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Abstract—The implicit feedback based collaborative filtering (CF) has attracted much attention in recent years, mainly because users
implicitly express their preferences in many real-world scenarios. The current mainstream pairwise methods optimize the Area Under
the Curve (AUC) and are empirically proved to be helpful to exploit binary relevance data, but lead to either not address the ranking
problem, or not specifically focus on top-k recommendation. Although there exists the listwise method maximizes the Mean Reciprocal
Rank (MRR), it has low efficiency and is not particularly adequate for general implicit feedback situations. To that end, in this paper, we
propose a new framework, namely Collaborative List-and-Pairwise Filtering (CLAPF), which aims to introduce pairwise thinking into
listwise methods. Specifically, we smooth another well-known rank-biased measure called Mean Average Precision (MAP), and
respectively combine two rank-biased metrics (MAP, MRR) with the pairwise objective function to capture the performance of top-k
recommendation. Furthermore, the sampling scheme for CLAPF is discussed to accelerate the convergence speed. Our CLAPF
framework is a new hybrid model that provides an idea of utilizing rank-biased measures in a pairwise way on implicit feedback.
Empirical studies demonstrated CLAPF outperforms state-of-the-art approaches on real-world datasets.

Index Terms—Recommender systems, collaborative filtering, implicit feedback, top-k recommedation

1 INTRODUCTION

COLLABORATIVE filtering (CF) has been widely used tech-
niques in recommender systems [1], [2], [3], [4]. It
generates recommendations by leveraging the user-item
interactions derived from historical data. Previously, most
researches on collaborative filtering focus on explicit feed-
back [5], like the numerical ratings. However, in some real-
world scenarios, explicit feedback is not always available [6].
Contrarily, there are many types of data in the one-class
form [7], e.g., transactions in E-commerce platforms,
thumb-ups in online social networks, and watch records in
online video platforms. Such data do not contain the scoring
(ratings) between users and items, which are usually called
one-class [8] or implicit feedback [6]. Implicit feedback dif-
fers from explicit feedback: the latter explicitly expresses
users’ positive and negative preferences through the rating
scores, while the former contains only positive feedback.
Therefore, huge unobserved item feedbacks cannot be
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simply considered as negative preferences, in views of the
items which may not be seen by users before [8].

As aforementioned, the implicit feedback problem usu-
ally poses challenges of lacking negative feedback, especially
in cases of sparse data [9]. A lot of negative examples and
missing positive examples are mixed together and cannot be
distinguished, which makes many existing classification
algorithms not directly applicable to the problem [10]. In
general, previous methods for dealing with implicit feedback
can be divided into two groups [11], [12], [13]: (1) pointwise
regression methods, and (2) pairwise ranking methods. Pointwise
methods take implicit feedback as absolute preference scores
and minimize a pointwise square loss to approximate the
absolute rating scores [6], [8], while pairwise methods train
recommendation models by optimizing the Area Under the
Curve (AUC) measure, which is essentially based on pair-
wise comparisons between a sample of relevant items and a
sample of irrelevant items. For example, Bayesian Personal-
ized Ranking (BPR) [14] is one of the most popular
approaches that adopt such pairwise preference assumption.
Given an observed user-item interaction (u,¢) and an unob-
served user-item interaction (u, j), BPR assumes that a user u
has a higher preference on item i than on item j.

Research shows that the pairwise methods are signifi-
cantly preferable to the pointwise ones [15], and have been
the preferred solutions for implicit feedback problem. Many
pairwise methods improve over BPR, e.g., Multiple Pair-
wise Ranking (MPR) [16] further taps the connections
among items with multiple pairwise ranking criteria. How-
ever, the AUC measure optimized by these pairwise meth-
ods does not well reflect the quality of recommendation
lists because it is not a rank-biased measure [17]. That
means most of the pairwise methods may not perform well

1041-4347 © 2020 |IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires |IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
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in terms of top-k recommendation, which is becoming more
critical in personalized recommendation [18]. Although
there exists some work that generalizes pairwise ranking to
listwise ranking via direct optimization of rank-biased mea-
sure, it is difficult to model the inter list loss and has low
efficiency [10], e.g., Collaborative Less-is-More Filtering
(CLiMF) [17] maximizes a rank-biased metric called Mean
Reciprocal Rank (MRR) [20] for a few historical items given
to the individual user. In addition, research shows that such
listwise methods can commonly improve the performance
based on multi-classification datasets significantly, like
explicit data, but not adequate for accurate characterization
of binary-classification datasets, like implicit data [19].

In this paper, we propose a new hybrid CF framework,
namely Collaborative List-and-Pairwise Filtering (CLAPF), to
solve the problem. We first summarize and categorize the
existing work on collaborative filtering from implicit feed-
back. Then we optimize another well-known rank-biased
measure called Mean Average Precision (MAP) [21], which
calculates the precision at the position of every correct item
in the ranked resulting lists of the recommender. Compared
with the AUC, MAP is a listwise measure and usually pro-
vides users with the more valuable top-ranked recommen-
dation; Compared with the MRR, MAP is more applicable
to multiple correct responses (hits) in the resulting lists [22].
After that, we combine the objective functions of optimizing
the above two rank-biased metrics (MAP, MRR) with the
pairwise objective function and propose our CLAPF.
CLAPF framework can be regarded as a new hybrid model
that presents a new perspective to utilizing rank-biased
measures in a pairwise way on implicit feedback. As many
negative sampling strategies used by pairwise methods
sampling from the unobserved items of each user are not
suitable for CLAPF, we design a new sampling strategy,
namely Double Sampling Strategies (DSS), which places more
emphasis on both the rank information of positive and neg-
ative items for each gradient step, to further focus on the
model convergence. Experiments on real-world datasets
clearly validate the effectiveness of our CLAPF framework
and DSS sampler compared with several baselines. Three
contributions of the paper include:

e We propose an approach for smoothing MAP. As
MAP is an important rank-biased measure, studying
the smooth form of MAP is of great significance for
understanding item ranking in recommendations.

e For implicit feedback problem, we provide a novel
idea of combining the listwise and pairwise objective
functions, which not only digs users” implied prefer-
ences on items from huge unobserved data, but also
achieves an efficient method of addressing the rank-
ing problem.

e We propose a sampling strategy, which involves the
rank information of both positive and negative
items. Experiments demonstrate the sampling strat-
egy accelerates the convergence speed of CLAPF.

Overview. The rest of this paper is organized as follows. In

Section 2, we will summarize some related work of our
study. Section 3 will introduce the notations, problem defini-
tion, and briefly give some previous optimization criteria,
which will be used later. Then, the formulation of our
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proposed CLAPF and the learning process will be detailed in
Section 4. Afterward, we will discuss the sampling problem
and propose a new sampler in Section 5. Section 6 compre-
hensively evaluates the model performance in real-world
datasets. Finally, conclusions will be drawn in Section 7.

2 RELATED WORK

The related work of our study can be grouped into two cate-
gories, namely Pairwise Methods and Ranking-oriented CF.

