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ABSTRACT
Rating sparsity is a critical issue for collaborative filtering.
For example, the well-known Netflix Movie rating data con-
tain ratings of only about 1% user-item pairs. One way to
address this rating sparsity problem is to develop more ef-
fective methods for training rating prediction models. To
this end, in this paper, we introduce a collective training
paradigm to automatically and effectively augment the train-
ing ratings. Essentially, the collective training paradigm
builds multiple different Collaborative Filtering (CF) mod-
els separately, and augments the training ratings of each CF
model by using the partial predictions of other CF models
for unknown ratings. Along this line, we develop two algo-
rithms, Bi-CF and Tri-CF, based on collective training. For
Bi-CF and Tri-CF, we collectively and iteratively train two
and three different CF models via iteratively augmenting
training ratings for individual CF model. We also design
different criteria to guide the selection of augmented train-
ing ratings for Bi-CF and Tri-CF. Finally, the experimental
results show that Bi-CF and Tri-CF algorithms can signifi-
cantly outperform baseline methods, such as neighborhood-
based and SVD-based models.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining

General Terms
Algorithms, Experimentation
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1. INTRODUCTION
Recommender systems [1] provide personalized sugges-

tions by identifying user interests from user behavior data.
As a major recommendation technique, collaborative filter-
ing (CF) aims at predicting the preference of a user by us-
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Table 1: A Sample Data Set.
User1 User2 User3 User4 User5

Item1 NaN NaN 2 3 NaN
Item2 1 2 NaN 2 3
Item3 2 4 2 4 5
Item4 1 2 NaN 2 3
Item5 1 2 1 NaN 4
Item6 1 2 NaN 5 7
Item7 NaN NaN 5 NaN NaN
Note: NaN indicates unknown rating.

ing available ratings or taste information from many users.
Specifically, given N users, M items and a M × N pref-
erence matrix R, CF is typically to predict the unknown
ratings in R by using the available training ratings. Many
CF algorithms, which can usually be categorized into two
groups: memory-based and model-based methods [1], have
been proposed to address this prediction problem.

The prediction performance of most CF methods strongly
depends on the available training ratings. In other words,
better prediction can usually be expected if more training
ratings become available. However, rating data are usually
very sparse because it is expensive to obtain more training
ratings from users or experts. Consequently, the unknown
ratings usually significantly outnumber the available ratings.
Then, the question is whether it is possible to leverage the
abundant unknown ratings in addition to training ratings
to improve the performance of CF methods. Through the
sample data in Table 1, we demonstrate the feasibility to
exploit unknown ratings to improve CF methods.

In Table 1, we have an item-user matrix (R), where there
are 7 items and 5 users. For example, with an item-oriented
KNN method (iKNN) [1], we can predict the rating R(4, 3)
and R(2, 3) as around 1. Note that KNN is the acronym
of K-Nearest Neighbors and is also known as neighborhood
method [1]. With these two predictions, we can better mea-
sure the similarity between User3 and User5, thus we can
better predict rating R(1, 5) via using user-oriented KNN
method (uKNN) [1]. In contrast, if we only use known rat-
ings to predict R(1, 5) with user-oriented KNN method [1],
we are not able to obtain reliable similarity value among
User3 and User5 because the support (i.e., the number of
common ratings by User3 and User5) is too low. There-
fore we are not able to predict R(1, 5) well. Through this
illustrative study, we show that the performance of one CF
model can be improved by leveraging partial predictions of
other CF models for unknown ratings.

