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Abstract

Cognitive diagnosis, a fundamental task in edu-
cation area, aims at providing an approach to re-
veal the proficiency level of students on knowl-
edge concepts. Actually, monotonicity is one of
the basic conditions in cognitive diagnosis theory,
which assumes that student’s proficiency is mono-
tonic with the probability of giving the right re-
sponse to a test item. However, few of previ-
ous methods consider the monotonicity during op-
timization. To this end, we propose Item Response
Ranking framework (IRR), aiming at introducing
pairwise learning into cognitive diagnosis to well
model the monotonicity between item responses.
Specifically, we first use an item specific sampling
method to sample item responses and construct re-
sponse pairs based on their partial order, where we
propose the two-branch sampling methods to han-
dle the unobserved responses. After that, we use
a pairwise objective function to exploit the mono-
tonicity in the pair formulation. In fact, IRR is a
general framework which can be applied to most of
contemporary cognitive diagnosis models. Exten-
sive experiments demonstrate the effectiveness and
interpretability of our method.

1 Introduction
Recently, online education systems has been widely
used [Jiang et al., 2019; Bi et al., 2020; Liu et al., 2019b].
These systems provide a variety of applications which can
not only assist tutors to give proper instruction based on in-
dividual characteristics, e.g., strengths and weaknesses, of
students, but also help students be aware of their learning
progress [Pardos and Heffernan, 2010]. One of the key fun-
damental technologies supporting these systems is cognitive
diagnosis, which tries to profile students by discovering their
latent cognitive proficiency on knowledge concepts.

Massive efforts have been undertaken to improve the so-
lutions of cognitive modelling. Generally, in cognitive
diagnosis models (CDMs), students are characterized by
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Figure 1: Illustration of cognitive diagnosis. The left part presents
the response logs of students on test items, and the right-bottom part
shows corresponding diagnostic results.

their proficiency in specific knowledge concepts (e.g., Cir-
cle Graph, Equivalent Fractions). Classic CDMs (e.g., Item
Response Theory (IRT) [Lord, 1952; Lord, 1980; Rasch,
1961] and Deterministic Inputs, Noisy “And” gate model
(DINA) [De La Torre, 2009]) use single-dimension or dis-
crete variables to represent the latent trait features of students
and test items, and use simple manually designed interaction
functions (e.g., logistic function in IRT). To improve the pre-
cision and interpretability, previous works mainly focus on
the representation learning of trait features (e.g., extending
trait features into multidimension [Reckase, 2009]) and inter-
action function design (e.g., using neural networks to auto-
matically learn the complex interaction function [Wang et al.,
2020]). To preserve the monotonicity, previous works tend to
apply a monotone function as the interaction function rather
than considering it in the optimization criteria.

In the literature, the monotonicity theory assumes that stu-
dent’s proficiency is monotonic with the probability of giv-
ing the right response to a test item [Rosenbaum, 1984;
Wang et al., 2020]. As shown in Figure 1, we can easily find
that Ada with a right response to item e1 is considered as hav-
ing a higher proficiency level on the related concept A (i.e.,
Function) than Bob with a wrong response. This observation
can be further interpreted from a monotonous point of view
that students with correct responses should be more proficient
than students with wrong responses. Therefore, based on the
partial order between item responses, we can create a new op-
timization criteria to exploit the response pairs to enhance the
monotonicity.
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However, how to exploit the partial order between re-
sponses to improve the monotonicity within the optimization
criteria is a challenging problem. First, it is hard for us to
compare item responses across different items related to non-
overlapped concepts. For example, as shown in Figure 1, it is
hard to tell whether Ada is more skilled than Bob on concept
B (i.e. Derivate) and E (i.e., Equation) when we only observe
that Ada gives a wrong response to item e5 and Bob gives a
right response to item e2. Second, there exist many unob-
served responses such as Bob not giving a response to item
e5 in Figure 1. Last but not least, how to find an objective
function so that the monotnicity can be directly optimized is
another important challenge.