2.1 Pairwise Methods

For solving implicit feedback problem, pairwise methods
have been the mainstream solutions. Most pairwise methods
are the improvement of BPR algorithm and can be catego-
rized into six classes which will be respectively introduced
below. (1) Relaxing the two fundamental assumptions in BPR.
Some studies argue that the two fundamental assumptions
made in BPR, namely individual preference assumption
over two items and independence assumption between two
users, may not always hold in practice [23], [24]. MPR relaxes
the individual preference assumption by tapping the connec-
tions among items with multiple pairwise ranking criteria
[16], while Group Bayesian Personalized Ranking (GBPR)
relaxes the independence assumption among users by con-
sidering that users’ preferences are influenced by other users
with the same interests [23]. (2) Improving the sampling strate-
gies in BPR. BPR samples negative items from the unob-
served items with equal probabilities for every user.
However, some researchers have found that uniform sam-
pler is highly ineffective, especially for long-tail or large-
scale datasets. Therefore, Dynamic Negative Sampling
(DNS) [25], Adaptive Oversampling Bayesian Personalized
Ranking (AoBPR) [26] and Alpha-Beta Sampling (ABS) [27]
are proposed which dynamically pick negative training sam-
ples from a ranking list produced by the current prediction
model and iteratively update the list containing all unob-
served items. (3) Improving the objective function in BPR. The
AUC metric is not for quantifying such a recommender list
where positive items placed on the top, negative items
placed at the bottom, and unknown items in between. To
address this issue, Song, et al. [28] introduce a generalized
AUC (GAUC) that measures both head and tail of a ranking
list. (4) Mining implicit information via additional data. For
example, Ding, et al. focus on the purchase feedback and pro-
pose a sampler for BPR with probabilistic weights based on
the additional view data of the E-commerce domain. More-
over, Yu, et al. leverage view data to classify the uncertainly
negative items [16]. (5) Introducing transfer learning to BPR.
Since most of the pairwise methods are confined to one
domain of data source, some work has concerned the ques-
tion of modeling preferences across distinct domains. CroR-
ank [29] is a typical approach that bridges users’ inclinations
transferred from the auxiliary domain to the target domain
for a better recommendation. (6) Combining BPR with specific
application issues. Because pairwise methods have achieved
success in solving implicit feedback problem, some studies
apply BPR to practical applications and find that it can
greatly improve performance and productivity, e.g., teach-
ing path recommendation [30], [31], technology forecasting
[32], [33], talent recommendation [34], etc.
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To learn pairwise objective functions, most approaches
are implemented by matrix factorization. Nowadays, since
deep neural networks (DNNs) have shown success in com-
puter vision, natural language processing, and so on [35],
some work attempts to leverage neural networks to learn
pairwise objective functions instead of matrix factorization.
Specifically, Xiangnan He, et al. [36] propose a general
framework called Neural Collaborative Filtering (NCF),
which models users and items as feature embeddings, to be
fed into neural layers for learning interactions. An advanced
instantiation of NCF is NeuMF which consists of general-
ized matrix factorization and multi-layer perceptron to
model latent feature interactions. NeuPR proposes an alter-
native approach so that the negative sampler in NCF is
unnecessary [37]. In addition to neural networks, there is
also some work that leverages graphs to model user-item
interactions, while its pairwise objective function is the
same as BPR but optimized by graph learning algorithms
[38]. It is worth mentioning that, DNNs are not only used to
learn pairwise ranking, but also to learn pointwise regres-
sion in some work [39]. However, there are a number of
empirical studies showing deep models do not always gen-
erate better recommendations [40]. Therefore, it can be con-
sidered that matrix factorization based models are still the
mainstream way for handling implicit feedback problem,
which leads us to adopt matrix factorization to design our
algorithm and sampler in this paper.

2.2 Ranking-Oriented CF

As aforementioned, the criteria of pairwise methods do not
well reflect the quality of the recommendation lists, as mis-
takes at different positions are penalized equally, which is not
the expected behavior in a ranking list. As top-k recommenda-
tion has become a common choice in scenarios, the goal of rec-
ommending a satisfying sequential list for users becomes
even more important. Several prior ranking-oriented CF
algorithms typically use ranking-oriented objective functions
tolearn potential factors of users and items. Earlier, researches
focus on probabilistic Latent Semantic Analysis (pLSA) for
statistical modeling user preferences from ratings [41]. [42]
further improves the traditional pLSA by directly modeling
user preferences with a set of items rather than individual
items. Later on, [43] proposes a similarity-based approach to
leverage the ranks of items in the ranking list rather than the
rating values, so does OrdRec [44] while it further put forward
a pointwise regression of ranks by ratings. Collaborative
Competitive Filtering (CCF) employs a multiplicative latent
factor model to exploit the interactive choice process in recom-
mender systems [45]. Some work addresses item ranking by
labeling, e.g., [46] proposes a top-k labeling strategy based on
context information and it outperforms five-graded feedback
(“bad”, “fair”, “good”, “excellent”, “perfect”). Recently, more
and more work pays attention to metric space. LCR [47]
assumes that the rank matrix is low-rank in certain neighbor-
hoods of the metric space defined by user-item pairs, and pro-
poses to minimize a general empirical risk of ranking loss.
Along this line, l-Injection [48] further adopts pre-use prefer-
ences of users to address the sparsity problem. Nowadays,
there are methods leverages which listwise measures to
design a ranking-oriented CF, e.g., ListCF [49] optimizes simi-
lar users’ probability distributions over permutations of the

items to estimate a preference ranking based on ratings. How-
ever, most of these methods are not specially designed for
general recommendation scenarios with implicit no-graded
relevance scores from users to items [50], [51]. Later on, Shi,
et al. [17] propose CLiMF to deal with one-class data by
directly maximizing the MRR and achieve better ranking
results for implicit feedback problem, which makes CLiMF
become one of the most popular listwise approaches, but it
has low efficiency.

Since our paper mainly addresses the smoothing and
optimization process of MAP and MRR, here we discuss
previous CF methods which attempt to optimize another
ranking metric, namely NDCG, for making a distinction. In
general, we can roughly divide them into two categories.
The first category is to optimize NDCG in an explicit and
interpretable way, like CoFiRank [52], the authors design a
loss function to directly optimize NDCG, however, it is of
extremely high time complexity due to sophisticated com-
putation of NDCG and optimization processes. The second
category is more common today, it aims to optimize NDCG
in an implicit fashion without a smoothing objective func-
tion, like CRMF [53] and DNS [25], while it makes the
approaches lack interpretability to some extent. Conse-
quently, we intend to optimize ranking metrics in an
explicit and efficient manner, which seems to be difficult to
achieve by optimizing NDCG.

In summary, although there is some work that generalizes
pairwise ranking to listwise via direct optimization of rank-
ing measure [17], [54], it is difficult to model the inter list loss
and has low efficiency. In addition, research shows that such
listwise methods all adopt learning method based on struc-
tured estimation [19], which can commonly improve the per-
formance based on multi-classification datasets significantly,
like explicit data, and is not adequate for accurate characteri-
zation of binary-classification datasets, like implicit data
[51], resulting in that such listwise methods are inferior to
some pairwise methods on implicit feedback.

To solve the problem mentioned above, we consider link-
ing the pairwise thinking and the listwise framework, and
propose a new hybrid CF called CLAPF. Specifically, the
listwise framework is designed for addressing the ranking
problem, while the pairwise thinking can be effectively
helpful to tap the implicit feedback information from data.
In detail, we follow some outstanding ideas in CLiMF [17]
and Multiple Pairwise Ranking (MPR) [16] to optimize the
MAP and formulate the objective functions as multiple
pairs. Besides, the computation complexity of CLAPF is
acceptable. In particular, the convergence speed of learning
the CLAPF can be further accelerated by a new sampler
designed in this paper.

3 PRELIMINARIES

In this section, we first introduce some notations and the
definition of implicit feedback problem. Then the optimiza-
tion criteria of pairwise methods and CLiMF which will be
used in later sections are given briefly.

3.1 Notation and Problem Definition

We first give the notations and problem definition. U =
{u}!_, is defined as the set of users and I = {i}", is defined
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as the set of items, where n and m represent the number of
users and items, respectively. Each u € U has expressed her
positive feedbacks on items I,” C I. The number of observed
items for user u in the given data collection is nt. Y,
denotes the binary relevance score of item ¢ to user u, i.e.,
Y.; = 1 if item i is relevant to user u, 0 for irrelevant. I(z)
is an indicator function that is equal to 1, if z is true, and 0
for false. o(x) is the Sigmoid function, where o(z) =
1/(14e™).

R,; denotes the rank of item ¢ in the ranking list for
user u, and the items are ranked in a descending order
based on their predicted relevance scores for user u,
which means that the higher the relevance score of the
prediction, the smaller the rank of the item. f,; denotes
the predictor function that maps the parameters from
user v and item 7 to a predicted relevance score. The pre-
dictor function is modeled by widely used matrix factori-
zation as f,; = UuViT +b;, where U, is a latent factor
vector describing user u, V; is a latent factor describing
item ¢, and b; is the bias of item i. The goal of implicit
feedback problem is to recommend a personalized rank-
ing list of items for user u from the unobserved item set
I\I} based on the predicted score f;.

