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1 Collaborative List-and-Pairwise Filtering
2 From Implicit Feedback
3 Runlong Yu , Qi Liu ,Member, IEEE, Yuyang Ye , Mingyue Cheng ,

4 Enhong Chen , Senior Member, IEEE, and Jianhui Ma

5 Abstract—The implicit feedback based collaborative filtering (CF) has attracted much attention in recent years, mainly because users

6 implicitly express their preferences in many real-world scenarios. The current mainstream pairwise methods optimize the Area Under

7 the Curve (AUC) and are empirically proved to be helpful to exploit binary relevance data, but lead to either not address the ranking

8 problem, or not specifically focus on top-k recommendation. Although there exists the listwise method maximizes the Mean Reciprocal

9 Rank (MRR), it has low efficiency and is not particularly adequate for general implicit feedback situations. To that end, in this paper, we

10 propose a new framework, namely Collaborative List-and-Pairwise Filtering (CLAPF), which aims to introduce pairwise thinking into

11 listwise methods. Specifically, we smooth another well-known rank-biased measure called Mean Average Precision (MAP), and

12 respectively combine two rank-biased metrics (MAP, MRR) with the pairwise objective function to capture the performance of top-k

13 recommendation. Furthermore, the sampling scheme for CLAPF is discussed to accelerate the convergence speed. Our CLAPF

14 framework is a new hybrid model that provides an idea of utilizing rank-biased measures in a pairwise way on implicit feedback.

15 Empirical studies demonstrated CLAPF outperforms state-of-the-art approaches on real-world datasets.

16 Index Terms—Recommender systems, collaborative filtering, implicit feedback, top-k recommedation

Ç

17 1 INTRODUCTION

18 COLLABORATIVE filtering (CF) has been widely used tech-
19 niques in recommender systems [1], [2], [3], [4]. It
20 generates recommendations by leveraging the user-item
21 interactions derived from historical data. Previously, most
22 researches on collaborative filtering focus on explicit feed-
23 back [5], like the numerical ratings. However, in some real-
24 world scenarios, explicit feedback is not always available [6].
25 Contrarily, there are many types of data in the one-class
26 form [7], e.g., transactions in E-commerce platforms,
27 thumb-ups in online social networks, and watch records in
28 online video platforms. Such data do not contain the scoring
29 (ratings) between users and items, which are usually called
30 one-class [8] or implicit feedback [6]. Implicit feedback dif-
31 fers from explicit feedback: the latter explicitly expresses
32 users’ positive and negative preferences through the rating
33 scores, while the former contains only positive feedback.
34 Therefore, huge unobserved item feedbacks cannot be

35simply considered as negative preferences, in views of the
36items which may not be seen by users before [8].
37As aforementioned, the implicit feedback problem usu-
38ally poses challenges of lacking negative feedback, especially
39in cases of sparse data [9]. A lot of negative examples and
40missing positive examples are mixed together and cannot be
41distinguished, which makes many existing classification
42algorithms not directly applicable to the problem [10]. In
43general, previousmethods for dealingwith implicit feedback
44can be divided into two groups [11], [12], [13]: (1) pointwise
45regression methods, and (2) pairwise ranking methods. Pointwise
46methods take implicit feedback as absolute preference scores
47and minimize a pointwise square loss to approximate the
48absolute rating scores [6], [8], while pairwise methods train
49recommendation models by optimizing the Area Under the
50Curve (AUC) measure, which is essentially based on pair-
51wise comparisons between a sample of relevant items and a
52sample of irrelevant items. For example, Bayesian Personal-
53ized Ranking (BPR) [14] is one of the most popular
54approaches that adopt such pairwise preference assumption.
55Given an observed user-item interaction ðu; iÞ and an unob-
56served user-item interaction ðu; jÞ, BPR assumes that a user u
57has a higher preference on item i than on item j.
58Research shows that the pairwise methods are signifi-
59cantly preferable to the pointwise ones [15], and have been
60the preferred solutions for implicit feedback problem. Many
61pairwise methods improve over BPR, e.g., Multiple Pair-
62wise Ranking (MPR) [16] further taps the connections
63among items with multiple pairwise ranking criteria. How-
64ever, the AUC measure optimized by these pairwise meth-
65ods does not well reflect the quality of recommendation
66lists because it is not a rank-biased measure [17]. That
67means most of the pairwise methods may not perform well
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68 in terms of top-k recommendation, which is becoming more
69 critical in personalized recommendation [18]. Although
70 there exists some work that generalizes pairwise ranking to
71 listwise ranking via direct optimization of rank-biased mea-
72 sure, it is difficult to model the inter list loss and has low
73 efficiency [10], e.g., Collaborative Less-is-More Filtering
74 (CLiMF) [17] maximizes a rank-biased metric called Mean
75 Reciprocal Rank (MRR) [20] for a few historical items given
76 to the individual user. In addition, research shows that such
77 listwise methods can commonly improve the performance
78 based on multi-classification datasets significantly, like
79 explicit data, but not adequate for accurate characterization
80 of binary-classification datasets, like implicit data [19].
81 In this paper, we propose a new hybrid CF framework,
82 namely Collaborative List-and-Pairwise Filtering (CLAPF), to
83 solve the problem. We first summarize and categorize the
84 existing work on collaborative filtering from implicit feed-
85 back. Then we optimize another well-known rank-biased
86 measure called Mean Average Precision (MAP) [21], which
87 calculates the precision at the position of every correct item
88 in the ranked resulting lists of the recommender. Compared
89 with the AUC, MAP is a listwise measure and usually pro-
90 vides users with the more valuable top-ranked recommen-
91 dation; Compared with the MRR, MAP is more applicable
92 to multiple correct responses (hits) in the resulting lists [22].
93 After that, we combine the objective functions of optimizing
94 the above two rank-biased metrics (MAP, MRR) with the
95 pairwise objective function and propose our CLAPF.
96 CLAPF framework can be regarded as a new hybrid model
97 that presents a new perspective to utilizing rank-biased
98 measures in a pairwise way on implicit feedback. As many
99 negative sampling strategies used by pairwise methods

100 sampling from the unobserved items of each user are not
101 suitable for CLAPF, we design a new sampling strategy,
102 namely Double Sampling Strategies (DSS), which places more
103 emphasis on both the rank information of positive and neg-
104 ative items for each gradient step, to further focus on the
105 model convergence. Experiments on real-world datasets
106 clearly validate the effectiveness of our CLAPF framework
107 and DSS sampler compared with several baselines. Three
108 contributions of the paper include:

109 � We propose an approach for smoothing MAP. As
110 MAP is an important rank-biased measure, studying
111 the smooth form of MAP is of great significance for
112 understanding item ranking in recommendations.
113 � For implicit feedback problem, we provide a novel
114 idea of combining the listwise and pairwise objective
115 functions, which not only digs users’ implied prefer-
116 ences on items from huge unobserved data, but also
117 achieves an efficient method of addressing the rank-
118 ing problem.
119 � We propose a sampling strategy, which involves the
120 rank information of both positive and negative
121 items. Experiments demonstrate the sampling strat-
122 egy accelerates the convergence speed of CLAPF.
123 Overview. The rest of this paper is organized as follows. In
124 Section 2, we will summarize some related work of our
125 study. Section 3 will introduce the notations, problem defini-
126 tion, and briefly give some previous optimization criteria,
127 which will be used later. Then, the formulation of our

128proposed CLAPF and the learning process will be detailed in
129Section 4. Afterward, we will discuss the sampling problem
130and propose a new sampler in Section 5. Section 6 compre-
131hensively evaluates the model performance in real-world
132datasets. Finally, conclusionswill be drawn in Section 7.

