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ABSTRACT
Knowledge Tracing (KT), which aims to assess students’ dynamic
knowledge states when practicing on various questions, is a fun-
damental research task for offering intelligent services in online
learning systems. Researchers have devoted significant efforts to
developing KT models with impressive performance. However, in
existing KT methods, the related question difficulty level, which
directly affects students’ knowledge state in learning, has not been
effectively explored and employed. In this paper, we focus on explor-
ing the question difficulty effect on learning to improve student’s
knowledge state assessment and propose the DIfficulty Matching
Knowledge Tracing (DIMKT) model. Specifically, we first explic-
itly incorporate the difficulty level into the question representa-
tion. Then, to establish the relation between students’ knowledge
state and the question difficulty level during the practice process,
we accordingly design an adaptive sequential neural network in
three stages: (1) measuring students’ subjective feelings of the ques-
tion difficulty before practice; (2) estimating students’ personalized
knowledge acquisition while answering questions of different dif-
ficulty levels; (3) updating students’ knowledge state in varying
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degrees to match the question difficulty level after practice. Finally,
we conduct extensive experiments on real-world datasets, and the
results demonstrate that DIMKT outperforms state-of-the-art KT
models. Moreover, DIMKT shows superior interpretability by ex-
ploring the question difficulty effect when making predictions. Our
codes are available at https://github.com/shshen-closer/DIMKT.
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1 INTRODUCTION
Knowledge Tracing (KT) aims to promote teaching and learning
in online learning systems [2, 8, 20]. According to students’ per-
formance on previous questions, KT measures their knowledge
states on different knowledge concepts (e.g., square root) and pre-
dicts their answers on future questions. Subsequently, based on
the knowledge state assessment, we can give valuable feedback to
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Figure 1: A toy example of students’ practice process and knowledge tracing.

different students about their learning, further tailor adaptive learn-
ing schemes for each student [5, 33], and even identify students at
risk of failure in the early stage of courses [27]. Benefiting from
these intelligent educational services, students can improve their
learning efficiency and focus on the poorly mastered knowledge
concepts (KCs). Meanwhile, teachers can also instruct students in
the light of their knowledge abilities [6, 21].

We give a toy example of KT in the left part of Figure 1, where stu-
dents practice on different questions to achieve knowledge growth
in learning. Considering both questions and their corresponding
answers at each practice step, KT models utilize various approaches
to capture the evolution of students’ knowledge states. For example,
Bayesian Knowledge Tracing (BKT) [5] was a particular case of the
Hidden Markov Model. Deep Knowledge Tracing (DKT) [36] intro-
duced Recurrent Neural Networks (RNNs) [48] to model students’
complex cognitive process. Learning Process-consistent Knowl-
edge Tracing (LPKT) [38] turned to calculate the learning gains and
forgetting for better modeling the dynamic learning process.

As shown in the right part of Figure 1, questions are generally
distinguished by two basic attributes: KCs and difficulty levels.
However, in earlier representative KT models, such as BKT and
DKT, questions are only represented by their related KCs without
considering their difficulty levels. Therefore, they tend to misesti-
mate the student’s knowledge state. For example, in Figure 1, the
student got wrong answers on questions 𝑞1 and 𝑞5 with the hard
difficulty level, although he/she performed well on questions 𝑞2 and
𝑞7 with the easy and medium difficulty levels, his/her knowledge
state on the corresponding KCs (i.e., area circle) should only be
at the medium level, rather than the high level of 0.8 in Figure 1.
Recently, some recent KT models have noticed that exploring the
question difficulty factor would be essential for KT. For example,
EKT [37] and RKT [31] measured the question difficulty implicitly
by analyzing questions’ text contents [18]. AKT [10] introduced
question embeddings based on Item Response Theory (IRT) [42]
to enrich the question representations with their difficulty levels.
PEBG [22] and MF-DAKT [52] took advantage of the difficulty level
as external information to obtain pre-trained question representa-
tions. Although these methods have achieved great success, their
effectiveness is limited in only utilizing the question difficulty to
improve the question representation.