To this end, we propose the general Item Response Rank-
ing framework (IRR) for cognitive diagnosis, which can be
applied to most of contemporary CDMs. Specifically, we
first design an item specific pair sampling method to re-
solve the potential non-overlapped problem, i.e., sampling
responses from different students to the same item to keep
related knowledge concepts the same. Then, to handle the
unobserved responses along with the observed responses, we
conduct a two-branch sampling method, i.e., positive sam-
pling and negative sampling. After that, based on the sampled
pairs, we introduce the pairwise learning to model the partial
order among response pairs, where we use a pairwise objec-
tive function to better optimize the monotonicity. Extensive
experiments on two real-world datasets show that CDMs with
IRR not only significantly outperforms the baselines, but also
effectively provides interpretable insights for understanding
the cognitive diagnostic results of students.

2 Related Work
2.1 Cognitive Diagnosis
Cognitive diagnosis is a fundamental but important task
in many real-world scenarios such as games[Chen and
Joachims, 2016], medical diagnosis [Xu et al., 2017],
and especially, in education [Liu et al., 2018; Liu et
al., 2019a; Huang et al., 2020]. IRT [Lord, 1952] and
DINA [De La Torre, 2009] are the two most fundamental
but classic cognitive diagnosis models, which model the re-
sponse result of a student answering an item as the interac-
tion between the trait features of the student and the item.
By extending the trait features into multidimensional, Reck-
ase et al. [2009] proposed Multidimensional Item Response
Theory (MIRT). Noticing the manually designed interaction
functions of previous works may restrict the model scope of
applications, NeuralCD [Wang et al., 2020] exploited neu-
ral networks to automatically learn the interaction function.
However, few of these works pay enough attention to the
monotonicity, especially during optimization, which some-
how limits their performance.

2.2 Pairwise Learning
Pairwise learning is an approach to explore the relations in a
pair, which has been widely used in many areas (e.g., rec-
ommendation [Rendle et al., 2012], natural language pro-
cess [Huang et al., 2017] and computer vision [Wang et al.,

2017]). For instance, Huang et al. [2013] used pairwise learn-
ing strategy to facilitate the training process for solving in-
formation retrieval. Rendle et al. [2012] constructed training
pairs to solve the ranking problem in recommender system
with implicit feedback. However, few works have been taken
to integrate these methods into cognitive diagnosis.

3 Problem Definition
Let S = {s1, s2, ..., sN} be the set of all N students,
E = {e1, e2, ..., eM} be the set of all M test items and
K = {k1, k2, ..., kL} be the set of L knowledge concepts.
Suppose the response logs R are denoted as set of triplet
(s, e, r), where s ∈ S, e ∈ E and r is the score (trans-
ferred to binary, i.e., 0 indicates wrong answer while 1, oth-
erwise). For convenience, we also denote R as rse. Further-
more, we have Q-matrix [Tatsuoka, 1995] labeled by experts,
Q = {Qij}M×L, where Qij = 1 if the item ei relates to the
knowledge concept kj and Qij = 0 otherwise.
Definition 1. Cognitive Diagnosis: Given response logs R
and Q-matrix Q, our goal is to mine students’ proficiency on
knowledge concepts.

4 Preliminary
Before we step into our method, we would like to first briefly
introduce Cognitive Diagnosis Models (CDMs). CDMs are
developed to depict student’s proficiency level on specific
knowledge concepts based on her responses to several test
items. To do this, a pointwise objective function is used
to train CDMs on the Student Performance Prediction task.
More concretely, CDMs are expected to minimize the differ-
ence of the predicted probability P (yie) of a student i giving
the right response to the item e between the true response rie:

rie ← P (yie). (1)
In the past decades, lots of CDMs have been proposed such

as DINA and IRT. Generally, CDMs contain two parts: (1) the
representations of trait features and (2) the interaction func-
tion. For example, IRT uses single-dimension variables to
represent the trait features and logistic function as the inter-
action function as follows:

P (yie|θ, a, b) =
1

1 + e−1.7a(θ−b) , (2)

where a and b represent the discrimination and difficulty of
item e, and θ indicates the proficiency level of the student i.
Using multidimensional vectors to represent latent traits of
both test items and students, IRT is extended to MIRT:

P (yie|θ,a, b) =
1

1 + e−aθ+b
. (3)

However, CDMs trained by Eq. (1) cannot involve the opti-
mization of the monotonicity while we argue that the mono-
tonicity should be included during optimization.