1332 RELATED WORK

134The related work of our study can be grouped into two cate-
135gories, namely Pairwise Methods and Ranking-oriented CF.

1362.1 Pairwise Methods

137For solving implicit feedback problem, pairwise methods
138have been the mainstream solutions. Most pairwise methods
139are the improvement of BPR algorithm and can be catego-
140rized into six classes which will be respectively introduced
141below. (1) Relaxing the two fundamental assumptions in BPR.
142Some studies argue that the two fundamental assumptions
143made in BPR, namely individual preference assumption
144over two items and independence assumption between two
145users, may not always hold in practice [23], [24]. MPR relaxes
146the individual preference assumption by tapping the connec-
147tions among items with multiple pairwise ranking criteria
148[16], while Group Bayesian Personalized Ranking (GBPR)
149relaxes the independence assumption among users by con-
150sidering that users’ preferences are influenced by other users
151with the same interests [23]. (2) Improving the sampling strate-
152gies in BPR. BPR samples negative items from the unob-
153served items with equal probabilities for every user.
154However, some researchers have found that uniform sam-
155pler is highly ineffective, especially for long-tail or large-
156scale datasets. Therefore, Dynamic Negative Sampling
157(DNS) [25], Adaptive Oversampling Bayesian Personalized
158Ranking (AoBPR) [26] and Alpha-Beta Sampling (ABS) [27]
159are proposedwhich dynamically pick negative training sam-
160ples from a ranking list produced by the current prediction
161model and iteratively update the list containing all unob-
162served items. (3) Improving the objective function in BPR. The
163AUC metric is not for quantifying such a recommender list
164where positive items placed on the top, negative items
165placed at the bottom, and unknown items in between. To
166address this issue, Song, et al. [28] introduce a generalized
167AUC (GAUC) that measures both head and tail of a ranking
168list. (4) Mining implicit information via additional data. For
169example, Ding, et al. focus on the purchase feedback and pro-
170pose a sampler for BPR with probabilistic weights based on
171the additional view data of the E-commerce domain. More-
172over, Yu, et al. leverage view data to classify the uncertainly
173negative items [16]. (5) Introducing transfer learning to BPR.
174Since most of the pairwise methods are confined to one
175domain of data source, some work has concerned the ques-
176tion of modeling preferences across distinct domains. CroR-
177ank [29] is a typical approach that bridges users’ inclinations
178transferred from the auxiliary domain to the target domain
179for a better recommendation. (6) Combining BPR with specific
180application issues. Because pairwise methods have achieved
181success in solving implicit feedback problem, some studies
182apply BPR to practical applications and find that it can
183greatly improve performance and productivity, e.g., teach-
184ing path recommendation [30], [31], technology forecasting
185[32], [33], talent recommendation [34], etc.
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186 To learn pairwise objective functions, most approaches
187 are implemented by matrix factorization. Nowadays, since
188 deep neural networks (DNNs) have shown success in com-
189 puter vision, natural language processing, and so on [35],
190 some work attempts to leverage neural networks to learn
191 pairwise objective functions instead of matrix factorization.
192 Specifically, Xiangnan He, et al. [36] propose a general
193 framework called Neural Collaborative Filtering (NCF),
194 which models users and items as feature embeddings, to be
195 fed into neural layers for learning interactions. An advanced
196 instantiation of NCF is NeuMF which consists of general-
197 ized matrix factorization and multi-layer perceptron to
198 model latent feature interactions. NeuPR proposes an alter-
199 native approach so that the negative sampler in NCF is
200 unnecessary [37]. In addition to neural networks, there is
201 also some work that leverages graphs to model user-item
202 interactions, while its pairwise objective function is the
203 same as BPR but optimized by graph learning algorithms
204 [38]. It is worth mentioning that, DNNs are not only used to
205 learn pairwise ranking, but also to learn pointwise regres-
206 sion in some work [39]. However, there are a number of
207 empirical studies showing deep models do not always gen-
208 erate better recommendations [40]. Therefore, it can be con-
209 sidered that matrix factorization based models are still the
210 mainstream way for handling implicit feedback problem,
211 which leads us to adopt matrix factorization to design our
212 algorithm and sampler in this paper.

213 2.2 Ranking-Oriented CF

214 As aforementioned, the criteria of pairwise methods do not
215 well reflect the quality of the recommendation lists, as mis-
216 takes at different positions are penalized equally, which is not
217 the expected behavior in a ranking list. As top-k recommenda-
218 tion has become a common choice in scenarios, the goal of rec-
219 ommending a satisfying sequential list for users becomes
220 even more important. Several prior ranking-oriented CF
221 algorithms typically use ranking-oriented objective functions
222 to learn potential factors of users and items. Earlier, researches
223 focus on probabilistic Latent Semantic Analysis (pLSA) for
224 statistical modeling user preferences from ratings [41]. [42]
225 further improves the traditional pLSA by directly modeling
226 user preferences with a set of items rather than individual
227 items. Later on, [43] proposes a similarity-based approach to
228 leverage the ranks of items in the ranking list rather than the
229 rating values, so doesOrdRec [44]while it further put forward
230 a pointwise regression of ranks by ratings. Collaborative
231 Competitive Filtering (CCF) employs a multiplicative latent
232 factormodel to exploit the interactive choice process in recom-
233 mender systems [45]. Some work addresses item ranking by
234 labeling, e.g., [46] proposes a top-k labeling strategy based on
235 context information and it outperforms five-graded feedback
236 (“bad”, “fair”, “good”, “excellent”, “perfect”). Recently, more
237 and more work pays attention to metric space. LCR [47]
238 assumes that the rank matrix is low-rank in certain neighbor-
239 hoods of themetric space defined by user-itempairs, and pro-
240 poses to minimize a general empirical risk of ranking loss.
241 Along this line, l-Injection [48] further adopts pre-use prefer-
242 ences of users to address the sparsity problem. Nowadays,
243 there are methods leverages which listwise measures to
244 design a ranking-oriented CF, e.g., ListCF [49] optimizes simi-
245 lar users’ probability distributions over permutations of the