In fact, the question with different difficulty levels would be a nat-
ural indicator to estimate students’ knowledge state, i.e., students

who can correctly answer harder questions would be regarded to
have better knowledge states. However, it is a nontrivial problem
to establish the relationship between the student knowledge state
and the question difficulty level since the question difficulty effect
can produce complicated impacts on student learning. First, stu-
dents have different knowledge states (even for the same student,
his/her knowledge state continues to change in learning), so that
they may have quite different subjective feelings about the question
difficulty level before practice [7, 17]. There is a common saying
in China that it is easy for one who knows it and difficult for one
who does not, which just reflects this phenomenon. Second, while
answering questions with different difficulty levels, students may
acquire individual knowledge [24, 32]. For example, students who
have already mastered the related KCs can hardly learn anything
when practicing on simple questions, while students who are still
struggling are expected to make more progress. On the contrary,
solving hard questions will be benefit students with better knowl-
edge state, while students with poor mastery will run into a big
trouble and even lose learning interests. Third, after finishing the
practice, we need to give an objective judgment of students’ latest
knowledge state, which should be distinctly updated to match the
question difficulty level.

In this paper, considering the above question difficulty effects,
we aim to improve the KT performance by bridging the relationship
between the student’s knowledge state and the question difficulty
level. To achieve this goal, we propose a novel DIfficulty Matching
Knowledge Tracing (DIMKT) model. In DIMKT, we first directly uti-
lize the difficulty level of both the question and the KC to enhance
the question representation. Then, we present an Adaptive Sequen-
tial Neural Network (ASNN) to realize the connection between the
knowledge state and the difficulty level in the practice process. In
ASNN, we first capture students’ subjective difficulty feelings before
practice through calculating the differences between the difficulty-
enhanced question embedding and students’ knowledge state. Then,
we combine students’ subjective difficulty feelings and their an-
swers to determine their personalized knowledge acquisition during
practice. After students finishing the practice, according to their
previous knowledge state, answers, and the question difficulty, we
design a knowledge indicator to update their knowledge state with
distinctions, which is in line with the question difficulty level. Fi-
nally, we conduct extensive experiments on two real-world datasets,
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the results demonstrate that DIMKT outperforms the state-of-the-
art KT methods. Besides, DIMKT also has superior interpretability
when making predictions of students’ future performance. The
main contributions of our paper are summarized as follows:
• We analyze the significant impacts of the question difficulty
effect on students’ learning in three stages: subjective difficulty
feelings before practice, personalized knowledge acquisitions
during practice, and distinct knowledge state after practice.

• We present a novel DIfficulty Matching Knowledge Tracing
(DIMKT) model to measure the question difficulty effect on learn-
ing. In DIMKT, an Adaptive Sequential Neural Network (ASNN)
is carefully designed to establish the relationship between the
student’s knowledge state and the question difficulty level during
the practice process.

• Extensive experimental results demonstrate the effectiveness of
DIMKT. Besides, DIMKT also has excellent interpretability as it
not only predicts what students’ answers will be but also gives
the reason for the predictions.

2 RELATEDWORKS
In this section, we first introduce existing related works about
knowledge tracing in detail according to the development timeline,
followed by presenting the question difficulty effect.

2.1 Knowledge Tracing
Knowledge tracing has been studied for decades along with the pop-
ularity of online learning [38]. The first proposed KT model is BKT,
which utilized the Hidden Markov Model to model students’ knowl-
edge state [5]. Pardos and Heffernan [34] extended BKT by adding
an extra difficulty node. Besides, some factor models, such as Perfor-
mance Factor Analysis (PFA) [35], took logistic functions to estimate
the probability of mastery [4]. Factorization machines (FMs), which
were used to encode users and items in recommender systems,
were also applied in KT [40, 44]. HawkesKT leveraged the Hawkes
process to adaptively model temporal cross-effects in the learning
process [45]. In recent years, the powerful ability of non-linearity
and feature extraction of neural networks make them well suited
to modeling the complex cognitive process of students. Specifically,
DKT firstly introduced deep learning into KT [36], which utilized
RNNs or LSTMs [13, 48] to model the students’ knowledge state.
Then, DKVMN used memory networks to store the latent KCs and
update students’ related knowledge proficiency [51]. GKT proposed
to use graph neural networks (GNNs) [49] to model the naturally
existing graph structure within the KCs [49]. Similarly, SKT also
used GNNs to capture the influence propagation among KCs in KT
[41]. CKT applied Convolutional Neural Networks (CNNs) [19] to
model students’ individualized learning rates [39]. PEBG presented
a method to obtain pre-trained question embeddings for KT [22].
MF-DAKT also introduced a pre-training method to incorporate the
question relation and difficulty into question representations, which
further applied a dual-attentional mechanism for conducting KT
[52]. Although PEBG and MF-DAKT developed different pre-train
methods, they both obtained pre-trained question representations
from their different difficulty levels. EKT leveraged the effectiveness
of questions’ text contents to enhance the performance of KT [37].
SAKT introduced the self-attention mechanism in Transformer [43]