5 Item Response Ranking
5.1 Overview
As we discussed before, the referred monotonicity declares
that the student’s proficiency is monotonic with the probabil-
ity of giving the right response to a test item, which could
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be further expressed in a pairwise perspective: a more skilled
student should have a higher probability to give the right re-
sponse to a test item than an unskilled one. Formally, we have
the following pairwise monotonicity:
Lemma 1. Pairwise Monotonicity Given a specific test item,
the students with right responses are more skilled than those
with wrong responses.

However, as we mentioned above, traditional methods use
the pointwise optimization objective function (i.e., Eq. (1))
to train CDMs, which cannot optimize the monotonicity be-
tween responses. Therefore, instead of minimizing the dif-
ference of the predicted probability P (yie) between the true
response rie, we would like to directly optimize the pairwise
monotonicity in the objective function, i.e.,

(rie − rje)← P (yie − yje), (4)

where i and j represent different students.
In the following paragraphs, we will introduce: (1) how to

construct the training pairs and (2) how to design the objective
function so that the pair monotonicity can be promised.

5.2 Pair Construction
An important issue in IRR is to construct training pairs. For
each response triplet R = (u, e, r) ∈ R, we want to sample
some triplets to form training pairs T (R). In the following
paragraphs, we will first conduct an item specific sampling,
where we divide the students based on the item they give the
response to. Then we will show how we handle the students
with unobserved response, where we propose a two-branch
sampling method. In the last part, we will present how to
perform the training pair sampling.

Item Specific Sampling
For each item e, we first divide the students into two groups,
one containing students who have completed the project and
the other containing those who have not completed yet. The
former one is called observed students SO(e) and the latter
one is called unobserved students SU (e). Furthermore, we
divide SO(e) into two subgroups based on their performance
on e: (1) positive students S+(e) are those who correctly an-
swer e and (2) negative students S−(e) are those who give
the wrong answer:

S = SO(e) + SU (e),

SO(e) = S+(e) + S−(e),

S+(e) = {u|u ∈ SO(e), r = 1},
S−(e) = {u|u ∈ SO(e), r = 0}. (5)

Two-branch Sampling
Different from other scenarios like recommendation [Rendle
et al., 2012] where the unobserved data is usually treated as
a negative sample, in cognitive diagnosis, the unobserved re-
sponse log should not be simply treated as a negative one. In-
tuitively, we assume: the probability of any unobserved stu-
dent u correctly answering e is 0 ≤ P (rs−e) ≤ P (rue) ≤
P (rs+e) ≤ 1, which can be divided into two parts:

P (rue) ≥ P (rs−e) ≥ 0, (6)
P (rue) ≤ P (rs+e) ≤ 1, (7)
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Figure 2: The observed responses are shown on the left part. Our
method creates item specific pairwise partial responses i ≥e j and
i ≤e j between a pair of students. On the right part, (+) indicates
the partial order from i to j and (–) vice versa (e.g., on the positive
sampling branch, (+) means the student i have a higher probability to
give the right response to the item e than the student j). The striped
blocks highlight the pairs containing unobserved responses.

where s− ∈ S−(e) and s+ ∈ S+(e). As shown in Figure 2,
based on Eq. (6) and Eq. (7), we have the two-branch sam-
pling, i.e., positive sampling and negative sampling:

Positive sampling: Based on Eq. (6), for s− ∈ S−(e),
those unobserved students are considered as positive samples,
which is shown in the right-top part of Figure 2.