3.2 Optimization Criteria of Pairwise Methods
Most of the optimization criteria of pairwise methods
directly adopt the BPR criterion, which is fundamentally
based on pairwise comparisons between an observed item
and an unobserved item [14]. This criterion is mainly to
optimize the AUC. The definition of AUC for user u is
given by
AUC, =

(Rui < Ryj). 1

II*III\ +|Z 2!

i€l jel\I;

In BPR, researchers derive the approximation of I(R,; <
R,;) by using the differentiable loss as

H(Rul < Ruj) ~ In O'(fw — fuj)- 2

When neglecting the constant, we can obtain the objec-
tive function of BPR as

Lppr(Uy, I) 3)

=> Z no(fu — fu))-

i€l jeINI

In BPR, researchers point out that optimizing the objec-
tive function Lppr means maximizing the individual proba-
bility that user prefers item ¢ to item j, which contributes to
i should rank higher than j, and can be expressed as

=TI I] Pr(Ru < Ru.

el jel\I,}

Lppr(Uy, I) (4)

3.3 Optimization Criterion of CLiMF

Shi, et al. [17] propose CLIMF for dealing with implicit feed-
back by directly maximizing the Mean Reciprocal Rank
(MRR) and achieve better ranking results on some usage
scenarios, which makes CLiMF become one of the most
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popular listwise approaches. The definition of Reciprocal
Rank of a recommendation list for user u, as defined in
information retrieval [20], can be given by

m Yuz m
Z R H(l -

=1 Tl =1

Obviously, RR, is dependent on the ranking of the
observed items. In CLiMF, researchers smooth Reciprocal
Rank in the same way as in BPR, and the smooth version of
RR, can be given by

m m

RRu - Znto—(fuz) H(l - Yllko(fTLk - fuz))
i=1

k=1

(6)

Although Eq. (6) is a smooth function with respect to the
predicted relevance scores, optimizing this function could
still be practically intractable, due to its multiplicative
nature. The computational cost grows quadratically with
the number of items, which is very large for most recom-
mender systems. To solve the problem, a lower bound of
the smooth version of RR, can be derived and we finally
have the objective function of CLiMF as

LCLLA[F qu I Z th' fLLL Z ln(l - G(fuk - fui))
el ikel,}
=Y Wo(fu)+ Y Mo(fui— fur)-
ielf ikel,l

)

Notice that we use 1 —o(z) = o(—x) to get the above
formula. Through the objective function, we can find that
the optimization criteria of listwise methods only focus
on the observed items. Unlike the mainstream pairwise
methods digging users’ preference through pairs of the
observed item and the unobserved item, the current list-
wise objective functions have no positive-unlabeled pairs
and no unobserved items. However, in implicit feedback
situations, users usually see fewer items and most items
are unobserved, so we argue such an objective function
exists limitations on the exploitation of huge unobserved
information.

Overall, both pairwise and listwise methods optimize
some kind of metrics and utilize informative observed items
of users, but the only kind pairs of an observed item and an
unobserved item in pairwise methods lead to insufficient
ability on ranking performance, while the only kind pairs of
two observed items in listwise methods lack ability for min-
ing implicit information. In the following section, we will
introduce the technical details of our CLAPF model for
addressing the above problem.

4 COLLABORATIVE LIST-AND-PAIRWISE FILTERING

We will introduce CLAPF in the following three steps:
smoothing the MAP, CLAPF formulation, and learning
the CLAPF.

Specifically, we first smooth the Mean Average Precision
(MAP) as a low bound version to make it can be optimized
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in a comparable time to pairwise methods. MAP is a listwise
measure and usually provides users more valuable top-
ranked recommendation. Some researchers try to maximize
MAP in some application scenarios [55] but not in implicit
feedback situations. Then, we respectively combine the
smooth MAP and aforementioned MRR with the pairwise
objective function to make these listwise methods more
effective in top-k recommendation from implicit feedback.
Finally, we illustrate the learning process of CLAPF using
matrix factorization and Stochastic Gradient Descent (SGD)
in detail.

4.1 Smoothing the MAP

MAP is defined as the average of AP across all the users [21].
The definition of AP of a ranked list for user « can be
given by

1 m Y m
AP, = —=i— ) 2N Y, I(Ru < Ry).
U lyil YU,[ — Rui ; 1k ( uk > u)

)

Obviously, AP, is dependent on the rankings of the
observed items. The rankings of the items change in a
non-smooth way concerning predicted relevance scores,
and therefore AP, is a non-smooth function with respect
to the model parameters. Thus we cannot use standard
optimization methods to optimize AP,. Based on insights
in CLiMF, we approximate I(R,; < R,;) by using a Sig-
moid function I(Ruk < Ryi) = o(fur — fui), and approxi-
mate - by using another Sigmoid function 7 ~ o (fui)
wh1ch makes the relationship that the higher the rele-
vance score of the predict, the smaller the rank of the
item. Then based on this trick, we reach a smoothed
approximation of AP, as

'APU = ~—m (9)

= 1

ZKLLU fuz ZY;]@O’ fuk fw)

Eq. (9) is a smooth function over the model parameters,
but optimizing the function still has low efficiency. For
example, the complexity of the gradient of Eq. (9) concern-
ing the item feature parameter V; is O(m?), so the computa-
tion complexity grows quadratically with the number of
item m. Next, we propose a lower bound of Eq. (9) to make
it can be optimized in a comparable time to pairwise
methods.

The model parameters U,, V; can be obtained via maxi-
mizing Eq. (9) as

Uy, I = arg I[I}a;({APu} = arg r[rjla;<{ln(APu)}
Us 1 ” Uy
= aI‘g I}]lf;{ ln m Z w0 (fuz)

m

Z Y;lka(fTLk - fm)) }
k=1

(10)

Notice that >, according to Jensen'’s inequal-
ity and the ConcaV1ty of the Sigmoid function, then we have

Yu= nu ’

In(AP,)

=In (Z mmy (fu?) Z; }/uko'(fuk - fu’i))

m

2 _ZYUL In <G fLu) — YUkG(fuk fui))

ul

TL1+ ZY;M <1n(7 fm + In <Z Y;dca fuk .fuz)))

=1 =1

! ZYW <1no fui) +1n< rolfu— fu»))

3

~

=1
1 & 1
2 FZ ut 1n0(f111) 7'[,_+ Y;l, lng(fuk fui)
U j=1 U k=1
_ 1 1 1
= n—+ IlU(fm Z IlO' fuk fm)
v jert et
+ o) 111(7 fu, + Z 11’10 fuk fuL)
u eI} kel
Zlnd fm Jrz ZIHO fuk fuz)
ielt i€l kel
(11)

The constant + —— in the lower bound can be neglected.

Then we can obtain a new objective function of optimizing

the MAP measure as
Lyap(Uu, 1) =Y o(fu) + Y Wo(fur — fui). (12)
iel} ikely

We can take a close look at the two terms within the first
summation. The maximization of the first term is the same
as in Eq. (7), which contributes to learning latent factors that
promote the observed item i. However, maximizing the sec-
ond term turns to learn latent factors of the other observed
items in order to increase their relevance scores, which is
very different from the criterion of CLiIMF given by Eq. (7).
In summary, CLiMF leads to promote one observed item
and scatter the others, while Eq. (12) makes a better balance
of promoting and scattering two observed items at once.

4.2 CLAPF Formulation

As we have the objective functions of optimizing MAP and
MRR measures in Egs. (7) and (12), we can next analyze the
functions from an individual probabilistic perspective and
bring the pairwise thinking into listwise methods. Here, we
just start with the MAP described by Eq. (12).

Similar to BPR, we respectively analyze the two terms in
Lyap function. Optimizing the first term >+ Ino(fu)
means maximizing the individual probability that user u
prefers item 4, which contributes to promoting the observed
items as

(13)

Z an(fuj)

i€l

= [[ Pr(Ru).

i€y
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Optimizing the second term Zi‘ reld Ino(fur — fui) means
maximizing the individual probability that user u prefers
item £ to item i, which contributes to & should rank higher
than i as

> Wmo(fur— fu) = [[ Pr(Ru < Ru). (14)

ikel,) ikel,;

Similar to CLiMF, we can find that Lj4p is only depen-
dent on the observed items, not exploring rich interactions
in the unobserved items. In implicit feedback situations,
users usually see fewer items and most items are unob-
served items, so such an objective function poses insuffi-
ciency to a certain degree. Motivated by pairwise thinking
represented as Eq. (4), we can inject the unobserved items
into our objective function Ljs4p. Based on Eq. (13), we can
relax the criterion of promoting the observed item i, assum-
ing that the promotion of the observed item ¢ should rank
higher than the unobserved item j, which is similar to
Eq. (4). Using this trick, we can introduce pairwise ranking
into our model and further exploit the hidden richer interac-
tions in the unobserved items, expecting to further improve
the recommendation performance.