to the KT task [30]. RKT then utilized the contextual information
of questions to enhance the self-attention mechanism for KT [31].
In EKT and RKT, the question difficulty level could be seen as a side
product in questions’ text contents. AKT proposed to utilize the IRT
model in psychometrics [25] to construct embeddings for questions
and KCs, which further incorporated the self-attention mechanism
with monotonic assumption and utilized the encoder-decoder archi-
tecture in KT [10]. It is worth noting that AKT introduced question
difficulty to enrich the question embeddings by IRT model-based
embeddings [42]. IEKT considered students’ individual cognition
level and knowledge acquisition sensitivity and estimated them
explicitly [24]. LPKT presented a novel paradigm for KT by model-
ing students’ learning gains and forgetting in continuous timesteps
rather than learning outcomes in single timesteps [38].

2.2 The Question Difficulty Effect
Generally, there is a close link between the question difficulty and
students’s knowledge state it reflects, which has been testified by
many previous studies. For example, Knäuper et al. [17] found that
students with higher knowledge ability are more able than those
with lower ability to provide accurate answers when responding
to tough questions. Besides, students with better knowledge state
were less impacted by the fluctuation of the question difficulty.
Lomas et al. [23] indicated that easy questions could bring more
engagement but slower rates of learning, while more challenging
questions may lead to faster learning. Beside, from the perspec-
tive of question creation, the question difficulty is also of great
significance: Too easy or hard questions are unable to distinguish
students’ different knowledge state [29]. Therefore, many studies
have been proposed to efficiently and automatically measure the
question difficulty [12, 14]. In some psychological theories, such
as the Classic Test Theory (CTT) [1], the question difficulty was
calculated from a statistical point of view. Specifically, it defined
the question difficulty as the proportion of a well-defined group of
students that answered a question correctly. Besides, Item Response
Theory (IRT) thought that question difficulty and student ability de-
pended probabilistically on students’ answers and measured them
by a logistic function [26]. Moreover, the question’s difficulty posi-
tively connects to the KCs it contains. Beck et al. [3] pointed out
that the harder the question, the more KCs required to solve it.
In addition, the knowledge itself may put certain constraints on
the question, which influence its difficulty. Therefore, these knowl-
edge constraints must be considered when determining question
difficulty. Hwang [15] directly regarded that the difficulty level of
questions only depended on the number of KCs to be learned.

In summary, the question difficulty significantly affects students’
learning, and students’ answers to questions of different difficulty
levels directly reflect their knowledge state. Some existing KT mod-
els have attempted to incorporate the question difficulty level into
KT. Nevertheless, they have certain limitations in indirect utiliza-
tion of question difficulty level, i.e., they implicitly combine the
difficulty information into the question representation.We note that
some IRT-related models have considered the relations of question
difficulty and student ability by logistic functions [46]. However,
they assume that the student’s knowledge ability is stable in test
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scenarios, which is not suitable for tracking the student’s dynamic
knowledge state in daily practice.

In our work, we mainly consider the question difficulty effect on
student learning, not only introducing the question difficulty into
its representation. Moreover, we set up the relationship between
student’s knowledge state and the question difficulty level for better
assessing students’ dynamic knowledge state.

3 PRELIMINARY
In this section, we give a formal definition of knowledge tracing and
the question difficulty. Besides, we present some important embed-
dings in DIMKT. The mathematical notations utilized throughout
our paper are summarized in Table 1.