Negative sampling: Based on Eq. (7), for s+ ∈ S+(e),
those unobserved students are considered as negative sam-
ples, which is illustrated in the right-bottom part of Figure 2.

Training Pair Sampling
The total number of training pairs is |S+(e)×(S−S+(e))|+
|S−(e)×(S−S−(e))|, which is quite large. To accelerate the
training speed, we apply the sampling method. Specifically,
for each response triplet R = (s, e, r), we randomly select at
maximum of NO observed samples and at maximum of NU

unobserved samples during each training step. If the student
u in the response triplet R = (s, e, r) is a positive student
(i.e., s ∈ S+(e)), the observed samples are selected from
S−(e) and unobserved samples are selected from SU (e). We
similarly select samples for the negative students and we se-
lect at maximum of NO observed samples and at maximum
of NU unobserved samples to form training samples T (R):

T (R) =

 {(s, s′)|s′ ∈ Λ
NO

(S−(e))⊕ Λ
NU

(SU (e))} rse = 1,

{(s′, s)|s′ ∈ Λ
NO

(S+(e))⊕ Λ
NU

(SU (e))} rse = 0,

(8)
where Λ

x
(S) means randomly selecting at maximum of x ele-

ments from the set S to form a subset and ⊕ is the set addi-
tion. The discussion of how the sample number (i.e., NO and
NU ) affects the model performance is shown in Section 6.4.

5.3 Learning Model with IRR
After we construct the training pairs T (R) for each response
triplet, we are going to talk about the objective function.
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Firstly, the log-likelihood of IRR is:

ln IRR = ln IRR+ + ln IRR−, (9)

IRR+ =
∏
e∈E

∏
i∈S+(e)

∏
j∈S−S+(e)

P (rie ≥ rje)

× (1− P (rje ≥ rie)),
(10)

IRR− =
∏
e∈E

∏
i∈S−(e)

∏
j∈S−S−(e)

P (rie ≤ rje)

× (1− P (rje ≤ rie)).
(11)

Secondly, the objective function of IRR is:
minΘ − ln IRR+ λ(Θ), (12)

where λ(Θ) is the regularization term and λ is a hyper-
parameter. With the pair sampling mentioned in 5.2, we
rewrite Eq. (12) as the following loss function:

L = −
∑

(i,j)∈T (R)

log
exp(P (rie|Θ))

exp(P (rie|Θ)) + exp(P (rje|Θ))
+ λ(Θ).

(13)
We can apply IRR to any fully differentiable CDMs (e.g.,
MIRT) and train them with Stochastic Gradient Descent.

6 Experiments
In this section, we first introduce the datasets and our ex-
perimental setups. Then, we conduct extensive experiments
to compare the performances of CDMs optimized by the
pointwise approach and our IRR (hereinafter referred to as
pointwise-CDMs and IRR-CDMs respectively) to answer the
following questions:

• RQ1: Can IRR-CDMs perform better in predicting stu-
dent performance and preserve the monotonicity com-
pared to the pointwise-CDMs?

• RQ2: Are the diagnostic results of IRR-CDMs mono-
tonic on the knowledge level?

• RQ3: How does the number of samples (i.e., NO and
NU ) influence the performance of IRR-CDMs?

• RQ4: What are the differences of the diagnostic results
between IRR-CDMs and pointwise-CDMs?

Our code is available at https://github.com/bigdata-
ustc/EduCDM.

6.1 Dataset Description
We use two real-world datasets in the experiments, i.e., AS-
SISTments and MATH. ASSISTments (ASSISTments 2009-
2010 “skill builder”) is an open dataset collected by the AS-
SISTments online tutoring systems [Feng et al., 2009]. Col-
lected from a widely-used online learning system, MATH
contains mathematical test items and logs of high school ex-
aminations. Table 1 shows basic statistics of the datasets.