To that end, in this paper, we introduce the collective
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training paradigm to improve CF methods. Essentially, the
collective training paradigm iteratively augments the train-
ing ratings of one model by using the partial predictions of
other CF models, then re-trains all CF models again. Along
this line, we first develop a Bi-CF algorithm based on collec-
tive training among two CF models, which iteratively aug-
ments the training ratings for one model by leveraging the
partial predictions of the other model, and re-trains the two
CF models and re-makes predictions. The final prediction
is based on the ensemble of the two CF models. Further-
more, to exploit the advantage of different CF models, we
collectively train three CF models and develop a Tri-CF al-
gorithm. For both Bi-CF and Tri-CF algorithm, one essen-
tial challenge is how to select augmented training ratings.
In this paper, we design two different criteria to guide the
selection for Bi-CF and Tri-CF. Finally, the experimental
results on MovieLens data show that both Bi-CF and Tri-
CF models could result in better performance than several
traditional methods, such as KNN and SVD methods.

2. RELATED WORK
First, the idea of collective training has been studied for

classification and regression problems [5, 10, 12] in machine
learning community. But, in this paper, we adapt collec-
tive training to collaborative filtering and propose two al-
gorithms to deal with the arisen challenge, which is how
to iteratively augment the training set for individual CF
method. Second, in the field of collaborative filtering [4, 8],
there are some research papers [7, 3, 6], which have already
explored unknown ratings to improve collaborating filter-
ing methods and are known as active collaborative filtering.
However, most of these methods need to query users with a
small amount of unknown ratings. Then these supplemental
training samples are included and used to build the CF mod-
els again together with original training samples. In other
words, user’s or expert’s interaction is still needed to exploit
the unknown ratings. In addition, Zhang and Pu [11] in-
troduced a specific recursive method to iteratively use some
predicted ratings for predictions of other unknown ratings.
However, this method is specifically designed for the user-
based CF approach. In contrast, our collective training is
developed to automatically exploit unknown ratings without
user’s interaction and collectively train and boost different
CF approaches.

3. COLLECTIVE TRAINING
In the context of collaborative filtering, collective training

is to boost one CF model by the predictions of other CF
models. The diversity of these CF models is needed for col-
lective training because the estimations of unknown ratings
by these CF methods will be the same if all these CF models
are identical. Then, the mutual boost effect among these CF
models will disappear. With different CF methods, different
algorithms can be developed to perform collective training.
The methods to select augmented training ratings may also
vary among different algorithms.

Though collective training can be generally adapted to
various combinations of multiple CF methods, we focus on
three CF methods, i.e., uKNN [2], iKNN [2] and SVD [9],
and develop two specific examples of collective training among
them. Specifically, we design Bi-CF and Tri-CF algorithms
based on these three CF models. Before introducing Bi-CF
and Tri-CF, we briefly review these three CF methods.

Suppose we have N users and M items, and a set of avail-
able ratings. To estimate the unknown rating rji to item j
by user i, item-oriented KNN method makes the prediction

for rji as: rji =
∑

v∈N(j) svj rvi∑
v∈N(j) svj

. N(j) is a set of neighboring

items that are also rated by user i. svj is similarity between
item j and item v, which is often computed with traditional
correlation measurement, e.g. Pearson Correlation or Co-
sine Correlation. The analogous user-oriented KNN make

the prediction for rji as: rji =
∑

u∈N(i) suirju∑
u∈N(i) sui

, where N(i)

is a set of neighboring users who also rate item j. sui is
similarity between user u and user i. SVD models a user’s
preference to a item as dot product of the user latent factor
and the item latent factor [9]. Given observed training rates,
user and item latent factors are learned by minimizing the
objective function as:

E =
1

2

N∑
i=1

M∑
j=1

Iji(rji − UT
i Vj)2 + αU

N∑
i=1

||Ui|| + αV

M∑
j=1

||Vj ||,

where Iji is 1 if rji is observed, and 0 otherwise. αU and αV

are parameters.