We make a summary and derive our final objective func-
tion. Optimizing the second term Eq. (14) means maximiz-
ing the individual probability that user u prefers the
observed item k to the other observed item i; Optimizing
the first term Eq. (13) can be relaxed to maximizing the indi-
vidual probability that user u prefers item ¢ to item j,
expressed as [[;c;+ [Ljep+ Pr(Ru < Ruj). Now we have
two different ranking targets described by individual prob-
ability related to two pairs of items. Facing the ranking
problem about multiple pairs, inspired by MPR frame-
work [16], we can maximize both of these two targets by
maximizing their joint distribution probability of two rank-
ing pairs. Then we have a new criterion called CLAPF-
MAP, showing the overall likelihood for all users and
items as

CLAPF — MAP =[] [ TI Pr(Ru < Rui, Rui < Ru)).

wel j kel jel\IF
(15)

We can represent the ranking pairs R, < Ry, Ry < Ry;
to be optimized for user v as follows:

)‘(fuk - fm) + (1 - )‘)(fuz - fuj)v

where 0 < A <1 is a tradeoff parameter used to fuse their
relation, which can be determined via empirically testing a
validation set. Following BPR, we use o(z) to approximate
the probability Pr(-) to make the objective function differen-
tiable. Then the objective function of CLAPF-MAP can be
represented as follows:

(16)

min —In CLAPF — MAP + %R(@)), an

(C]
where 0@ = {U, € RV, e R b, € R,u € U,i € I} is set
of model parameters to be learned, and d is the number of
latent factors
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mCLAPF — MAP =Y 3" 3" mo(A(fur — fur)
wel j kel jel\I}
+ (1 — >\)(fu1 - fuj))'
(18)

Eq. (18) is the log-likelihood of CLAPF-MAP. R(0) =
et Sresltal U + el [ViIP + B, ] s a regularization
term to prevent overfitting in the learning process, and S =
{i,k, j} is a group of sampled items, where i,k € I}, and
je N}

Next, we formulate the MRR measure Eq. (7) with pair-
wise ranking in the same way. Optimizing the second item
D ke o Ino(f, — fux) means maximizing the individual
probability that user u prefers the observed item i to the
other observed item k, expressed as ]_Lke I Pr(Ry < Ru);
Optimizing the first term the same as Eq. (13) can be relaxed
to maximizing the individual probability that user u prefers
item ¢ to item j, expressed as [[;c/+ [Ljep i+ Pr(Rui < Ruj).
We maximize both of these targets by maximizing their joint
distribution probability of two ranking pairs. By this mean,
we can represent the ranking pairs as in the new criterion
called CLAPF-MRR as follows:

)‘(fuz - fuk) + (1 - )\)(fuz - f’uj)v

where 0 < A <1 is a tradeoff parameter used to fuse their
relation. Then the objective function of CLAPF-MRR can be
represented as

(19)

1
min —In CLAPF — MRR + S R(6). (20)

Here, we directly give the log-likelihood of CLAPF-MRR

in the same way as
InCLAPF = MRR =YY" " o(\(fui — fur)
uel j kell jel\I,}
+ (1 - )‘)(fut - ful))
21
4.3 Learning the CLAPF

For CLAPF, when we learned the model parameters ©, we
can predict the user u’s preference on an unobserved item j
via commonly used matrix factorization f,; = UuVjT +b;.
Then the personalized ranking list for user u can be
obtained via picking up the top-k largest preference scores
of items which are the mostly relevant to the user.

The optimization problem of the objective functions in
Egs. (17) & (20) can be solved by employing the widely used
Stochastic Gradient Descent (SGD) algorithm. The main pro-
cess of SGD is to randomly select a record, which includes a
user u, three items containing ¢, k, j, and iteratively update
model parameters based on the sampled feedback records.
Here we abbreviate Eqs. (16) or (19) as R., and sampled
items as S, then the tentative objective function of CLAPF-
MAP or CLAPF-MRR can be written as f(u,S)=—Ino

Ay 2 ay 2 v 2 _
(Re) + NP + % s VP + 5 e llbell* = [ + exp

(SR + GO + 5 s IV + 5 s | bell*. We can
update the corresponding parameters ® by walking along
the descending gradient direction
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7M7 (22)

O=0-v"0

where O can be U,,V;,b;,t € S = {i,k,j}, and y > 0 is the
learning rate.

Compared with BPR, the extra computational cost of
CLAPF algorithm is mainly due to the calculation of gradi-
ent update for newly introduced one item k. The time com-
plexity of the update rule in Eq. (22) is O(d), where d is the
number of latent features. Then the total time complexity of
CLAPF is O(Thd), where T is the number of iterations and n
is the number of users. Meanwhile, the time complexity for
predicting a user’s preference on an item is O(d), the same
as that in BPR. Thus, the computation complexity of our
proposed approach CLAPF and the seminal approach BPR
are comparable in terms of efficiency, which is much faster
than the existing listwise methods.

5 IMPROVING THE CLAPF

We have introduced a new hybrid CF framework called
CLAPF and two instantiations of CLAPF called CLAPF-
MAP and CLAPF-MRR. Compared with pairwise methods,
CLAPF makes a comparison of two observed items, which
contributes a lot to the ranking problem in top-k recommen-
dation; Compared with listwise methods, CLAPF deep taps
the connection in the observed items and the unobserved
items, which can exploit the hidden rich interactions among
users and the unobserved items. In this section, we discuss
the sampling problem under the objective functions of
CLAPF and design a new sampling strategy for CLAPF.

5.1 The Sampling Problem
Sampling strategies play an important role in learning from
data. Especially in CF areas, researches on pairwise ranking
methods focus on building an adaptive sampler for the
unobserved items. Among the samplers, Dynamic Negative
Sampling (DNS) [25] and Adaptive Oversampling Bayesian
Personalized Ranking (AoBPR) [26] have become the most
popular ones by dynamically picking negative training sam-
ples from a ranking list produced by the current prediction
model and iteratively updating the list containing all unob-
served items. However, these negative sampling strategies
are designed for the gradient vanish problem in the pair-
wise ranking field. As for ranking oriented CLAPF, we not
only deal with the pair of the observed item and the unob-
served item to make an accurate recommendation, but also
focus on the pair of two observed items to address the rank-
ing problem, so a sampling strategy containing all of the
observed items and the unobserved items is much needed.
Similar to AoBPR, we first analyze a gradient of model
parameter O of our CLAPF as

af(u,S)

IR-,)
90 '

o) (23)

= (1 -o(R-,))

Learning the model parameter with CLAPF is done by loop-
ing over Eq. (22). As can be seen in Eq. (23), each gradient
step has a multiplicative scalar (1 — o(R.,)), which depends
on how the scoring model (using current model parameters
0) would discriminate between the pairs of a user u. Notice
that, if (1 —o(R.,)) is close to 0, nothing can be learned

from the sample case S because its gradient vanishes, i.e.,
is not changed by Eq. (22).

Thus, for given (u, ), we could choose (k, j) pair s.t. R,
is small to increase (1 — o(R,.,)) and effectively update the
model parameters. For CLAPF-MAP, R, = X fur — fui) +
(1 = X)(fui — [fuj), so instead of using a large f,u, it is better
to choose an item %k with small predicted relevance score
from the observed items; and instead of using a small f,;, it
is better to choose an item j with large predicted relevance
score from the unobserved items. As for CLAPF-MRR algo-
rithm, R, = A(fui — fur) + (1 = N)(fui — fuj), so the item k
and the item j both with large predicted relevance score
from the observed items and the unobserved items can be
considered as good sample case. To sample such cases, a
ranking list is first generated according to the predicted rel-
evance score to help probability-driven sample from the
global data. As most of the real-world data follow long-tail
distributions, the geometric sampler is adopted to sample
from the ranking lists.

5.2 Double Sampling Strategy

Here, we propose a new sampler for CLAPF, namely Dou-
ble Sampling Strategy (DSS), and give an illustration of DSS
in Fig. 1.

To speed up the learning convergence of CLAPF, the
sampler consists of two parts where the first part is a nega-
tive sampler for the item j, while the second part is a posi-
tive sampler for the item k. In addition, we uniformly
sample the item ¢ from the observed items of user w. In
detail, for the instantiation CLAPF-MAP, we sample the
item k and the item j by the following steps.

e  Step (1): Model the users and the items by matrix fac-
torization and get the latent factor representation of
users and items.

e Step (2): Randomly pick a factor f,, and rank the
items by descending order according to the latent
factor values, then get the ranking list.

e Step (3): For current user u and random factor f,
return sgn(U,,,), where U is the latent representation
of users, U, , is the value in factor f, related to user
u, and sgn(-) is the sign function.

o Step (4): If sgn(U,,) > 0, return the item k from the
observed items by geometric sampling the bottom
items in the ranking list; and the item j from the
unobserved items by geometric sampling the top
items in the ranking list; Otherwise, if sgn(U,,) < 0,
reverse the ranking list and then do the same thing.