3.1 Problem Definition
In an online intelligent learning system, supposing that the student
set is S = {𝑠1, 𝑠2, ..., 𝑠𝐼 } with 𝐼 different students, the question set
is Q = {𝑞1, 𝑞2, ..., 𝑞 𝐽 } with 𝐽 unique questions, and the KC set is
K = {𝑘1, 𝑘2, ..., 𝑘𝑀 } with𝑀 various KCs. Each question is related
to specific KCs, and every student practices on different questions
to achieve knowledge mastery. During the learning process, a stu-
dent’s practice sequence is denoted as 𝑋 = {(𝑞1, 𝑎1), (𝑞2, 𝑎2), ...,
(𝑞𝑇 , 𝑎𝑇 )}, where 𝑞𝑡 is the question answered at time step 𝑡 , 𝑎𝑡 is
the related answer correctness label (i.e., 1 for correct answers and
0 for incorrect answers), 𝑇 is the length of the learning sequence.
Knowledge tracing is defined as following:

Definition 3.1. (Knowledge Tracing). Given students’ historical
practice sequence 𝑋 = {(𝑞1, 𝑎1), (𝑞2, 𝑎2), ..., (𝑞𝑇 , 𝑎𝑇 )}, the KT task
aims to assess students’ evolving knowledge state in learning and
predict performance on future questions, which can be further
applied to individualize students’ learning schemes and maximize
their learning efficiency.

3.2 Question Difficulty Definition
As the KCs contained in a question also have distinctive difficulties
(e.g., Multiplication and Division Decimals is harder than Addition
and Subtraction Decimals) [3, 15], we define the question in two
levels: Question Specific (𝑄𝑆) difficulty and Knowledge Concept
(𝐾𝐶) difficulty. Inspired by the CTT and some previous works [14,
28, 52], we use an objective statistical means to calculate the QS
and KC difficulty as follows:

𝑄𝑆 =
∑︁ |𝑆𝑖 |

𝑖

{𝑎𝑖 𝑗 == 1}
|𝑆𝑖 |

·𝐶𝑞𝑠 ,

𝐾𝐶 =
∑︁ |𝑆𝑖 |

𝑖

{𝑎𝑖𝑚 == 1}
|𝑆𝑖 |

·𝐶𝑘𝑐 ,
(1)

where 𝑆𝑖 is the set of students who answerws the question 𝑞 𝑗 or
the KC 𝑘𝑐𝑚 , 𝑎𝑖 𝑗 == 1 and 𝑎𝑖𝑚 == 1 refers to corresponding correct
answers respectively, and the constant 𝐶𝑞𝑠 and 𝐶𝑘𝑐 are the pre-
defined levels of 𝑄𝑆 and 𝐾𝐶 difficulty (e.g., there are 100 different
𝑄𝑆 difficulty levels if 𝐶𝑞𝑠 is set as 100).

Definition 3.2. (Question Difficulty). The question difficulty
contains both question specific difficulty𝑄𝑆 and knowledge concept
difficulty 𝐾𝐶 , where the former is computed by the proportion of
students that answer a question correctly, and the latter is defined

Notations Descriptions
S,Q,K The set of student, question, and knowledge concept.
𝐼 , 𝐽 , 𝑀 The number of student, question, and knowledge concept.
𝑋 Students’ learning sequence.
𝒉 Students’ knowledge state.
𝒙 Difficulty-enhanced question embedding.
𝑘𝑚 , 𝒌𝒎 The knowledge concept and its embedding.
𝑞, 𝒒 The question and its embedding.
𝑎, 𝒂 Students’ actual answer and its embedding.
𝑄𝑆 , 𝑸𝑺 Question specific difficulty and its embedding.
𝐾𝐶 , 𝑲𝑪 Knowledge concept difficulty and its embedding.
𝐶𝑞𝑠 , 𝐶𝑘𝑐 Constants of 𝑄𝑆 and 𝐾𝐶 difficulty levels.
𝑺𝑫𝑭 Subjective difficulty feeling.
𝑷𝑲𝑨 Personalized knowledge acquisition.
𝑦 Prediction of students’ performance.