3.1 The Bi-CF Algorithm
Bi-CF algorithm is based on two different CF methods:

SVD and user-oriented KNN (uKNN). Specifically, we pro-
vide the pseudo code of Bi-CF as shown in Figure 1. As we
can see, we first make prediction for the unknown ratings
by using uKNN and SVD methods (step 2-3). Secondly we
select partial predictions yielded by individual model (step
6-7). Then we re-predict the unknown ratings by uKNN
model (SVD-based model) with the selected predictions by
SVD-based model(neighborhood-based model) in addition
to the original training ratings (step 8-10). This process is
iteratively performed until a stop criterion is satisfied, which
is that both SVD and uKNN models do not change much.
Specifically, the changing of SVD model is reflected by U
and M in latent feature space. And the changing of uKNN
can be reflected by the predictions for unknown ratings.

Furthermore, instead of selecting the augmented ratings
from all unknown ratings, we select these augmented ratings
from a pool of unknown ratings for each iteration (step 4 and
11). This strategy can significantly decrease the probability
that the same set of predicted ratings is selected at different
steps of iteration. And this mechanism could save much time
for the selection, which is actually quite time-consuming due
to the large number of unknown ratings. Also the selected
augmented predictions (H1 and H2) are put back into W
after each iteration. After all iterations, we make predictions
for unknown ratings by combining the results of uKNN and
SVD models (step 15). Also note that, Θ in Algorithm 1
represents all parameters for uKNN and SVD, including the
number of neighbors for uKNN, the number of latent factor
and penalty parameters for SVD.

Confidence Measurement. One critical challenge of
Bi-CF algorithm is how to effectively and efficiently select
the partial predictions from all unknown ratings. On one
hand, if many inaccurate predictions are augmented, the
CF model may be degraded, but not boosted. On the other
hand, the overall iteration will be very time-consuming if
the selection takes much time. To this end, we propose one
criterion to efficiently estimate the confidence of prediction.

Since there is no benchmark for an unknown rating, we
turn to consulting available ratings, which are neighboring
to the unknown rating in terms of users or items, to es-
timate the confidence of prediction for the unknown rat-
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ALGORITHM 1 Bi-CF (R, W, T, Θ, K)
Input:

R: the set of known ratings
W : the set of unknown ratings
T : the set of testing ratings
Θ: the set of parameters
K: the number of augmented ratings

Output:
Pt: the predictions on testing set.

1. R1 ← R; R2 ← R
2. Make prediction for W with uKNN and R1

3. Make prediction for W with SVD and R2

4. Generate pool W̃ by randomly selecting from W
5. Repeat
6. Select K predictions (denoted as H1) from all

predictions for W̃ by uKNN
7. Select K predictions (denoted as H2) from all

predictions for W̃ by SVD
8. R1 ← R1 ∪H2; R2 ← R2 ∪H1

9. Make prediction for W with uKNN and R1

10. Make prediction for W with SVD and R2

11. Generate W̃ by randomly selecting from W
12. End of Repeat until a stopping criterion is satisfied
13. Get the predictions P 1

t for test set T with uKNN
14. Get the predictions P 2

t for test set T with SVD
15. Output: Pt ← Average(P 1

t , P 2
t );

Figure 1: The Bi-CF Algorithm

ing. For the prediction of one unknown rating, if these
neighboring available ratings are predicted well with the CF
model, we think the prediction of this unknown rating is
high-confident. Thus, the average/overall deviation between
ground truth ratings and predictions of these neighboring
available ratings should be evaluated first. Specifically, given
one unknown rating rji, we first find a set of items (Ñ(j)),
which are neighboring to item j and rated by user i. Also
we find a set of users (Ñ(i)), who are neighboring to user

i and rate item j. With Ñ(j) and user i, we have a set of

known ratings {rvi}, v ∈ Ñ(j). And we have a set of known

ratings {rju}, u ∈ Ñ(i), with item j and Ñ(i). We still can
get the prediction for each one in these two sets of known
ratings with CF models. Accordingly we denote these two
sets of predictions as {pvi} and {pju}. Note that elements
in {pvi} ({pju}) have one-to-one correspondence with ele-
ments in {rvi} ({rju}). Then we use RMSE (Root Mean
Squared Error) to evaluate the average deviation between
ground truth ratings and predictions as follows:√∑

u∈Ñ(i)(rju − pju)2 +
∑

v∈Ñ(j)(rvi − pvi)2

|Ñ(i)| + |Ñ(j)| (1)

|Ñ(i)| or |Ñ(j)| is the number of neighboring users or item.
We specify this parameter as the same as the number of
neighbors in KNN methods. Since the confidence of pre-
diction for rij is inversely proportional to RMSE, we select
top-K predictions, which are associated with lowest RMSE
in equation 1, for each iteration.