As for CLAPF-MRR, Step (4) changes as

e Step (4): If sgn(U,,) > 0, return the item £ from the
observed items by geometric sampling the top items
in the ranking list; and the item j from the unob-
served items by geometric sampling the top items in
the ranking list; Otherwise, if sgn(U,,) < 0, reverse
the ranking list and then do the same thing.

Based on the above steps, DSS gives two sampled items
k,7 from the observed items and the unobserved items.
Compared with uniform sampling, the extra computational
cost of DSS sampler is mainly due to the ranking process in
Step (2). Thus we can easily follow AoBPR and DNS and
reset the ranking lists every log (Jm|) iterations, where m is
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Fig. 1. lllustration of double sampling strategy.

the number of items, to make DSS can be used in a compara-
ble time to uniform sampling. For simplicity, we abbreviate
CLAPF with DSS algorithm as CLAPF+.

6 EXPERIMENTAL EVALUATION

In this section, we mainly evaluate CLAPF and CLAPF+ on
six real-world datasets from different perspectives. Specifi-
cally, we first describe the datasets, baselines, and parame-
ter settings used in the experiments. Then, we compare the
recommendation performance of CLAPF and CLAPF+ with
baseline approaches in terms of many evaluation metrics.
Finally, we analyze the effectiveness of the proposed DSS
sampler in CLAPF+ on learning convergence.

6.1 Datasets
We use six real-world datasets in our empirical studies,

including three general datasets, i.e., MovieLens100K,}

1. https:/ /grouplens.org/datasets/movielens/ .
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TABLE 1
Description of the Experimental Datasets, Including the Number
of Users (n), the Number of Items (m), the Number of User-Item
Pairs in the Training Data (P), the Number of User-ltem Pairs in
the Test Data (P'¢), and the Density of Each Data, i.e.,
(P+P")/n/m

Datasets n m P P (P+P')/n/m
ML100K 943 1,682 27,688 27,687 3.49%
ML1IM 6,040 3952 287,641 287,640 2.41%
UserTag 3,000 3,000 123,218 123,218 4.11%
ML20M 138,493 26,744 579,741 580,093 0.11%
Flixter 147,612 48,794 318,353 318,671 0.02%
Netflix 480,189 17,770 4,556,347 4,558,506 0.23%

MovieLens1M, UserTag, and three large datasets, i.e., Mov-
ieLens20M, Flixter,?> Netflix.? Specifically, MovieLens100K
(ML100K) contains 100,000 ratings annotated by 943 users on
1,682 movies; MovieLens1M (ML1M) contains 1,000,209 rat-
ings annotated by 6,040 users on 3,952 movies; UserTag con-
tains 246,436 user-tag pairs from 3,000 users and 2,000 tags;
MovieLens20M (ML20M) contains 20,000,263 ratings anno-
tated by 138,493 users on 26,744 items; Flixter contains
8,196,077 ratings annotated by 147,612 users on 48,794 items;
and Netflix contains 99,072,112 ratings annotated by 480,189
users on 17,770 items. We use “item” to denote movie (for
ML100K, ML1M, ML20M, Flixter, and Netflix) or tag (for
UserTag). For ML100K, ML1M, ML20M, Flixter, and Netflix,
we take a pre-processing step mentioned in [56], which only
keeps the ratings larger than 3 as the observed positive feed-
back (to simulate the implicit feedback). The final datasets
are shown in Table 1.

For all the six datasets, following the previous common
training/test split strategy [10], [23], we randomly split half
of the observed user-item pairs as training data, and the rest
as test data; we then randomly take one user-item pair for
each user from the training data to construct a validation
set. We repeat the above procedure for five times, so we
have five copies of training data and test data. The experi-
mental results are averaged over the performance of those
five copies of test data.

6.2 Evaluation Metrics

To study the recommendation performance, we adopt sev-
eral metrics for distinct perspectives. As for top-k recom-
mendation, we adopt commonly used top-k evaluation
metrics, including Precision, Recall, F'1, and 1 — Call. In
addition, we also adopt ranking-aware evaluation metrics,
including MAP, MRR, and NDCG.

6.3 Baselines and Parameter Settings

In order to demonstrate the effectiveness of our model, we
compare it with several methods,” i.e., PopRank, Random-
Walk, WMF, BPR, MPR, CLiMF, NeuMF, NeuPR, and
DeepICF. We describe the baselines below:

2. https:/ /www.cs.ubc.ca/jamalim/datasets/.

3. http:/ /www.netflix.com/.

4. We release the source code at https://github.com/bigdata-ustc/
CLAPF-MPR.
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e PopRank ranks the items according to their popular-
ity in training data.

e Random Walk (denoted as RandomWalk) estimates
the user’s preference on an item via a weighted aver-
age of all reachable users’ preferences on that item.

e WMF [6] is a typical pointwise method based on
matrix factorization. It defines a weight distribution
for each (u,i) € U x I, then employs a matrix factori-
zation model to solve a regression problem by opti-
mizing a square loss function.

e BPR[14] is a seminal pairwise method as mentioned
above.

e MPR [16] is a state-of-the-art pairwise ranking
method, which taps the connections among items
with the multiple pairwise criteria.

o CLiMF[17]is a typical listwise method, which explores
the optimization of Mean Reciprocal Rank (MRR).

e NeuMF [36] is a pairwise neural-based model, and is
an advanced instantiation of NCF which consists
both of generalized matrix factorization and multi-
layer perceptron to model latent feature interactions.

e NeuPR [37] is a pairwise neural-based model and is
a more efficient deep CF model without negative
sampling.

e DeepICF [39] is a typical pointwise neural-based
model.

We use “CLAPF (-MAP, -MRR)” to represent CLAPF
(-MAP, -MRR) with the uniform sampler, and “CLAPF+
(-MAP, -MRR)” to represent CLAPF (-MAP, -MRR) with
our DSS sampler. For a fair comparison, all the matrix fac-
torization based CF methods are implemented in the same
code framework. For all CLAPF methods, the regulariza-
tion parameters are searched as o, =0o,=f,¢€
{0.001,0.002, 0.01,0.02,0.1}, and the tradeoff parameter A €
{0.0, 0.1,...,1.0}, and the iteration number is chosen from
T € {1000,10000,100000}. The NDCG@Q5 performance on
the validation data is used to select all the best parameters
of CLAPF. The learning rate is chosen from y € {0.0001,
0.001,0.01} and the number of latent is fixed as d = 20 in
BPR, MPR and CLAPF, and the initialization value of
U,,V;,b; are set the same as in [57]. For RandomWalk, the
walk length is searched from {20, 40, 60,80}, and the reach-
able threshold is searched from {2,5,10,20}, as showing
huge time cost on large datasets, we make some tradeoffs
between efficiency and effectiveness. For WMF, the num-
ber of latent is chosen from {10, 20}, the weighted parame-
ter is searched from {10,20,40,100}, the learning rate is
chosen from {0.0001,0.001,0.01}, and the regularization
parameters are searched from {0.001,0.01,0.1}. For MPR,
the tradeoff parameter is searched from {0.0,0.1,...,1.0}.
For CLiMF, regularization parameters are searched from
{0.001,0.01,0.1}, the latent dimensionality is fixed as 20,
and the learning rate is searched from {0.0001,0.001,0.01}.
For each deep model, we implement it using TensorFlow,
the embedding size is searched from {4,8,16,32}, the
learning rate is chosen from {0.0001,0.001,0.01}, and we
keep the structure as reported in [36], [37], [39] containing
four layers in MLP component. For the above and other
model parameters, the optimal values are tuned according
to NDCG@5 performance on validation data. Noted that,
unlike the evaluate protocol in [36], where only 100

unobserved items are sampled to evaluate the final ranking
performance, we rank all the unobserved items based on
the predicted scores as adopted in common recommender
systems.