246items to estimate a preference ranking based on ratings. How-
247ever, most of these methods are not specially designed for
248general recommendation scenarios with implicit no-graded
249relevance scores from users to items [50], [51]. Later on, Shi,
250et al. [17] propose CLiMF to deal with one-class data by
251directly maximizing the MRR and achieve better ranking
252results for implicit feedback problem, which makes CLiMF
253become one of the most popular listwise approaches, but it
254has low efficiency.
255Since our paper mainly addresses the smoothing and
256optimization process of MAP and MRR, here we discuss
257previous CF methods which attempt to optimize another
258ranking metric, namely NDCG, for making a distinction. In
259general, we can roughly divide them into two categories.
260The first category is to optimize NDCG in an explicit and
261interpretable way, like CoFiRank [52], the authors design a
262loss function to directly optimize NDCG, however, it is of
263extremely high time complexity due to sophisticated com-
264putation of NDCG and optimization processes. The second
265category is more common today, it aims to optimize NDCG
266in an implicit fashion without a smoothing objective func-
267tion, like CRMF [53] and DNS [25], while it makes the
268approaches lack interpretability to some extent. Conse-
269quently, we intend to optimize ranking metrics in an
270explicit and efficient manner, which seems to be difficult to
271achieve by optimizing NDCG.
272In summary, although there is somework that generalizes
273pairwise ranking to listwise via direct optimization of rank-
274ing measure [17], [54], it is difficult to model the inter list loss
275and has low efficiency. In addition, research shows that such
276listwise methods all adopt learning method based on struc-
277tured estimation [19], which can commonly improve the per-
278formance based onmulti-classification datasets significantly,
279like explicit data, and is not adequate for accurate characteri-
280zation of binary-classification datasets, like implicit data
281[51], resulting in that such listwise methods are inferior to
282some pairwisemethods on implicit feedback.
283To solve the problemmentioned above, we consider link-
284ing the pairwise thinking and the listwise framework, and
285propose a new hybrid CF called CLAPF. Specifically, the
286listwise framework is designed for addressing the ranking
287problem, while the pairwise thinking can be effectively
288helpful to tap the implicit feedback information from data.
289In detail, we follow some outstanding ideas in CLiMF [17]
290and Multiple Pairwise Ranking (MPR) [16] to optimize the
291MAP and formulate the objective functions as multiple
292pairs. Besides, the computation complexity of CLAPF is
293acceptable. In particular, the convergence speed of learning
294the CLAPF can be further accelerated by a new sampler
295designed in this paper.

2963 PRELIMINARIES

297In this section, we first introduce some notations and the
298definition of implicit feedback problem. Then the optimiza-
299tion criteria of pairwise methods and CLiMF which will be
300used in later sections are given briefly.

3013.1 Notation and Problem Definition

302We first give the notations and problem definition. U ¼
303fugnu¼1 is defined as the set of users and I ¼ figmi¼1 is defined

YU ET AL.: COLLABORATIVE LIST-AND-PAIRWISE FILTERING FROM IMPLICIT FEEDBACK 3



304 as the set of items, where n and m represent the number of
305 users and items, respectively. Each u 2 U has expressed her
306 positive feedbacks on items Iþu � I. The number of observed
307 items for user u in the given data collection is nþ

u . Yui

308 denotes the binary relevance score of item i to user u, i.e.,
309 Yui ¼ 1 if item i is relevant to user u, 0 for irrelevant. IðxÞ
310 is an indicator function that is equal to 1, if x is true, and 0
311 for false. sðxÞ is the Sigmoid function, where sðxÞ ¼
312 1=ð1þ e�xÞ.
313 Rui denotes the rank of item i in the ranking list for
314 user u, and the items are ranked in a descending order
315 based on their predicted relevance scores for user u,
316 which means that the higher the relevance score of the
317 prediction, the smaller the rank of the item. fui denotes
318 the predictor function that maps the parameters from
319 user u and item i to a predicted relevance score. The pre-
320 dictor function is modeled by widely used matrix factori-
321 zation as fui ¼ UuV

T
i þ bi, where Uu is a latent factor

322 vector describing user u, Vi is a latent factor describing
323 item i, and bi is the bias of item i. The goal of implicit
324 feedback problem is to recommend a personalized rank-
325 ing list of items for user u from the unobserved item set
326 InIþu based on the predicted score fui.

327 3.2 Optimization Criteria of Pairwise Methods

328 Most of the optimization criteria of pairwise methods
329 directly adopt the BPR criterion, which is fundamentally
330 based on pairwise comparisons between an observed item
331 and an unobserved item [14]. This criterion is mainly to
332 optimize the AUC. The definition of AUC for user u is
333 given by

AUCu ¼ 1

jIþu jjInIþu j
X
i2Iþu

X
j2InIþu

IðRui < RujÞ: (1)
335335

336

337 In BPR, researchers derive the approximation of IðRui <
338 RujÞ by using the differentiable loss as

IðRui < RujÞ � ln sðfui � fujÞ: (2)
340340

341

342 When neglecting the constant, we can obtain the objec-
343 tive function of BPR as

LBPRðUu; IÞ ¼
X
i2Iþu

X
j2InIþu

ln sðfui � fujÞ: (3)
345345

346

347 In BPR, researchers point out that optimizing the objec-
348 tive function LBPR means maximizing the individual proba-
349 bility that user prefers item i to item j, which contributes to
350 i should rank higher than j, and can be expressed as

LBPRðUu; IÞ ¼
Y
i2Iþu

Y
j2InIþu

PrðRui < RujÞ: (4)
352352

353

354 3.3 Optimization Criterion of CLiMF

355 Shi, et al. [17] propose CLiMF for dealing with implicit feed-
356 back by directly maximizing the Mean Reciprocal Rank
357 (MRR) and achieve better ranking results on some usage
358 scenarios, which makes CLiMF become one of the most

359popular listwise approaches. The definition of Reciprocal
360Rank of a recommendation list for user u, as defined in
361information retrieval [20], can be given by

RRu ¼
Xm
i¼1

Yui

Rui

Ym
k¼1

ð1� YukIðRuk < RuiÞÞ: (5)

363363

364

365Obviously, RRu is dependent on the ranking of the
366observed items. In CLiMF, researchers smooth Reciprocal
367Rank in the same way as in BPR, and the smooth version of
368RRu can be given by

RRu ¼
Xm
i¼1

YuisðfuiÞ
Ym
k¼1

ð1� Yuksðfuk � fuiÞÞ: (6)

370370

371

372Although Eq. (6) is a smooth function with respect to the
373predicted relevance scores, optimizing this function could
374still be practically intractable, due to its multiplicative
375nature. The computational cost grows quadratically with
376the number of items, which is very large for most recom-
377mender systems. To solve the problem, a lower bound of
378the smooth version of RRu can be derived and we finally
379have the objective function of CLiMF as

LCLiMF ðUu; IÞ ¼
X
i2Iþu

ln sðfuiÞ þ
X
i;k2Iþu

lnð1� sðfuk � fuiÞÞ

¼
X
i2Iþu

ln sðfuiÞ þ
X
i;k2Iþu

ln sðfui � fukÞ:

(7)
381381

382

383Notice that we use 1� sðxÞ ¼ sð�xÞ to get the above
384formula. Through the objective function, we can find that
385the optimization criteria of listwise methods only focus
386on the observed items. Unlike the mainstream pairwise
387methods digging users’ preference through pairs of the
388observed item and the unobserved item, the current list-
389wise objective functions have no positive-unlabeled pairs
390and no unobserved items. However, in implicit feedback
391situations, users usually see fewer items and most items
392are unobserved, so we argue such an objective function
393exists limitations on the exploitation of huge unobserved
394information.
395Overall, both pairwise and listwise methods optimize
396some kind of metrics and utilize informative observed items
397of users, but the only kind pairs of an observed item and an
398unobserved item in pairwise methods lead to insufficient
399ability on ranking performance, while the only kind pairs of
400two observed items in listwise methods lack ability for min-
401ing implicit information. In the following section, we will
402introduce the technical details of our CLAPF model for
403addressing the above problem.