3.2 The Tri-CF Algorithm
In this subsection, we introduce Tri-CF algorithm, which

is based on item-oriented KNN (iKNN), uKNN and SVD
and boosts one CF model with the augmented ratings gen-
erated from the predictions of the other two CF models. As

shown in Figure 2, Tri-CF has a similar interactive process
as Bi-CF. But different from Bi-CF model, Tri-CF evaluate
the confidence of predictions for each unknown rating via
analyzing the consistency of predictions by two models. In
other words, if two CF motheds make consistent predicitons
for one unknown rating, the predictions are considered as
high-confident and will be added to the training set for the
third CF model. Specifically, for one unknown rating, we can
obtain three predictions p1, p2 and p3 by uKNN, SVD and
iKNN respectively. The consistency and confidence of two
predictions p1 and p2 are inversely proportional to |p1 − p2|.
Thus, among all unknown ratings, we select top-K unknown
ratings, which are associated with lowest values of p1 − p2.
And for each selected unknown rating, we calculate the aver-
age of p1 and p2, and add it into the training set for iKNN.
For uKNN and SVD we use the same way to obtain the
augmented training ratings.

However, the consistent predictions by two models (e.g.,
uKNN and SVD) still may be inaccurate, and consequently
will degrade the third model (e.g., iKNN) if such predictions
are augmented into training set of the third model (e.g.,
iKNN). Thus, inspired by [12], we heuristically put a con-
straint condition in order to select effective predictions and
overcome the argmented noisy ratings. Specifically, we first
evaluate the confidence of the predictions for each known
rating with the the same method as in the above paragraph.
Note that we consider the two predictions p1 and p2 as con-
fident if |p1 − p2| is lower than 0.5 in the experiment. Then,
we count the number (denoted as c) of confident predictions
for the known ratings. Among these c confident predictions,
we count the number (denoted as c′) of predictions, which
are almost the same as the ground truth ratings. Finally we
estimate the noise rate of the found high-confident estima-

tions as
c−c′

c
. This noise rate is estimated for the augmented

rating of individual CF model. Therefore, during each iter-
ation, we estimate the noise rate of potential augmented
ratings for each CF model. And we augment the training
rating, if it is lower than certain threshold Nr. In addition,
we use some other procedures for Tri-CF as mentioned in
section 3.1, such as stopping criterion.

4. EXPERIMENTAL RESULTS
In this section, we empirically validate the performances

of the proposed Bi-CF and Tri-CF models.
The Experiment Setup. We validate the proposed Bi-

CF and Tri-CF models on the MovieLens dataset 1 which
contains 100000 discrete ratings (on a 1-5 scale) from 943
users for 1682 movies. In this paper, 80% of known ratings
are used as training ratings and 20% are used as the testing
set. The parameters for SVD are specified as αU = 0.05,
αV = 0.05, and the learning rate γ = 0.003 as suggested
in [9]. And we represent the number of neighbors for KNN
and equation 1 as Nei, the number of latent factors as f .
In our experiments, we show the performance with different
values of Nei and f . Also the number of augmented ratings
during each iteration is set as K = 500. The noise rate
threshold is set as Nr = 0.1. Finally, we use the RMSE [2,
1] metric to evaluate different methods.