We filter out students with less than 15 and 30 response
logs for ASSISTments and MATH respectively to guarantee
that each student has enough data for diagnosis. For each
dataset, we divide the students on each test item into training:
test = 8:2. We use 90% of the training data to train model
and apply grid search to adjust the hyper-parameters on the
remaining 10% of the data (i.e., the validation dataset).

Statistics ASSISTments MATH
# users 4,163 10,268
# items 17,746 917,495

# knowledge concepts 123 1,488
# response logs 324,572 864,722

Table 1: The statistics of the dataset.

6.2 Experimental Setup
To evaluate the performance of our IRR, we apply our frame-
work to four well-known CDMs, i.e., DINA, IRT, MIRT and
NeuralCD. We make a statistics on the overall dataset to get
the correct portion ce of each item and the CDMs with IRR
predict the top ce percentage of students on each item giving
the right responses. In multidimensional models (i.e., MIRT
and NeuralCD), we set the dimension of latent trait features
of both student and item unitedly as the number of knowledge
concepts, i.e., 123 in ASSISTments and 1488 in MATH. All
hyper-parameters are tuned in the validation datasets. λ is
selected from [0.1, 0.01, 0.001, 0.0001]. NO and NU are se-
lected from [1, 5, 10, 30]. Based on the performance on the
validation datasets, we set λ = 0.0001 and NO = NU = 10.

We initialize parameters in all networks with Xavier ini-
tialization [Glorot and Bengio, 2010] and we use the Adam
algorithm [Kingma and Ba, 2014] for optimization. All mod-
els are implemented by MXNet using Python and all exper-
iments are run on a Linux server with two Intel(R) Xeon(R)
E5-2699 v4 CPUs and a Tesla P100 PCIe GPU.

6.3 Evaluation Metrics
Classification and Ranking Metrics. Because we cannot
obtain the true knowledge proficiency of students, it is hard
to directly evaluate the performance of a cognitive diagno-
sis model. Following previous works [Wang et al., 2020], as
the diagnostic result is usually acquired through students per-
formance prediction task, performance on the prediction task
can indirectly evaluate the model based on some classification
metrics such as AUC, Precision, Recall and F1. Besides, we
need some metrics to investigate whether the monotonicity is
maintained in models. Based on the monotonicity, we hope
the models can correctly assign a higher predicted score to
the the more skilled student. This is quite similar to a ranking
problem. Therefore, we apply some commonly used ranking
metrics [Yu et al., 2018] to evaluate the monotonicity. The
ranking metrics include MAP and NDCG@k. However, it
is worth noticing that, we should not only focus on the top
students (i.e., excellent students), but also need to pay atten-
tion to the underachievers (i.e., ranked at the bottom). There-
fore, rather than evaluating the ranking accuracy result based
on the descending order, we also evaluate it based on the as-
cending order. For example, given a descending ranking list
[r1, ..., rN ] where the fronted students are predicted to have
higher probability to correctly answer an item and r is true
score, traditional NDCG@k is calculated by NDCG@k =
NDCG(r1, ..., rk). The inverse version NDCG is de-
fined as INDCG@k = NDCG(−rN , ...,−rN−k+1).
For convenience, we denote the top metrics as MAP(E),
NDCG@k(E) and Precision@k(E), and represent the inverse
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Metrics DINA IRT MIRT NeuralCD
Pointwise IRR Pointwise IRR Pointwise IRR Pointwise IRR

Classification

AUC 0.786 0.815 0.776 0.848 0.777 0.889 0.817 0.839
Precision 0.689 0.713 0.665 0.752 0.716 0.785 0.706 0.734

Recall 0.485 0.553 0.585 0.607 0.737 0.645 0.662 0.579
F1 0.518 0.598 0.534 0.654 0.666 0.697 0.625 0.626