4044 COLLABORATIVE LIST-AND-PAIRWISE FILTERING

405We will introduce CLAPF in the following three steps:
406smoothing the MAP, CLAPF formulation, and learning
407the CLAPF.
408Specifically, we first smooth the Mean Average Precision
409(MAP) as a low bound version to make it can be optimized
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410 in a comparable time to pairwise methods. MAP is a listwise
411 measure and usually provides users more valuable top-
412 ranked recommendation. Some researchers try to maximize
413 MAP in some application scenarios [55] but not in implicit
414 feedback situations. Then, we respectively combine the
415 smooth MAP and aforementioned MRR with the pairwise
416 objective function to make these listwise methods more
417 effective in top-k recommendation from implicit feedback.
418 Finally, we illustrate the learning process of CLAPF using
419 matrix factorization and Stochastic Gradient Descent (SGD)
420 in detail.

421 4.1 Smoothing the MAP

422 MAP is defined as the average of AP across all the users [21].
423 The definition of AP of a ranked list for user u can be
424 given by

APu ¼ 1Pm
l¼1 Yul

Xm
i¼1

Yui

Rui

Xm
k¼1

YukIðRuk � RuiÞ: (8)

426426

427

428 Obviously, APu is dependent on the rankings of the
429 observed items. The rankings of the items change in a
430 non-smooth way concerning predicted relevance scores,
431 and therefore APu is a non-smooth function with respect
432 to the model parameters. Thus we cannot use standard
433 optimization methods to optimize APu. Based on insights
434 in CLiMF, we approximate IðRuk � RuiÞ by using a Sig-
435 moid function IðRuk � RuiÞ � sðfuk � fuiÞ, and approxi-
436 mate 1

Rui
by using another Sigmoid function 1

Rui
� sðfuiÞ,

437 which makes the relationship that the higher the rele-
438 vance score of the predict, the smaller the rank of the
439 item. Then based on this trick, we reach a smoothed
440 approximation of APu as

APu ¼ 1Pm
l¼1 Yul

Xm
i¼1

YuisðfuiÞ
Xm
k¼1

Yuksðfuk � fuiÞ: (9)

442442

443

444 Eq. (9) is a smooth function over the model parameters,
445 but optimizing the function still has low efficiency. For
446 example, the complexity of the gradient of Eq. (9) concern-
447 ing the item feature parameter Vi is Oðm2Þ, so the computa-
448 tion complexity grows quadratically with the number of
449 item m. Next, we propose a lower bound of Eq. (9) to make
450 it can be optimized in a comparable time to pairwise
451 methods.
452 The model parameters Uu, Vi can be obtained via maxi-
453 mizing Eq. (9) as

Uu; I ¼ argmax
Uu;I

fAPug ¼ argmax
Uu;I

flnðAPuÞg

¼ argmax
Uu;I

ln
1Pm

l¼1 Yul

Xm
i¼1

YuisðfuiÞ
 (

Xm
k¼1

Yuksðfuk � fuiÞ
!)

:

(10)

455455

456

457 Notice that
Pm

l¼1 Yul ¼ nþ
u , according to Jensen’s inequal-

458 ity and the concavity of the Sigmoid function, then we have

lnðAPuÞ

¼ ln
Xm
i¼1

YuiPm
l¼1 Yul

sðfuiÞ
Xm
k¼1

Yuksðfuk � fuiÞ
 !

� 1

nþ
u

Xm
i¼1

Yui ln sðfuiÞ
Xm
k¼1

Yuksðfuk � fuiÞ
 !

¼ 1

nþ
u

Xm
i¼1

Yui ln sðfuiÞ þ ln
Xm
k¼1

Yuksðfuk � fuiÞ
 ! !

� 1

nþ
u

Xm
i¼1

Yui ln sðfuiÞ þ ln
Xm
k¼1

Yuk

nþ
u

sðfuk � fuiÞ
 ! !

� 1

nþ
u

Xm
i¼1

Yui ln sðfuiÞ þ 1

nþ
u

Xm
k¼1

Yuk ln sðfuk � fuiÞ
 !

¼ 1

nþ
u

X
i2Iþu

ln sðfuiÞ þ 1

nþ
u

X
k2Iþu

ln sðfuk � fuiÞ
0
@

1
A

� 1

ðnþ
u Þ2

X
i2Iþu

ln sðfuiÞ þ
X
k2Iþu

ln sðfuk � fuiÞ
0
@

1
A

¼ 1

ðnþ
u Þ2

X
i2Iþu

ln sðfuiÞ þ
X
i2Iþu

X
k2Iþu

ln sðfuk � fuiÞ
0
@

1
A:

(11)
460460

461

462The constant 1
ðnþu Þ2 in the lower bound can be neglected.

463Then we can obtain a new objective function of optimizing
464the MAP measure as

LMAP ðUu; IÞ ¼
X
i2Iþu

ln sðfuiÞ þ
X
i;k2Iþu

ln sðfuk � fuiÞ: (12)
466466

467

468We can take a close look at the two terms within the first
469summation. The maximization of the first term is the same
470as in Eq. (7), which contributes to learning latent factors that
471promote the observed item i. However, maximizing the sec-
472ond term turns to learn latent factors of the other observed
473items in order to increase their relevance scores, which is
474very different from the criterion of CLiMF given by Eq. (7).
475In summary, CLiMF leads to promote one observed item
476and scatter the others, while Eq. (12) makes a better balance
477of promoting and scattering two observed items at once.

