 64.46 82.04 71.26 69.52 64.42 79.92 69.12
Same(α) 50.32 64.26 85.74 72.88 72.94 64.40 84.58 70.73
Prior(α) 63.70 63.62 84.36 74.66 76.08 65.02 84.58 73.14

Random(α) 48.18 59.76 83.56 71.86 63.48 53.2 80.18 65.74
The values given in bold are used to highlight the algorithms with the best performance.

Fig. 4. Ranking comparison for Top-50 node sets (|S| = 2).

Fig. 5. Ranking comparison for Top-30 node sets (|S| = 3).

Kendall’s tau coefficients between the ranking list of each method and the ranking list
of WC model are shown in both Figures 4 and 5. Compared with Figure 2, the dif-
ference between the performance of each method becomes much clearer, and Prior(α)
and Same(α) still perform best for this task. Another observation is that four meth-
ods perform similarly on the Flixster data, and we find that the ranking lists of each
method (PageRank, WPageRank, Prior(α), Same(α)) are almost the same. The reason
is that the constraints selected using these methods on this dataset are quite similar.
Meanwhile, we should note that when the network is very large or sparse, it is possible
that the top nodes identified by different methods (even the selections based on the
nodes’ degrees) are quite similar, as the authority differences among the top nodes are
usually very significant.
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Fig. 6. Searched number (N) for finding Top-50 nodes (left) and node sets (right) from four networks.

Fig. 7. An illustration of the upper bounds.

6.4. Upper Bounds Evaluation

We demonstrate the effectiveness of the upper bounds, i.e., (1 + λ)αi pi (Theorem 4.2)
for single node’s authority and

∑
i∈S(1 + λ)αi pi (Theorem 5.2) for combined influence.

We first run Prior(α), Same(α) and Random(α) on four networks to quickly select
the top influential nodes and node sets, respectively. We then present the searched
number of the candidates (N) for finding the Top-50 nodes (node sets with |S| = 2)
in Figure 6. We can observe that this number is usually quite small (no more than
200) with respect to the entire search space (n), which indicates that the corresponding
algorithms (e.g., Algorithm 2) for searching top nodes (node sets) are scalable. For better
understanding, we also illustrate the true authority value (computed by Prior(α) and
Same(α) respectively) and the upper bounds for 1,500 randomly selected researchers
from DBLP in Figure 7, where the researchers are ranked by their true authorities.
From Figure 7, we observe that the upper bounds are always close to the real authority
values. Combining the results in Figures 6 and 7, we can conclude that the upper
bounds we designed are effective.

6.5. Combined Influence for Recommendation

We also evaluate the effectiveness of each ranking method and the combined influence
through a task of recommending editorial/organizing committees. As is well known,
the committee members for each organization should be diversified for covering the
interests and requirements from various members. Take academic organizations as an
example. The members in each editorial/organizing committee are better contributors
who are far away from each other in the collaboration network, i.e., if two researchers
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Table X. User Study Ratings

PageRank WPageRank Prior(α) Same(α) Random(α)

Ave. rank 2.05 1.21 0.88 1.38 1.79
SD 104.95 61.79 45.12 70.62 91.22

The values given in bold are used to highlight the algorithms with the best performance.

Fig. 8. Results for committee recommendation.

have much authority/influence overlap, they are usually not put into the same commit-
tee. To select a committee from a number of node groups (i.e., committee candidates),
the recommendation method should rank each group by measuring the combined im-
portance of their group members. Thus, the method that can measure the combined
importance much better will achieve a higher recommendation accuracy.

Along this line, we first manually collect 52 committees from the official websites of
some leading journals/conferences in Table III. On average, each committee includes
18 members (|S| = 18, and we have made this data publicly available). Then, for
each given committee, we generate many dummy groups, each of which is composed
of one committee member and several of his/her neighbors, making sure that the
authority/influence of the dummy groups are lower than the real committee. After
that, we compute the authority of both the real committee and the dummy ones using
each method, and rank these user groups according to their authority. At last, the
method that can rank the real committee higher is the better one. For the evaluation,
we use the average rank of the real committee as the evaluation metric (the smaller
the rank, the better the method, e.g., Rank 0 means the real committee is ranked
higher than all the dummy ones). This result and its standard deviations (SD) for
each ranking method are shown in Table X, from which we can see that Prior(α)
performs best and it is followed by Same(α) and WPageRank. Meanwhile, Random(α)
outperforms PageRank for this task, implying that when the node set is large, the
combined influence computation is still effective even with random constraints since
it can handle the authority overlap issue. To better evaluate these ranking lists, we
further choose “Precision” and “Recall” as the metrics, and the corresponding results
are shown in Figure 8. Not surprisingly, we can observe that the ranking lists based on
Prior(α) are much better than others. Combining the results in Table X and Figure 8,
WPageRank (with constraint pii ∗ Const(i)) outperforms Same(α) (with constraint 1),
and this also demonstrates the positive effect of one reasonable prior constraint/weight.
At last, by applying z-test, we find the differences between different ranking lists are
statistically significant, for instance, the z-test results between Prior(α) and PageRank
is |z| = 3.85 and thus p ≤ 0.05. This experimental study once again proves that the
combined influence can discover the node sets with higher importance.
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Fig. 9. The Jaccard similarity between different methods.