6.4 Summary of Experimental Results
6.4.1 Main Results

The experimental results and the training time of all algo-
rithms on six datasets are shown in Table 2, and the num-
bers in boldface are the best results (with DSS sampler or
not). In addition, top-k (k = 3,5, 10, 15, 20) recommendation
performance is shown in terms of two most concerned met-
rics, Recall and NDCG, in Fig. 2. We use “— ” to denote the
cases that do not produce results within 200 hours. From
the table and the figure, we have the following observations:

e CLAPF (-MAP, -MRR) and CLAPF+ (-MAP, -MRR)
perform better than the other baselines in terms of
PrecisionQk, Recall@k, F1Qk, 1— CallQk, and
NDCGQF on six datasets, which shows that our pro-
posed algorithms can recommend better top-k items for
users. Besides, CLiMF is inferior to the pairwise ranking
methods, indicating that the typical listwise method
works on datasets where only a few historical items are
given to the individual user as in [17]. Moreover, we
observe that neural-based models are not superior to
matrix factorization based models on some datasets,
which mainly because deep models are possibly to
overfit under various conditions of data sparseness.

e CLAPF (-MAP, -MRR) and CLAPF+ (-MAP, -MRR)
perform better than the other baselines in terms of
NDCG, MAP, and MRR on six datasets, which
proves that our proposed algorithms really address
the ranking problem by optimizing the observed
item pairs, and propose a more accurate rank-biased
list for users. More precisely, CLAPF-MAP overall
performs better than CLAPF-MRR in terms of MAP
with DSS sampler or not, while CLAPF-MRR overall
performs better than CLAPF-MAP in terms of MRR
with DSS sampler or not, confirming our proposed
algorithms are optimizing what they intend to
optimize.

e As to the training time, CLAPF and CLAPF+ are
comparable to BPR in terms of efficiency even for
large datasets, far faster than CLiMF, which indicates
that our proposed algorithm does not increase the
computation complexity. To some extent, our pro-
posed DSS sampler works efficiently in CLAPF
framework, indicated that CLAPF is a basic method
with extensive applicability.

6.4.2 Impact of Tradeoff Parameters

To have a deep understanding of the objective functions in
CLAPF, we adjust the tradeoff parameter as Xe€
{0.0,0.1,...,1.0} and show the results in terms of Prec@5,
Recall@5, F1@5, NDCG@Q5, MAP, and MRR in Fig. 3. It is
worth mentioning that, since CLAPF-MAP and CLAPF-
MRR respectively have two-pair objective functions (one is
of listwise and the other is of pairwise), we can remove one
of two pairs to study their performance on datasets by setting
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TABLE 2
Performance Comparisons of CLAPF (-MAP, -MRR) and Baselines on ML100K, ML1M, UserTag, ML20M, Flixter, and Netflix
Dataset  Method Prec@s Recall@b F1@5 1 — Call@5 NDCG@5 MAP MRR time
PopRank 0.27240.009 0.05440.002 0.082+0.003 0.65240.020 0.291+0.007 0.140+0.001 0.443+0.005 136s
RandomWalk 0.298-+0.006 0.061-+0.001 0.089+0.001 0.683+0.010 0.316-+0.004 0.149+0.002 0.455+0.006 162s
WME 0.359-+0.008 0.086+0.004 0.121+0.005 0.792+0.019 0.375+0.009 0.239+0.002 0.563+0.017 1189s
BPR 0.364-+0.006 0.094-+0.001 0.130+-0.002 0.813-+0.002 0.379+0.010 0.247 +0.002 0.587+0.012 256s
MPR 0.372-0.004 0.098+0.002 0.135+-0.002 0.826-+0.006 0.384-+0.009 0.254+0.003 0.598+0.010 485s
¥ CLiMF 0.278+0.003 0.055-+0.001 0.084-0.003 0.667+0.022 0.301+0.005 0.162+0.009 0.499-+0.006 521s
= NeuMF 0.365-+0.009 0.094+0.005 0.130-0.005 0.806=+0.018 0.379-+0.009 0.251+0.002 0.590+0.012 753s
E NeuPR 0.337+0.003 0.082+0.003 0.115+0.002 0.784+0.006 0.347+0.005 0.220+0.003 0.545+0.016 685s
DeepICF 0.355-0.003 0.090-£0.002 0.12240.003 0.791:£0.009 0.368-£0.005 0.247 0002 0.576+0010 1096s
CLAPF (A = 0.4) -MAP 0.432+0.005 0.120+0.003 0.163+0.003 0.858=0.011 0.454+0.006 0.294-+0.002 0.664-+0.010 264s

CLAPF (A = 0.2) -MRR 0.395+0.004 0.109+0.002 0.14640.001 0.850+0.012 0.417+0.009 0.270+40.002 0.669+0.009 266s
CLAPF+ (A = 0.4) -MAP  0.432-+0.003 0.1100.001 0.1594-0.002 0.869+0.027 0.456-+0.008 0.289+0.001 0.655+0.020 282s
CLAPF+ (A = 0.2) -MRR 0.410+0.004 0.102+0.002 0.1424-0.002 0.851+0.019 0.439+0.010 0.264+0.003 0.669+0.007 286s