4784.2 CLAPF Formulation

479As we have the objective functions of optimizing MAP and
480MRR measures in Eqs. (7) and (12), we can next analyze the
481functions from an individual probabilistic perspective and
482bring the pairwise thinking into listwise methods. Here, we
483just start with the MAP described by Eq. (12).
484Similar to BPR, we respectively analyze the two terms in
485LMAP function. Optimizing the first term

P
i2Iþu ln sðfuiÞ

486means maximizing the individual probability that user u
487prefers item i, which contributes to promoting the observed
488items as

X
i2Iþu

ln sðfuiÞ ¼
Y
i2Iþu

PrðRuiÞ: (13)
490490

491
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492 Optimizing the second term
P

i;k2Iþu ln sðfuk � fuiÞ means

493 maximizing the individual probability that user u prefers
494 item k to item i, which contributes to k should rank higher
495 than i asX

i;k2Iþu
ln sðfuk � fuiÞ ¼

Y
i;k2Iþu

PrðRuk < RuiÞ: (14)

497497

498

499 Similar to CLiMF, we can find that LMAP is only depen-
500 dent on the observed items, not exploring rich interactions
501 in the unobserved items. In implicit feedback situations,
502 users usually see fewer items and most items are unob-
503 served items, so such an objective function poses insuffi-
504 ciency to a certain degree. Motivated by pairwise thinking
505 represented as Eq. (4), we can inject the unobserved items
506 into our objective function LMAP . Based on Eq. (13), we can
507 relax the criterion of promoting the observed item i, assum-
508 ing that the promotion of the observed item i should rank
509 higher than the unobserved item j, which is similar to
510 Eq. (4). Using this trick, we can introduce pairwise ranking
511 into our model and further exploit the hidden richer interac-
512 tions in the unobserved items, expecting to further improve
513 the recommendation performance.
514 We make a summary and derive our final objective func-
515 tion. Optimizing the second term Eq. (14) means maximiz-
516 ing the individual probability that user u prefers the
517 observed item k to the other observed item i; Optimizing
518 the first term Eq. (13) can be relaxed to maximizing the indi-
519 vidual probability that user u prefers item i to item j,
520 expressed as

Q
i2Iþu

Q
j2InIþu PrðRui < RujÞ. Now we have

521 two different ranking targets described by individual prob-
522 ability related to two pairs of items. Facing the ranking
523 problem about multiple pairs, inspired by MPR frame-
524 work [16], we can maximize both of these two targets by
525 maximizing their joint distribution probability of two rank-
526 ing pairs. Then we have a new criterion called CLAPF-
527 MAP, showing the overall likelihood for all users and
528 items as

CLAPF �MAP ¼
Y
u2U

Y
i;k2Iþu

Y
j2InIþu

PrðRuk < Rui; Rui < RujÞ:

(15)530530

531

532 We can represent the ranking pairs Ruk < Rui; Rui < Ruj

533 to be optimized for user u as follows:

�ðfuk � fuiÞ þ ð1� �Þðfui � fujÞ; (16)
535535

536 where 0 � � � 1 is a tradeoff parameter used to fuse their
537 relation, which can be determined via empirically testing a
538 validation set. Following BPR, we use sðxÞ to approximate
539 the probability Prð�Þ to make the objective function differen-
540 tiable. Then the objective function of CLAPF-MAP can be
541 represented as follows:

min
Q

� lnCLAPF �MAP þ 1

2
RðQÞ; (17)

543543

544 where Q ¼ fUu 2 R1	d; Vi 2 R1	d; bi 2 R; u 2 U; i 2 Ig is set
545 of model parameters to be learned, and d is the number of
546 latent factors

lnCLAPF �MAP ¼
X
u2U

X
i;k2Iþu

X
j2InIþu

ln sð�ðfuk � fuiÞ

þ ð1� �Þðfui � fujÞÞ:
(18)

548548

549

550Eq. (18) is the log-likelihood of CLAPF-MAP. RðQÞ ¼
551

P
u2U

P
t2S½aujjUujj2 þ avjjVtjj2 þ bvjjbtjj2
 is a regularization

552term to prevent overfitting in the learning process, and S ¼
553fi; k; jg is a group of sampled items, where i; k 2 Iþu , and
554j 2 InIþu .
555Next, we formulate the MRR measure Eq. (7) with pair-
556wise ranking in the same way. Optimizing the second item
557

P
i;k2Iþu ln sðfui � fukÞ means maximizing the individual

558probability that user u prefers the observed item i to the
559other observed item k, expressed as

Q
i;k2Iþu PrðRui < RukÞ;

560Optimizing the first term the same as Eq. (13) can be relaxed
561to maximizing the individual probability that user u prefers
562item i to item j, expressed as

Q
i2Iþu

Q
j2InIþu PrðRui < RujÞ.

563We maximize both of these targets by maximizing their joint
564distribution probability of two ranking pairs. By this mean,
565we can represent the ranking pairs as in the new criterion
566called CLAPF-MRR as follows:

�ðfui � fukÞ þ ð1� �Þðfui � fujÞ; (19)
568568

569where 0 � � � 1 is a tradeoff parameter used to fuse their
570relation. Then the objective function of CLAPF-MRR can be
571represented as

min
Q

� lnCLAPF �MRRþ 1

2
RðQÞ: (20) 573573

574

575Here, we directly give the log-likelihood of CLAPF-MRR
576in the same way as

lnCLAPF �MRR ¼
X
u2U

X
i;k2Iþu

X
j2InIþu

ln sð�ðfui � fukÞ

þ ð1� �Þðfui � fujÞÞ:
(21) 578578

579

5804.3 Learning the CLAPF

581For CLAPF, when we learned the model parameters Q, we
582can predict the user u’s preference on an unobserved item j
583via commonly used matrix factorization fuj ¼ UuV

T
j þ bj.

584Then the personalized ranking list for user u can be
585obtained via picking up the top-k largest preference scores
586of items which are the mostly relevant to the user.
587The optimization problem of the objective functions in
588Eqs. (17) & (20) can be solved by employing the widely used
589Stochastic Gradient Descent (SGD) algorithm. The main pro-
590cess of SGD is to randomly select a record, which includes a
591user u, three items containing i; k; j, and iteratively update
592model parameters based on the sampled feedback records.
593Here we abbreviate Eqs. (16) or (19) as R�u and sampled
594items as S, then the tentative objective function of CLAPF-
595MAP or CLAPF-MRR can be written as fðu; SÞ ¼ � ln s

596ðR�uÞ þ au
2 jjUujj2 þ av

2

P
t2S jjVtjj2 þ bv

2

P
t2S jjbtjj2 ¼ ln½1þ exp

597ð�R�uÞ
 þ au
2 jjUujj2 þ av

2

P
t2S jjVtjj2 þ bv

2

P
t2S jjbtjj2. We can

598update the corresponding parameters Q by walking along
599the descending gradient direction
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Q ¼ Q� g
@fðu; SÞ

@Q
; (22)

601601

602 where Q can be Uu; Vt; bt; t 2 S ¼ fi; k; jg, and g > 0 is the
603 learning rate.
604 Compared with BPR, the extra computational cost of
605 CLAPF algorithm is mainly due to the calculation of gradi-
606 ent update for newly introduced one item k. The time com-
607 plexity of the update rule in Eq. (22) is OðdÞ, where d is the
608 number of latent features. Then the total time complexity of
609 CLAPF is OðTndÞ, where T is the number of iterations and n
610 is the number of users. Meanwhile, the time complexity for
611 predicting a user’s preference on an item is OðdÞ, the same
612 as that in BPR. Thus, the computation complexity of our
613 proposed approach CLAPF and the seminal approach BPR
614 are comparable in terms of efficiency, which is much faster
615 than the existing listwise methods.