Ranking

MAP(E) 0.840 0.853 0.817 0.913 0.824 0.937 0.867 0.907
NDCG@5(E) 0.871 0.881 0.867 0.894 0.868 0.912 0.881 0.889

MAP(U) 0.780 0.799 0.754 0.880 0.761 0.908 0.826 0.875
NDCG@5(U) 0.464 0.481 0.462 0.503 0.462 0.524 0.487 0.500

(a) ASSISTments

Metrics DINA IRT MIRT NeuralCD
Pointwise IRR Pointwise IRR Pointwise IRR Pointwise IRR

Classification

AUC 0.549 0.567 0.537 0.666 0.537 0.686 0.596 0.608
Precision 0.717 0.725 0.637 0.760 0.583 0.767 0.686 0.737

Recall 0.447 0.707 0.722 0.743 0.699 0.750 0.655 0.719
F1 0.500 0.711 0.524 0.747 0.588 0.754 0.602 0.724

Ranking

MAP(E) 0.735 0.740 0.728 0.808 0.729 0.814 0.765 0.772
NDCG@5(E) 0.852 0.855 0.845 0.906 0.844 0.909 0.853 0.866

MAP(U) 0.356 0.360 0.345 0.494 0.347 0.508 0.431 0.437
NDCG@5(U) 0.488 0.498 0.479 0.654 0.477 0.677 0.587 0.569

(b) MATH

Table 2: Experimental results on student performance prediction.

version of previous metrics as NDCG@k(U), NDCG@k(U)
and NDCG@k(U), where E and U respectively represent Ex-
cellent students and Underachievers.
Degree of Agreement. Following Wang et al. [2020], we
adopt Degree of Agreement (DOA) to further investigate the
monotonicity based on concepts. Specifically, if student i has
a better mastery on knowledge concept k than student j, then
i is more likely to answer item l related to k correctly than j.
For concept k, DOA(k) is formulated as:

DOA(k) =

N∑
i=1

N∑
j=1

δ(θik, θjk)

M∑
l=1

Ilk ∧J(l,i,j)∧δ(rik,rjk)

M∑
l=1

Ilk ∧J(l,i,j)∧[ril 6=rjl]

Z
, (14)

where Z =
N∑
i=1

N∑
j=1

δ(θik, θjk). θik is the proficiency of stu-

dent i on concept k. δ(x, y) = 1 if x > y and δ(x, y) = 0
otherwise. Ilk = 1 if item l contains concept k and Ilk = 0
otherwise. J(l, i, j) = 1 if both student i and j did item l and
J(l, i, j) = 0 otherwise. We average DOA(k) on all concepts
(i.e., DOA) to evaluate the quality of diagnostic result.

6.4 Experimental Results
Student Performance Ranking (RQ1)
The experimental results are shown in Table 2. Each CDM
result has two sub-columns, i.e., the left one shows the per-
formance of the pointwise-CDM and the right one presents
the IRR-CDM. Wilcoxon rank-sum statistical tests [Yu et al.,
2018] have been used to check whether the difference be-
tween original optimization strategy and our method are sta-
tistically significant (with a 0.05 significance level). From

the table, we can see that for every CDM, the IRR-CDM
significantly outperform the pointwise-CDM on classifica-
tion metrics on all datasets. This indicates that our proposed
framework can be applied to most of contemporary CDMs
and can promote the diagnosis precision. Besides, we notice
that, IRR-CDM also achieve higher scores in ranking met-
rics which means IRR can help CDMs to better maintain the
monotonicity during training. Summarily, we have the con-
clusion that by exploiting the partial order between responses,
IRR can not only help CDMs promote the diagnosis precision
but also better maintain the monotonicity.

Knowledge Proficiency Monotonicity (RQ2)
Among CDMs, we only use DINA and NeuralCD as base
models to verify whether the diagnostic results are mono-
tonic on knowledge level, since for IRT, MIRT, there are no
clear correspondence between their latent features and knowl-
edge concepts. Figure 3 presents the experimental results.
From the figure, we can observe that DOAs of IRR-CDMs are
higher than pointwise-CDMs, which proves that the knowl-
edge proficiency diagnosed by IRR is more monotonic.