6.6. Correlation Demonstration

For understanding the correlations of the output of different methods, Figure 9 shows
the Jaccard similarity of the top nodes (Figure 9(a)) and the node sets (Figure 9(b))
output by different methods. Specifically, we first run each method on the four datasets
and then select the Top-10 nodes (node sets with |S| = 2) for each method from one
dataset. Then, all four networks’ Top-10 nodes (node sets) gained by the given method
are used to stand for this specific method. Thus, the Jaccard similarity is computed
between each of the 40 nodes or node sets. In Figure 9, the darker the color between
two methods, the smaller the similarity of their outputs. Similar results can be ob-
served from both Figures 9(a) and (b). For instance, the results demonstrate that the
output of the ranking methods (i.e., PageRank, WPageRank, Prior(α) and Same(α))
are somewhat similar to each other as discovered previously; Meanwhile, the most
distinctive method is Random(α), and the second most dissimilar two pairs of methods
are (PageRank, Prior(α)) and (WPageRank, Same(α)), due to the difference in their
constraints.

7. DISCUSSION

In this section, we discuss the significance, limitations and future research directions
of this study.

From both the theoretical analysis and experimental validation, we can see that
the proposed linear social influence modeling approach can effectively and efficiently
measure node importance in large-scale social networks. Also, we reveal the close
relationship between PageRank and social influence modeling by introducing prior
influence constraint (e.g., αi) for each node and node set. Generally, the more reasonable
constraints (learnt from the prior knowledge, e.g., the number of publications for each
researcher in DBLP network) lead to the better node ranking and recommendation
results, and when lacking of prior knowledge, it is a good choice to fix these constraints
to be the same (as shown in the experimental results on Epinions, Flixster and WebND).
This finding can be further applied to help other PageRank related methods, such
as TwitterRank [Weng et al. 2010], to measure the influence of a single node and
the combined influence of a node set (i.e., by including prior knowledge into these
methods) much better. Moreover, we propose the idea of deriving upper bounds on
the social influence of either a node or a set of nodes for general constraints. With
respect to different types of constraints and upper bounds, the time complexity for each
computation/ranking task is shown in Table XI, where nS is the number of candidate
node sets. Since there are so many different ways to get αi (e.g., the ones in Table IV) and
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Table XI. Time Complexity for Each Task
�����������αi (i ∈ S)

Tasks Influence computation Top-K selection
fS→ j fS→V Single nodes Node sets

αi 
∝ pii O(|S||A|) O(|S||A|) O((N + 1)|A|) O(N(|S|2 + |S||A|))
αi ∝ pii O(|S||A|) O(|A|) O(|A| + n log2 K) O(|A| + nS log2 K)

for better illustration, we omit the time consumption in this procedure.12 Specifically,
in terms of both computing and applying the global influence value (e.g., computing
fS→V and selecting Top-K nodes/node sets), the PageRank way of setting constraints
(i.e., αi ∝ pii) does help reduce the time consumption significantly. Unfortunately, we
have to sacrifice effectiveness under this setting (shown in the experiments). As a
tradeoff, we can exploit upper bounds for reasonable constraints (e.g., those αi 
∝ pii) so
as to develop efficient algorithms to identify more influential nodes (node sets). These
upper bounds can be further used in other applications of social influence analysis.
For instance, by exploiting the properties of the linear social influence model and the
upper bounds based on PageRank, Liu et al. proposed two algorithms to quickly find
a set of the most influential nodes (i.e., a set of seeds) to deal with the social influence
maximization problem in viral marketing [Liu et al. 2014].

However, this study still has limitations. First, we do not consider some other fac-
tors in practice. For instance, the temporal effects may be included since individuals
may have diversified interests/concerns and thus can be influenced by different users
at different time periods. Second, this article focuses on demonstrating the effect of
different constraints on the performance of linear model, and these constraints (i.e.,
αi) are simply determined. Though the experimental results have illustrated that it is
reasonable and safe to assign αi to be the same when useful prior knowledge is missing,
we believe it is worth finding more effective constraints given some prior knowledge.
In other words, it is possible to develop a more general solution for constraint selection
in different scenarios (data). In the future, we plan to design a general approach for
combining many internal (e.g., the personal interests of the user) and external (e.g.,
spaital and temporal dimensions) factors into the model to better understand the social
influence mechanism.

8. CONCLUSION

In this article, we have provided a systematic study of PageRank and authority from
an influence propagation perspective. Along this line, we first develop a linear social
influence model, which generalizes the PageRank-based authority computation by in-
troducing prior influence constraints. Also, we reveal that the authority of each node
is essentially the collection of its influence on the network or a specific subnetwork.
Furthermore, we show that many similar and effective authority computation meth-
ods, which consider more prior knowledge, can be obtained by different parameter
settings in the proposed linear social influence model. Meanwhile, we find that the
PageRank value can be used to form an upper bound for efficiently computing the most
authoritative nodes. After that, we give the definition and computation of the combined
influence of a set of nodes based on the proposed linear model, and also present the
properties and applications for this combined influence. Finally, we empirically evalu-
ate the above discoveries on real-world network datasets. Experimental results show
the effect of different constraints on the performance of linear model, i.e., the more rea-
sonable constraints lead to the better ranking results, and the proposed upper bounds
can be used for quickly locating the Top-K nodes and node sets. We hope this study

12Actually, this time consumption could also be linearly added into the entries in Table XI.
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can lead to more future work in the areas of both node ranking and social influence
modeling.
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