616 5 IMPROVING THE CLAPF

617 We have introduced a new hybrid CF framework called
618 CLAPF and two instantiations of CLAPF called CLAPF-
619 MAP and CLAPF-MRR. Compared with pairwise methods,
620 CLAPF makes a comparison of two observed items, which
621 contributes a lot to the ranking problem in top-k recommen-
622 dation; Compared with listwise methods, CLAPF deep taps
623 the connection in the observed items and the unobserved
624 items, which can exploit the hidden rich interactions among
625 users and the unobserved items. In this section, we discuss
626 the sampling problem under the objective functions of
627 CLAPF and design a new sampling strategy for CLAPF.

628 5.1 The Sampling Problem

629 Sampling strategies play an important role in learning from
630 data. Especially in CF areas, researches on pairwise ranking
631 methods focus on building an adaptive sampler for the
632 unobserved items. Among the samplers, Dynamic Negative
633 Sampling (DNS) [25] and Adaptive Oversampling Bayesian
634 Personalized Ranking (AoBPR) [26] have become the most
635 popular ones by dynamically picking negative training sam-
636 ples from a ranking list produced by the current prediction
637 model and iteratively updating the list containing all unob-
638 served items. However, these negative sampling strategies
639 are designed for the gradient vanish problem in the pair-
640 wise ranking field. As for ranking oriented CLAPF, we not
641 only deal with the pair of the observed item and the unob-
642 served item to make an accurate recommendation, but also
643 focus on the pair of two observed items to address the rank-
644 ing problem, so a sampling strategy containing all of the
645 observed items and the unobserved items is much needed.
646 Similar to AoBPR, we first analyze a gradient of model
647 parameter Q of our CLAPF as

@fðu; SÞ
@Q

¼ 1� sðR�uÞð Þ @ðR�uÞ
@Q

: (23)

649649

650 Learning the model parameter with CLAPF is done by loop-
651 ing over Eq. (22). As can be seen in Eq. (23), each gradient
652 step has a multiplicative scalar 1� sðR�uÞð Þ, which depends
653 on how the scoring model (using current model parameters
654 Q) would discriminate between the pairs of a user u. Notice
655 that, if 1� sðR�uÞð Þ is close to 0, nothing can be learned

656from the sample case S because its gradient vanishes, i.e., Q
657is not changed by Eq. (22).
658Thus, for given ðu; iÞ, we could choose ðk; jÞ pair s.t. R�u

659is small to increase ð1� sðR�uÞÞ and effectively update the
660model parameters. For CLAPF-MAP, R�u ¼ �ðfuk � fuiÞ þ
661ð1� �Þðfui � fujÞ, so instead of using a large fuk, it is better
662to choose an item k with small predicted relevance score
663from the observed items; and instead of using a small fuj, it
664is better to choose an item j with large predicted relevance
665score from the unobserved items. As for CLAPF-MRR algo-
666rithm, R�u ¼ �ðfui � fukÞ þ ð1� �Þðfui � fujÞ, so the item k
667and the item j both with large predicted relevance score
668from the observed items and the unobserved items can be
669considered as good sample case. To sample such cases, a
670ranking list is first generated according to the predicted rel-
671evance score to help probability-driven sample from the
672global data. As most of the real-world data follow long-tail
673distributions, the geometric sampler is adopted to sample
674from the ranking lists.

6755.2 Double Sampling Strategy

676Here, we propose a new sampler for CLAPF, namely Dou-
677ble Sampling Strategy (DSS), and give an illustration of DSS
678in Fig. 1.
679To speed up the learning convergence of CLAPF, the
680sampler consists of two parts where the first part is a nega-
681tive sampler for the item j, while the second part is a posi-
682tive sampler for the item k. In addition, we uniformly
683sample the item i from the observed items of user u. In
684detail, for the instantiation CLAPF-MAP, we sample the
685item k and the item j by the following steps.

686� Step (1):Model the users and the items by matrix fac-
687torization and get the latent factor representation of
688users and items.
689� Step (2): Randomly pick a factor fq, and rank the
690items by descending order according to the latent
691factor values, then get the ranking list.
692� Step (3): For current user u and random factor fq,
693return sgnðUu;qÞ, where U is the latent representation
694of users, Uu;q is the value in factor fq related to user
695u, and sgnð�Þ is the sign function.
696� Step (4): If sgnðUu;qÞ � 0, return the item k from the
697observed items by geometric sampling the bottom
698items in the ranking list; and the item j from the
699unobserved items by geometric sampling the top
700items in the ranking list; Otherwise, if sgnðUu;qÞ < 0,
701reverse the ranking list and then do the same thing.
702As for CLAPF-MRR, Step (4) changes as

703� Step (4): If sgnðUu;qÞ � 0, return the item k from the
704observed items by geometric sampling the top items
705in the ranking list; and the item j from the unob-
706served items by geometric sampling the top items in
707the ranking list; Otherwise, if sgnðUu;qÞ < 0, reverse
708the ranking list and then do the same thing.
709Based on the above steps, DSS gives two sampled items
710k; j from the observed items and the unobserved items.
711Compared with uniform sampling, the extra computational
712cost of DSS sampler is mainly due to the ranking process in
713Step (2). Thus we can easily follow AoBPR and DNS and
714reset the ranking lists every log ðjmjÞ iterations, where m is
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715 the number of items, to make DSS can be used in a compara-
716 ble time to uniform sampling. For simplicity, we abbreviate
717 CLAPF with DSS algorithm as CLAPF+.

718 6 EXPERIMENTAL EVALUATION

719 In this section, we mainly evaluate CLAPF and CLAPF+ on
720 six real-world datasets from different perspectives. Specifi-
721 cally, we first describe the datasets, baselines, and parame-
722 ter settings used in the experiments. Then, we compare the
723 recommendation performance of CLAPF and CLAPF+ with
724 baseline approaches in terms of many evaluation metrics.
725 Finally, we analyze the effectiveness of the proposed DSS
726 sampler in CLAPF+ on learning convergence.