PopRank 0.28240.002 0.040+0.001 0.063+0.001 0.66740.001 0.293+0.001 0.151+0.001 0.44440.002 1174s
RandomWalk 0.296-+0.002 0.044-+0.001 0.068+0.001 0.688-0.001 0.308-0.001 0.151+0.001 0.459+0.002 7633s
WMEF 0.441-+0.004 0.074+0.004 0.113+0.001 0.857+0.003 0.452+0.005 0.249-+0.001 0.639+0.001 10654s
BPR 0.438-0.001 0.073+0.001 0.112+0.001 0.850-0.009 0.452+0.002 0.255+0.001 0.648+0.002 5688s
MPR 0.440-+0.002 0.075+0.001 0.117+0.001 0.849-+0.005 0.460-0.002 0.262+0.001 0.655+0.002 9736s
=  CLiMF 0.270-0.002 0.039+0.001 0.061+0.001 0.664-+0.006 0.277+0.002 0.139-+0.001 0.464 +0.002 10105s
3 NeuMF 0.399-+0.010 0.066+0.002 0.101+0.003 0.818+0.011 0.415+0.010 0.224+0.001 0.593+0.002 8249s
= NeuPR 0.349-+0.009 0.053+0.004 0.083+-0.005 0.763+0.010 0.362-+0.009 0.202-+0.001 0.554+0.003 7697s
DeepICF 0.38740.006 0.06440.001 0.096+0.003 0.799+0.002 0.41140.005 0.21740.001 0.583+0.004 14014s
CLAPF (A = 0.4) -MAP 0.474-+0.002 0.081-0.001 0.123+0.001 0.877+0.009 0.490-+0.003 0.265-+0.001 0.686+0.003 5747s
CLAPF (A = 0.8) -MRR 0.478-0.002 0.082-0.001 0.120+0.001 0.864-+0.003 0.491-+0.002 0.261-0.001 0.692-+0.006 5724s
CLAPF+ (A = 0.4) -MAP  0.487+0.002 0.087-+0.001 0.133+0.001 0.876-+0.004 0.508--0.002 0.269--0.001 0.674+0.003 6120s
CLAPF+ (A = 0.8) -MRR  0.470+0.002 0.079+0.001 0.124+0.001 0.873+0.003 0.481+0.003 0.261+0.001 0.678+0.004 6213s
PopRank 0.26440.001 0.037+0.001 0.061+0.001 0.52240.006 0.26340.001 0.125=+0.001 0.39640.003 543s
RandomWalk 0.271-+0.004 0.038-+0.001 0.064+0.001 0.533-0.006 0.277+0.001 0.126-0.001 0.398+0.003 4035s
WMF 0.273+0.004 0.041-+0.001 0.064+0.001 0.570-0.004 0.280-0.004 0.134-0.001 0.399+0.006 4365s
BPR 0.287+0.003 0.042-+0.001 0.066+0.001 0.572-+0.006 0.283-+0.003 0.141+0.001 0.402+0.006 1826s
0 MPR 0.282-+0.003 0.045-+0.001 0.067 +0.001 0.590-+0.005 0.280-+0.003 0.151+0.001 0.411+0.005 3144s
& CLiMF 0.263-+0.002 0.039-+0.001 0.063+0.001 0.540-0.008 0.270-+0.003 0.145-+0.001 0.422+0.005 6428s
b} NeuMF 0.294-+0.008 0.046-+0.001 0.073+0.001 0.605+0.010 0.302+0.009 0.157+0.001 0.440+0.005 6759s
5 NeuPR 0.269+0.007 0.040+0.002 0.064+0.002 0.57440.013 0.27640.007 0.131+0.001 0.389+0.005 6173s
DeepICF 0.2850.005 0.041+0.001 0.067+0.002 0.582+0012 0.293+0.005 0.1500.009 0.429+0.006 8592s
CLAPF (x = 0.3) -MAP 0.296+0.003 0.047 +0.001 0.073+0.001 0.593+0.009 0.305+0.002 0.161+0.001 0.457 +0.004 1907s
CLAPF (A = 0.2) -MRR 0.267+0.002 0.041-+0.001 0.064+0.001 0.578-+0.008 0.276+0.003 0.149-+0.001 0.460+0.006 1927s
CLAPF+ (x = 0.3) -MAP 0.307+0.002 0.049+0.001 0.080+0.001 0.639+0.009 0.322+0.003 0.166+0.001 0.461+0.004 2128s
CLAPF+ (A = 0.2) -MRR  0.291+0.002 0.047+0.001 0.069+0.001 0.584-+0.008 0.306-£0.002 0.160-0.001 0.469-+0.005 2137s
PopRank 0.06340.001 0.0830.001 0.05940.001 0.256+0.001 0.089-0.001 0.0350.001 0.0960.001 2h
RandomWalk 0.069+0.001 0.086-+0.003 0.063+0.002 0.281-+0.008 0.102-0.003 0.040-+0.001 0.126+0.001 94h
WMEF 0.077+0.001 0.096-0.001 0.071+0.001 0.305-0.002 0.104-0.001 0.045-0.001 0.189-0.001 48h
BPR 0.089-0.001 0.114+0.003 0.083£0.002 0.346+0.005 0.121+0.003 0.054-+0.001 0.204-+0.001 2%h
MPR 0.093-0.001 0.116-+0.002 0.087 +0.002 0.35240.003 0.126+0.003 0.058-+0.001 0.207+0.001 44h
g2 CLiMF - — - - - — - >200h
Y  NeuMF 0.080-+0.001 0.101+0.002 0.074+0.002 0.327-+0.008 0.110-+0.003 0.048-+0.001 0.192+0.001 71h
=  NeuPR 0.075-0.001 0.090-+0.002 0.067 +0.002 0.299-+0.005 0.104-+0.003 0.044-+0.001 0.183+0.001 67h
DeepICF 0.077+0.001 0.095+0.002 0.071+0.002 0.31540.007 0.10640.002 0.04640.001 0.188+0.001 102h
CLAPF (A = 0.3) -MAP 0.112+0.001 0.145-+0.002 0.104+0.001 0.411+0.004 0.157+0.002 0.0800.001 0.235+0.001 33h
CLAPF (A = 0.9) -MRR 0.1050.001 0.140+0.002 0.09740.001 0.392+0.004 0.146+0.001 0.0730.001 0.238+0.001 35h
CLAPF+ (A = 0.3) -MAP  0.113+0.001 0.141+0.002 0.102+0.001 0.421+0.005 0.153+0.002 0.082+0.001 0.232+0.001 33h
CLAPF+ (x = 0.9) -MRR 0.109+0.001 0.133+0.002 0.0954+0.001 0.401+0.004 0.139+0.001 0.069+0.001 0.228+0.001 35h
PopRank 0.048-0.001 0.075-+0.001 0.043+0.001 0.197+0.001 0.078-0.001 0.032-+0.001 0.104-+0.001 2h
RandomWalk 3.0E-5443E6  2.0E-5+0.001 1.7E-5+8866  1.4E-4+25E5 49E-54886-6  2.3E-4+18E6  8.2E-4+44E6 108h
WMF 0.058+0.001 0.102+0.001 0.055-+0.001 0.233+0.001 0.100+0.001 0.039+0.001 0.167+0.001 20h
BPR 0.062+0.001 0.100-+0.001 0.056-+0.001 0.252+0.002 0.107+0.001 0.043+0.001 0.175+0.001 12h
MPR 0.064+0.001 0.107+0.001 0.058=0.001 0.266+0.002 0.110=+0.001 0.049+0.001 0.192+0.001 22h
g CLiIMF — — — - - — — >200h
E NeuMF 0.062+0.001 0.093+0.002 0.05640.001 0.260+0.003 0.109+0.001 0.045+0.001 0.185+0.001 45h
E  NeuPR 0.052-0.001 0.085-+0.002 0.050+0.001 0.221+0.002 0.088+0.001 0.036-0.001 0.163-+0.001 38h
DeepICF 0.059+0.001 0.091+0.002 0.053+0.001 0.24740.003 0.100+0.001 0.040+0.001 0.17540.001 62h
CLAPF (A = 0.3) -MAP 0.064+0.001 0.104+0.002 0.0574-0.001 0.264+0.001 0.1100.001 0.0500.001 0.194+0.001 14h
CLAPF (A = 0.2) -MRR 0.073+0.001 0.121+0.005 0.0694-0.002 0.284+0.003 0.119+0.001 0.0530.001 0.207 +0.001 16h
CLAPF+ (A = 0.3) -MAP 0.0650.001 0.108+0.002 0.0584-0.001 0.268+0.002 0.110=0.001 0.055+0.001 0.196+0.001 15h
CLAPF+ (A = 0.2) -MRR 0.0710.001 0.117+0.002 0.06540.001 0.277+0.002 0.1080.001 0.053+0.001 0.201 +0.001 16h
PopRank 0.048+0.001 0.0320.001 0.030+0.001 0.197+0.001 0.0520.001 0.031+0.001 0.087+0.001 3h
RandomWalk - - - - - — — >200h
WME 0.101-+0.001 0.068-+0.001 0.063+-0.001 0.361-+0.002 0.117-+0.001 0.053+0.001 0.181+0.001 89h
BPR 0.109-0.001 0.076-+0.001 0.069+0.001 0.388-0.001 0.126-+0.001 0.060-0.001 0.199+0.001 64h
MPR 0.114-+0.001 0.080-+0.001 0.073+0.002 0.397+0.002 0.132+0.004 0.063+0.001 0.205+0.001 103h
é CLiMF — — — — — — — >200h
% NeuMF 0.09840.001 0.070+0.001 0.066+0.001 0.35540.002 0.12040.001 0.05440.001 0.182+0.001 122h
Z  NeuPR 0.088+0.001 0.063+0.001 0.055-0.001 0.339+0.002 0.108=+0.001 0.050-+0.001 0.171+0.001 104h
DeepICF 0.095+0.001 0.068+0.001 0.062+0.001 0.34540.001 0.11440.001 0.05240.001 0.1760.001 165h

CLAPF (A = 0.3) -MAP 0.134-0.001 0.090-:0.001 0.085-+0.001 0.450-0.002 0.158=0.001 0.075=+0.001 0.220-+0.001 72h
CLAPF (A = 0.2) -MRR 0.119+0.001 0.083+0.001 0.07640.001 0.433+0.002 0.139+0.001 0.068+0.001 0.21340.001 75h
CLAPF+ (A = 0.3) -MAP  0.139-0.001 0.089+0.001 0.087+0.001 0.453+0.001 0.162+0.001 0.081+0.001 0.228+-0.001 71h
CLAPF+ (A = 0.2) -MRR 0.122+0.001 0.0850.001 0.08040.001 0.446+0.002 0.148+0.001 0.0730.001 0.23240.001 75h

Numbers in boldface are the best results.
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Fig. 2. Top-k (k = 3,5,10,15,20) recommendation performance of CLAPF (-MAP, -MRR) and baselines on ML100K, ML1M, UserTag, ML20M,
Flixter, and Netflix.