In Table 2, we show the performances of different methods
with different values of Nei and f . Particularly, we also
directly ensemble SVD and uKNN by averaging the final

1http://www.grouplens.org/node/73
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ALGORITHM 2 Tri-CF (R, W, T, Θ, K,Nr)
Input:

R: the set of known ratings
W : the set of unknown ratings
T : the set of testing ratings
Θ: the set of parameters
K: the number of top-K confident predictions
Nr: the noise rate threshold

Output:
Pt: the predictions on testing set.

1. R1 ← R; R2 ← R; R3 ← R
2. Make prediction for W with uKNN and R1

3. Make prediction for W with SVD and R2

4. Make prediction for W with iKNN and R3

5. Generate pool W̃ by randomly selecting from W
6. Repeat
7. If Noise rate for iKNN is lower than Nr.

Then Select Top-K confident predictions H12 from
W̃ by uKNN and SVD; R3 ← R3 ∪H12

8. If Noise rate for uKNN is lower than Nr.
Then Select Top-K confident predictions H23 from

W̃by SVD and iKNN; R1 ← R1 ∪H23

9. If Noise rate for SVD is lower than Nr.
Then Select Top-K confident predictions H13 from

W̃by uKNN and iKNN; R2 ← R2 ∪H13

10. Make prediction for W with uKNN and R1

11. Make prediction for W with SVD and R2

12. Make prediction for W with iKNN and R3

13. Regenerate W̃ by randomly selecting from W
14. End of Repeat until a stopping criterion is satisfied
15. Get the predictions P 1

t for test set T with CF1

16. Get the predictions P 2
t for test set T with CF2

17. Get the predictions P 3
t for test set T with CF3

18. Output: Pt ← Average(P 1
t , P 2

t , P 3
t );

Figure 2: The Tri-CF Algorithm

predictions of these two models. We represent this method
as Ensemble. As can be seen, Bi-CF and Tri-CF models can
outperform the competing methods, including KNN, SVD
and Ensemble, in the most cases. The results of Bi-CF and
Tri-CF are obtained after a stop criterion is satisfied.

To further study and compare the proposed two models,
we compare the RMSEs on the testing set at different steps
of iteration in Figure 3, where we obtain the RMSEs at
each step of iteration by averaging the predictions of the
two/three basic CF models. In Figure 3, we specify the
number of neighbors as Nei = 40 and f = 40. As can
be seen, the RMSEs of both Bi-CF and Tri-CF decrease
significantly after several initial iterations. Also, the Tri-
CF results show a little better performance during these
iteration. Note that it takes much more steps to converge
for both Bi-CF and Tri-CF models, but here we only show
the first 10 iterations.

Table 2: RMSE Comparisons on MovieLens
Nei f uKNN SVD Ensemble Bi-CF Tri-CF
10 10 1.0401 0.987 0.9702 0.9581 0.9522
20 20 1.0207 1.0022 0.9702 0.9590 0.9535
30 30 1.0183 1.0162 0.9750 0.9600 0.9535
40 40 1.0181 1.0298 0.9795 0.9609 0.9580

5. CONCLUDING REMARKS
In this paper, we exploited the well-known concept of col-

lective training for collaborative filtering and demonstrated
its effectiveness for recommendation. Essentially, the collec-
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Figure 3: RMSEs at Different Iterations.

tive training paradigm builds multiple collaborative filtering
models, and augments the training rating for one collabo-
rative filtering model by leveraging the predictions of other
collaborative filtering models. To demonstrate the useful-
ness and practicality of this powerful idea, we developed
two specific examples of collective training of multiple CFs,
i.e., Bi-CF and Tri-CF. Two different criteria are also de-
signed to guide the selection of augmented training ratings.
Finally, experimental results on the MovieLen data showed
the advantages of both Bi-CF and Tri-CF by comparing with
some baseline methods, such as KNN and SVD. As a future
work, we would like to explore other possible combinations
of collective training, in addition to Bi-CF and Tri-CF, and
identify the most powerful combination methods. In addi-
tion, one limitation of Bi-CF and Tri-CF is that it takes
many iterations before a stop criterion is satisfied. In the
future, we will study the convergence of the iterations.
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