727 6.1 Datasets

728 We use six real-world datasets in our empirical studies,
729 including three general datasets, i.e., MovieLens100K,1

730MovieLens1M, UserTag, and three large datasets, i.e., Mov-
731ieLens20M, Flixter,2 Netflix.3 Specifically, MovieLens100K
732(ML100K) contains 100,000 ratings annotated by 943 users on
7331,682 movies; MovieLens1M (ML1M) contains 1,000,209 rat-
734ings annotated by 6,040 users on 3,952 movies; UserTag con-
735tains 246,436 user-tag pairs from 3,000 users and 2,000 tags;
736MovieLens20M (ML20M) contains 20,000,263 ratings anno-
737tated by 138,493 users on 26,744 items; Flixter contains
7388,196,077 ratings annotated by 147,612 users on 48,794 items;
739and Netflix contains 99,072,112 ratings annotated by 480,189
740users on 17,770 items. We use “item” to denote movie (for
741ML100K, ML1M, ML20M, Flixter, and Netflix) or tag (for
742UserTag). For ML100K, ML1M, ML20M, Flixter, and Netflix,
743we take a pre-processing step mentioned in [56], which only
744keeps the ratings larger than 3 as the observed positive feed-
745back (to simulate the implicit feedback). The final datasets
746are shown in Table 1.
747For all the six datasets, following the previous common
748training/test split strategy [10], [23], we randomly split half
749of the observed user-item pairs as training data, and the rest
750as test data; we then randomly take one user-item pair for
751each user from the training data to construct a validation
752set. We repeat the above procedure for five times, so we
753have five copies of training data and test data. The experi-
754mental results are averaged over the performance of those
755five copies of test data.

7566.2 Evaluation Metrics

757To study the recommendation performance, we adopt sev-
758eral metrics for distinct perspectives. As for top-k recom-
759mendation, we adopt commonly used top-k evaluation
760metrics, including Precision, Recall, F1, and 1� Call. In
761addition, we also adopt ranking-aware evaluation metrics,
762includingMAP ,MRR, and NDCG.

7636.3 Baselines and Parameter Settings

764In order to demonstrate the effectiveness of our model, we
765compare it with several methods,4 i.e., PopRank, Random-
766Walk, WMF, BPR, MPR, CLiMF, NeuMF, NeuPR, and
767DeepICF. We describe the baselines below:

Fig. 1. Illustration of double sampling strategy.

TABLE 1
Description of the Experimental Datasets, Including the Number
of Users (n), the Number of Items (m), the Number of User-Item
Pairs in the Training Data (P), the Number of User-Item Pairs in

the Test Data (Pte), and the Density of Each Data, i.e.,
ðP þ PteÞ=n=m

Datasets n m P Pte ðP þ PteÞ=n=m
ML100K 943 1,682 27,688 27,687 3.49%
ML1M 6,040 3,952 287,641 287,640 2.41%
UserTag 3,000 3,000 123,218 123,218 4.11%
ML20M 138,493 26,744 579,741 580,093 0.11%
Flixter 147,612 48,794 318,353 318,671 0.02%
Netflix 480,189 17,770 4,556,347 4,558,506 0.23%

1. https://grouplens.org/datasets/movielens/.

2. https://www.cs.ubc.ca/jamalim/datasets/.
3. http://www.netflix.com/.
4. We release the source code at https://github.com/bigdata-ustc/

CLAPF-MPR.
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768 � PopRank ranks the items according to their popular-
769 ity in training data.
770 � Random Walk (denoted as RandomWalk) estimates
771 the user’s preference on an item via a weighted aver-
772 age of all reachable users’ preferences on that item.
773 � WMF [6] is a typical pointwise method based on
774 matrix factorization. It defines a weight distribution
775 for each ðu; iÞ 2 U 	 I, then employs a matrix factori-
776 zation model to solve a regression problem by opti-
777 mizing a square loss function.
778 � BPR [14] is a seminal pairwise method as mentioned
779 above.
780 � MPR [16] is a state-of-the-art pairwise ranking
781 method, which taps the connections among items
782 with the multiple pairwise criteria.
783 � CLiMF [17] is a typical listwisemethod,which explores
784 the optimization ofMean Reciprocal Rank (MRR).
785 � NeuMF [36] is a pairwise neural-based model, and is
786 an advanced instantiation of NCF which consists
787 both of generalized matrix factorization and multi-
788 layer perceptron to model latent feature interactions.
789 � NeuPR [37] is a pairwise neural-based model and is
790 a more efficient deep CF model without negative
791 sampling.
792 � DeepICF [39] is a typical pointwise neural-based
793 model.
794 We use “CLAPF (-MAP, -MRR)” to represent CLAPF
795 (-MAP, -MRR) with the uniform sampler, and “CLAPF+
796 (-MAP, -MRR)” to represent CLAPF (-MAP, -MRR) with
797 our DSS sampler. For a fair comparison, all the matrix fac-
798 torization based CF methods are implemented in the same
799 code framework. For all CLAPF methods, the regulariza-
800 tion parameters are searched as au ¼ av ¼ bv 2
801 f0:001; 0:002; 0:01; 0:02; 0:1g, and the tradeoff parameter � 2
802 f0:0; 0:1; . . .; 1:0g, and the iteration number is chosen from
803 T 2 f1 000; 10 000; 100 000g. The NDCG@5 performance on
804 the validation data is used to select all the best parameters
805 of CLAPF. The learning rate is chosen from g 2 f0:0001;
806 0:001; 0:01g and the number of latent is fixed as d ¼ 20 in
807 BPR, MPR and CLAPF, and the initialization value of
808 Uu; Vi; bi are set the same as in [57]. For RandomWalk, the
809 walk length is searched from f20; 40; 60; 80g, and the reach-
810 able threshold is searched from f2; 5; 10; 20g, as showing
811 huge time cost on large datasets, we make some tradeoffs
812 between efficiency and effectiveness. For WMF, the num-
813 ber of latent is chosen from f10; 20g, the weighted parame-
814 ter is searched from f10; 20; 40; 100g, the learning rate is
815 chosen from f0:0001; 0:001; 0:01g, and the regularization
816 parameters are searched from f0:001; 0:01; 0:1g. For MPR,
817 the tradeoff parameter is searched from f0:0; 0:1; . . .; 1:0g.
818 For CLiMF, regularization parameters are searched from
819 f0:001; 0:01; 0:1g, the latent dimensionality is fixed as 20,
820 and the learning rate is searched from f0:0001; 0:001; 0:01g.
821 For each deep model, we implement it using TensorFlow,
822 the embedding size is searched from f4; 8; 16; 32g, the
823 learning rate is chosen from f0:0001; 0:001; 0:01g, and we
824 keep the structure as reported in [36], [37], [39] containing
825 four layers in MLP component. For the above and other
826 model parameters, the optimal values are tuned according
827 to NDCG@5 performance on validation data. Noted that,
828 unlike the evaluate protocol in [36], where only 100

829unobserved items are sampled to evaluate the final ranking
830performance, we rank all the unobserved items based on
831the predicted scores as adopted in common recommender
832systems.