—e—CLAPF-MAP  —o=CLAPE-MRR —e—CLAPEMAP  ——CLAPE-MRR —o—CLAPEMAP  —e—CLAPEMRR —e—CLAPEMAP  ——CLAPE-MRR e CLAPE-MAP  —e—CLAPE-MRR e~ CLAPFMAP  ——CLAPE-MRR
0s 02 02 0s 04 08
07
04 . s s o7
0 8 . ©oa . 505
g So1 So1 S Z02 Zos
£o2 g = 8oz = Z o3
01 - 01 01 02
01

ol ol ol ol ol ol
0001020304 05 06 07 08 09 10 0010102 03 0405 06 0708 09 10 000020304 05 06 07 08 09 10 001010203 0.4 05 06 0708 09 10 000102 0304 05 06 0708 09 10 000102030405 06 07 08 09 10
M [ M M 2 M
(a) ML100K
—e—CLAPF-MAP  ——CLAPE-MRR e~ CLAPE-MAP  —e—CLAPE-MRR —e—CLAPF-MAP  —e—CLAPF-MRR —e—CLAPE-MAP  —e—CLAPE-MRR e~ CLAPE-VMAP  —e—CLAPE-MRR —e—CLAPF-MAP  —e—CLAPE-MRR

06 01 02 06 03 08

.zifes
J
Recall @5
J
l'|§a/5
)
2
i.\’lAl’:
j
.22ifess
J

o 0 0 0
00010203 04 05 06 0.7 05 09 10 0001020304 050607 0.8 09 10 0001020304 050607 08 09 1.0 000102030405 06 07 08 09 10 0001020304 05 06 07 08 09 1.0 00010203 04 05 06 0.7 08 09 1.0
] 2] ] ] M ]
—e—CLAPE-MAP  —8—CLAPF-MRR ——CLAPF-MAP  —8—CLAPF-MRR —e—CLAPF-MAP  —8—CLAPF-MIRR ——CLAPE-MAP  —8—CLAPF-MRR —e—CLAPF-MAP  —8—CLAPF-MRR ——CLAPE-MAP  —8—CLAPF-MRR
04 01 01 04 02 05
03 v 03 04
o C)
5 w ® . 203
go2 & So2 Zo1 E]
2 H g = Zo02
& z
01 01 01
0 o 0 0 o 0
0001020304 05 06 0.7 05 09 10 0001020304 050607 08 09 10 0001020304 050607 08 09 1.0 000102030405 0607 08 09 10 0001020304 05 0607 08 09 1.0 00010203 04 05 06 0.7 0.8 09 1.0
] 2] ] ] 2] ]
(c) UserTag
—e—CLAPE-MAP  —8—CLAPF-MRR ——CLAPE-MAP  —8—CLAPF-MRR —e—CLAPE-MAP  —8—CLAPF-MIRR ——CLAPE-MAP  —8—CLAPF-MRR —6—CLAPF-MAP  —8—CLAPF-MRR ——CLAPE-MAP  —8—CLAPF-MRR
02 02 02 02 01 03

Yre;@s
)
Reuiu@ 5
A
F1 ;S
A
NDC; @s
A
MAP
)
EMRR:
)

0 o o 0 0
000102 0304 05 06 0.7 0.8 09 1.0 00010203 0.4 05 0607 0.8 09 10 0001020304 050607 0809 10 000102030405 0607 0809 10 000102 0304 05 0.6 0.7 0.8 09 10 000102 03 04 05 06 0.7 0.8 09 1.0
] 2] ] ] 2] ]
—&—CLAPF-MAP —8—CLAPF-MRR —@—CLAPF-MAP —8—CLAPF-MRR —&—CLAPF-MAP  —8—CLAPF-MRR —@—CLAPF-MAP —8—CLAPF-MRR —8—CLAPF-MAP —8—CLAPF-MRR —@—CLAPF-MAP  —8—CLAPF-MRR
0s 02 o1 02 01 03

IR
j
ngl@s
2
Fl@s
Z
NDC;QS
l’
MAP
J
EMRR:
j

o 0 0 o 0
00010203 04 05 06 0.7 0.5 09 10 0001020304 05 06 07 0.8 09 10 0001020304 05 0607 0.8 09 1.0 0001020304 05 06 07 08 09 10 0001020304 05 0607 0.5 09 1.0 000102030405 06 07 08 09 10
] 2] ] ] 2] ]

(e) Flixter

—&—CLAPF-MAP —8—CLAPF-MRR —@—CLAPF-MAP —8—CLAPF-MRR —8—CLAPF-MAP  —8—CLAPF-MRR —@—CLAPF-MAP —8—CLAPF-MRR —8—CLAPF-MAP —8—CLAPF-MRR —&—CLAPF-MAP —8—CLAPF-MRR

02 01 o1 02 o1 03

Preé@s
j
Recall@5
j
Fl@s
j
NDC; @s
}
MAP
j
Shﬂlns
J

o 0 0 0 0
00010203 04 05 06 0.7 0.5 09 10 0001020304 05 0607 0.8 09 10 0001020304 050607 0.8 09 1.0 0001020304 05 06 07 08 09 10 0001020304 05 0607 0. 09 1.0 00010203 040506 07 08 09 10
] 2] ] ] 2] ]

(f) Netflix

Fig. 3. Recommendation performance of CLAPF (-MAP, -MRR) with different tradeoff parameters (from top row to bottom row: ML100K, ML1M,
UserTag, ML20M, Flixter, and Netflix).
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the tradeoff parameter A = 0 or 1. From the figure, we can see
that using different tradeoff parameters effects the recom-
mendation performance of CLAPF, but there is some differ-
ence between CLAPF-MAP and CLAPF-MRR. CLAPF-MAP
responds more gently to changes in parameters, while
CLAPF-MRR responds very strongly to changes in certain
parameters. Specifically, in terms of some metrics, like
F1@5, NDCGQ5, and MAP, a flexible trade-off parameter
overall help CLAPF-MAP get better performance than
CLAPF-MRR, which indicates that CLAPF-MAP has more
potential in top-k or rank-aware recommendation, and our
smoothing approach preserves aforementioned good prop-
erties of MAP measure. Notice that when A =0, CLAPF
reduces to BPR.

6.4.3 Convergence Analysis

We also conduct supplementation experiments on six data-
sets to further demonstrate the effectiveness of our pro-
posed DSS sampler for CLAPF in Fig. 4. As DSS not only
samples the negative item (item j in CLAPF) from the unob-
served items, but also samples the positive item (item £ in
CLAPF) from the observed items each time, we remove one
or both of the sampling functions in DSS to build three com-
parative sampling strategies:

e  Uniform Sampling picks the positive items (the item k
and the item i in CLAPF) and the negative item (the
item j in CLAPF) from the observed items and unob-
served items with equal probabilities each time.

e Positive Sampling picks the positive item (the item k)
in the same way as DSS, and picks the other items
(the item j and the item ¢) in the same way as Uni-
form Sampling each time.

e Negative Sampling picks the negative item (the
item j) in the same way as DSS, and picks the other
items (the item £ and the item ) in the same way as
Uniform Sampling each time.

Fig. 4 shows that DSS sampler helps converge much faster
than the other samplers in terms of MAP, which indicates that
DSS is a more effective sampler for CLAPF by drawing infor-
mative positive and negative items in a fine-grained way. In
addition, all non-uniform samplers help converge faster than
Uniform Sampling. Meanwhile, Positive Sampling does not
perform as well as Negative Sampling, which mainly because
the observed items are much fewer than the unobserved items.
Moreover, DSS sampler helps converge faster at early iterations,
which mainly because such fine-grain utilizing of rank informa-
tion on positive and negative items is significant for learning the

unstable model. Finally, all algorithms almost converge after
some iterations, then fluctuate in a tiny range around.

All the analyses show that our CLAPF algorithm and
DSS sampler are indeed superior to the previous methods
for implicit feedback problem.

7 CONCLUSION

In summary, this paper presents a new hybrid ranking model,
namely Collaborative List-and-Pairwise Filtering (CLAPF),
for improving top-k recommendation from implicit feedback.
We combined the objective functions of optimizing the two
rank-biased metrics (MAP, MRR) with the pairwise objective
function and formalized two instantiations of CLAPF called
CLAPF-MAP and CLAPF-MRR. On the one hand, CLAPF
brings the ranking measure into pairwise methods, which
contributes a lot to the ranking problem in the top-k recom-
mendation. On the other hand, CLAPF introduces pairwise
thinking into listwise objective functions, which can exploit
the hidden rich unobserved information and reduce the com-
putation complexity. We conducted extensive experiments on
six real-world datasets, and proved that our methods signifi-
cantly outperform state-of-the-art implicit feedback recom-
menders regarding various evaluation metrics. The main
contribution of our approach is to provide a new idea of utiliz-
ing rank-biased measures by combining the pairwise objective
function on implicit feedback. The CLAPF framework is a
hybrid listwise and pairwise model that helps us understand
the ranking essence in top-k item recommendation, and is not
limited to the instantiations in this paper. We encourage more
smoothed listwise metrics to be optimized with our CLAPF
framework.
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