Performance with Different Sample Number (RQ3)
In IRR, the number of samples (i.e., NO and NU ) plays a
crucial role. We use IRT and MIRT as base models to in-
vestigate the influence of different number of samples on the
effectiveness of IRR. For convenience, we set NU = NO

and conduct the experiment by assigning different NO from
set {1, 2, 3, 4, 5, 10, 30}. As shown in Figure 4, as the sample
number increases, the performance of IRR-CDMs increases
at the beginning, but it converges afterwards both in two
datasets. Meanwhile, we can find that compared with MATH,
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the performance of IRR-CDMs on ASSISTments converges
earlier. The reason might be that the ASSISTments contains
less data which means the models need fewer sampled data
to acquire enough information. These results indicate that in-
cluding more sampled pairs can help the IRR-CDMs promote
the performance, but the promotion has a upper bound due to
the converge of information increment.

Diagnostic Results Analysis (RQ4)
Here we present an example of a student’s diagnostic results
on dataset ASSISTments in Figure 5 to show the differences
between pointwise-CDMs and IRR-CDMs, and we use Neu-
ralCD as the base model. Figure 5 (a) shows the response
logs of three students on three items and the related knowl-
edge concepts of each item. Figure 5 (b) presents the cogni-
tive diagnostic results from the pointwise-CDM (the left part)
and IRR-CDM (the right part). We first look at the diagnosis
report from the IRR-CDM. We can find that with correctly
answering item 1 and item 2, which both contain the concept
B (i.e., Circle Graph), student 2 has a higher proficiency on
the concept B than student 1 and student 3. Similarly, we
can observe that student 2 and student 3 are diagnosed to be
more skilled on concept E (i.e., Finding Percents) than stu-
dent 1, where student 2 and 3 correctly answer the related
item 2 while student 1 not. Compared with the result in the
left part, we can find that IRR-CDMs get a more precise and
more discriminated ranking result.

Meanwhile, comparing the distribution of proficiency val-
ues in two diagnosis reports in Figure 5 (b), we notice that
IRR-CDMs can give more discriminated diagnosis values.
For better illustration, we visualize the all diagnosis profi-
ciency values on concept B (Circle Graph) and concept D
(Equivalent Fractions) in Figure 5 (c). We can find the distri-
butions of the diagnosis proficiency values got by IRR-CDMs
are more smooth, which means the proficiency values are

ID Concepts
Item 1

Item 3
Item 2

B, C
B, C, D, E

A, B, D

Student 1 Student 2 Student 3
✔✘ ✘

✘
✘ ✘
✔ ✔

✔

(a) Response Logs diagram.

(b) Proficiency on knowledge concepts digram.

A - Proportion B - Circle Graph C - Percent Of

D - Equivalent Fractions E - Finding Percents

(c) Proficiency distribution digram.
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Figure 5: An example of diagnostic results.

more discriminated. Based on these observation, we have the
conclusion that our method can help CDMs get a more dis-
criminated diagnosis proficiency values, which accounts for
why IRR-CDMs can well perform in cognitive diagnosis.

7 Conclusion and Future Work
In this paper, we present the monotonicity in a pair formu-
lation and proposed the Item Response Ranking framework
to incorporate the monotonicity into the optimization objec-
tive. With the proposed item specific two-branch sampling
method, we manage to introduce the pairwise learning into
cognitive diagnosis. As a general framework, IRR can be ap-
plied to most of CDMs. Extensive experiments demonstrate
the effectiveness and interpretability of IRR framework.

In the future, we are going to optimize the response pre-
diction with IRR by introducing difficulty prediction and
fuzzy algorithm to better approximate the real correct por-
tion. Meanwhile, we tend to improve the sampling strategy
to find more distinguished samples during training so that the
IRR can be more effective and efficient.
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