8336.4 Summary of Experimental Results

8346.4.1 Main Results

835The experimental results and the training time of all algo-
836rithms on six datasets are shown in Table 2, and the num-
837bers in boldface are the best results (with DSS sampler or
838not). In addition, top-k ðk ¼ 3; 5; 10; 15; 20Þ recommendation
839performance is shown in terms of two most concerned met-
840rics, Recall and NDCG, in Fig. 2. We use “� ” to denote the
841cases that do not produce results within 200 hours. From
842the table and the figure, we have the following observations:

843� CLAPF (-MAP, -MRR) and CLAPF+ (-MAP, -MRR)
844perform better than the other baselines in terms of
845Precision@k, Recall@k, F1@k, 1� Call@k, and
846NDCG@k on six datasets, which shows that our pro-
847posed algorithms can recommend better top-k items for
848users. Besides, CLiMF is inferior to the pairwise ranking
849methods, indicating that the typical listwise method
850works on datasets where only a few historical items are
851given to the individual user as in [17]. Moreover, we
852observe that neural-based models are not superior to
853matrix factorization based models on some datasets,
854which mainly because deep models are possibly to
855overfit under various conditions of data sparseness.
856� CLAPF (-MAP, -MRR) and CLAPF+ (-MAP, -MRR)
857perform better than the other baselines in terms of
858NDCG, MAP , and MRR on six datasets, which
859proves that our proposed algorithms really address
860the ranking problem by optimizing the observed
861item pairs, and propose a more accurate rank-biased
862list for users. More precisely, CLAPF-MAP overall
863performs better than CLAPF-MRR in terms of MAP
864with DSS sampler or not, while CLAPF-MRR overall
865performs better than CLAPF-MAP in terms of MRR
866with DSS sampler or not, confirming our proposed
867algorithms are optimizing what they intend to
868optimize.
869� As to the training time, CLAPF and CLAPF+ are
870comparable to BPR in terms of efficiency even for
871large datasets, far faster than CLiMF, which indicates
872that our proposed algorithm does not increase the
873computation complexity. To some extent, our pro-
874posed DSS sampler works efficiently in CLAPF
875framework, indicated that CLAPF is a basic method
876with extensive applicability.

8776.4.2 Impact of Tradeoff Parameters

878To have a deep understanding of the objective functions in
879CLAPF, we adjust the tradeoff parameter as � 2
880f0:0; 0:1; . . .; 1:0g and show the results in terms of Prec@5,
881Recall@5, F1@5, NDCG@5, MAP , and MRR in Fig. 3. It is
882worth mentioning that, since CLAPF-MAP and CLAPF-
883MRR respectively have two-pair objective functions (one is
884of listwise and the other is of pairwise), we can remove one
885of two pairs to study their performance on datasets by setting
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TABLE 2
Performance Comparisons of CLAPF (-MAP, -MRR) and Baselines on ML100K, ML1M, UserTag, ML20M, Flixter, and Netflix

Numbers in boldface are the best results.
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Fig. 2. Top-k (k ¼ 3; 5; 10; 15; 20) recommendation performance of CLAPF (-MAP, -MRR) and baselines on ML100K, ML1M, UserTag, ML20M,
Flixter, and Netflix.

Fig. 3. Recommendation performance of CLAPF (-MAP, -MRR) with different tradeoff parameters (from top row to bottom row: ML100K, ML1M,
UserTag, ML20M, Flixter, and Netflix).
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886 the tradeoff parameter � ¼ 0 or 1. From the figure, we can see
887 that using different tradeoff parameters effects the recom-
888 mendation performance of CLAPF, but there is some differ-
889 ence between CLAPF-MAP and CLAPF-MRR. CLAPF-MAP
890 responds more gently to changes in parameters, while
891 CLAPF-MRR responds very strongly to changes in certain
892 parameters. Specifically, in terms of some metrics, like
893 F1@5, NDCG@5, and MAP , a flexible trade-off parameter
894 overall help CLAPF-MAP get better performance than
895 CLAPF-MRR, which indicates that CLAPF-MAP has more
896 potential in top-k or rank-aware recommendation, and our
897 smoothing approach preserves aforementioned good prop-
898 erties of MAP measure. Notice that when � ¼ 0, CLAPF
899 reduces to BPR.

900 6.4.3 Convergence Analysis

901 We also conduct supplementation experiments on six data-
902 sets to further demonstrate the effectiveness of our pro-
903 posed DSS sampler for CLAPF in Fig. 4. As DSS not only
904 samples the negative item (item j in CLAPF) from the unob-
905 served items, but also samples the positive item (item k in
906 CLAPF) from the observed items each time, we remove one
907 or both of the sampling functions in DSS to build three com-
908 parative sampling strategies:

909 � Uniform Sampling picks the positive items (the item k
910 and the item i in CLAPF) and the negative item (the
911 item j in CLAPF) from the observed items and unob-
912 served itemswith equal probabilities each time.
913 � Positive Sampling picks the positive item (the item k)
914 in the same way as DSS, and picks the other items
915 (the item j and the item i) in the same way as Uni-
916 form Sampling each time.
917 � Negative Sampling picks the negative item (the
918 item j) in the same way as DSS, and picks the other
919 items (the item k and the item i) in the same way as
920 Uniform Sampling each time.
921 Fig. 4 shows that DSS sampler helps converge much faster
922 than the other samplers in terms of MAP, which indicates that
923 DSS is a more effective sampler for CLAPF by drawing infor-
924 mative positive and negative items in a fine-grained way. In
925 addition, all non-uniform samplers help converge faster than
926 Uniform Sampling. Meanwhile, Positive Sampling does not
927 perform as well as Negative Sampling, which mainly because
928 the observed items are much fewer than the unobserved items.
929 Moreover,DSS sampler helps converge faster at early iterations,
930 whichmainly because such fine-grain utilizing of rank informa-
931 tion onpositive andnegative items is significant for learning the

932unstable model. Finally, all algorithms almost converge after
933some iterations, then fluctuate in a tiny range around.
934All the analyses show that our CLAPF algorithm and
935DSS sampler are indeed superior to the previous methods
936for implicit feedback problem.

9377 CONCLUSION

938In summary, this paper presents a new hybrid rankingmodel,
939namely Collaborative List-and-Pairwise Filtering (CLAPF),
940for improving top-k recommendation from implicit feedback.
941We combined the objective functions of optimizing the two
942rank-biased metrics (MAP, MRR) with the pairwise objective
943function and formalized two instantiations of CLAPF called
944CLAPF-MAP and CLAPF-MRR. On the one hand, CLAPF
945brings the ranking measure into pairwise methods, which
946contributes a lot to the ranking problem in the top-k recom-
947mendation. On the other hand, CLAPF introduces pairwise
948thinking into listwise objective functions, which can exploit
949the hidden rich unobserved information and reduce the com-
950putation complexity.We conducted extensive experiments on
951six real-world datasets, and proved that our methods signifi-
952cantly outperform state-of-the-art implicit feedback recom-
953menders regarding various evaluation metrics. The main
954contribution of our approach is to provide a new idea of utiliz-
955ing rank-biasedmeasures by combining the pairwise objective
956function on implicit feedback. The CLAPF framework is a
957hybrid listwise and pairwise model that helps us understand
958the ranking essence in top-k item recommendation, and is not
959limited to the instantiations in this paper. We encourage more
960smoothed listwise metrics to be optimized with our CLAPF
961framework.
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