Table 1: Mathematical notations and descriptions.

as the proportion of students that answer questions containing a
knowledge concept correctly.

3.3 Embeddings
To better understand the whole structure of DIMKT before pre-
senting its details, we give a simple introduction to the essential
embeddings in DIMKT from three categories as below.

3.3.1 Difficulty Embedding. Difficulty embedding is the embedding
of question difficulty. As the question difficulty contains both 𝑄𝑆
and 𝐾𝐶 difficulty, the difficulty embedding is also composed of 𝑄𝑆
and 𝐾𝐶 embedding. More specifically, due to we have defined 𝐶𝑞𝑠
different difficulty levels for𝑄𝑆 , we represent the𝑄𝑆 embedding by
an embedding matrix 𝑸𝑺 ∈ R𝐶𝑞𝑠×𝑑𝑞𝑠 , where 𝑑𝑞𝑠 is the dimension.
Therefore, for question 𝑞 𝑗 with a specific difficulty level 𝐶 𝑗𝑞𝑠 of 𝑄𝑆 ,
we can directly obtain its 𝑄𝑆 embedding from 𝑸𝑺 . Similarly, we
use an embedding matrix 𝑲𝑪 ∈ R𝐶𝑘𝑐×𝑑𝑘𝑐 (𝑑𝑘𝑐 is the dimension) to
represent the 𝐾𝐶 embedding. We can also get the 𝐾𝐶 embedding
of a question according to its difficulty level of 𝐾𝐶 .

3.3.2 Knowledge State Embedding. Knowledge state embedding
refers to the embedding of students’ knowledge state, which is
dynamic throughout the learning process. In DIMKT, we use the
vector 𝒉𝒕 ∈ R𝑑𝑘 to represent students’ knowledge state at time
step 𝑡 in DIMKT, where 𝑑𝑘 is the dimension. It is worth noting
that some existing KT models utilize the knowledge matrix to store
and update students’ knowledge state [38, 51]. Nevertheless, there
are complex relations between different KCs, which are hard to
distinguish [41]. For example, one digit division is the prerequisite of
two digit division, while they are also similar KCs. Besides, manually-
labeled KCs of questions may have inevitable errors and subjective
bias [46]. Therefore, we choose to use vector 𝒉 to store and update
students’ knowledge state in DIMKT. The experimental results also
indicate the vector 𝒉 is capable of representing the knowledge state
as DIMKT achieves better performance than existing best methods.

3.3.3 Question, Answer, and KC Embeddings. In addition to the
question difficulty and knowledge state, questions, answers, and
KCs are also necessary elements in DIMKT. Specifically, we use an
embedding matrix 𝒒 ∈ R𝐽 ×𝑑𝑞 (𝑑𝑞 is the dimension) to represent
all questions in DIMKT. Besides, another embedding matrix 𝒂 ∈
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R2×𝑑𝑎 (𝑑𝑎 is the dimension), which is made up of two vectors
(one for correct and another for incorrect), is utilized to represent
students’ answers. Besides, if the question is related to 𝑘𝑚 , then
its KC embedding will be the one-hot vector 𝒌𝑚 ∈ R𝑀 , where the
𝑚-th element is 1 and others are 0.

4 THE DIMKT MODEL
In this section, we present the DIMKT model in detail. The main
structure of DIMKT is depicted in Figure 2. In DIMKT, we first
use both 𝑄𝑆 and 𝐾𝐶 difficulty to enhance the question representa-
tions based on the question and KC embeddings. We then design
an Adaptive Sequential Neural Network (ASNN) to establish the
relationship between student knowledge state and the question dif-
ficulty level in the practice process. ASNN can adaptively capture
students’ knowledge states in a sequential manner by connecting
the question difficulty level respectively before, during, and after
the practice process. Finally, DIMKT takes advantage of the inner
product of students’ knowledge state and the question embedding
to model the process that students apply their knowledge to answer
questions. Their performance can also be predicted by this means.

4.1 Difficulty-enhanced Question Embedding
As mentioned above, earlier representative KT models represented
the question by its related KCs without considering the question
difficulty level. Such oversimplification is necessary at the early
research stage, avoiding the sparsity problem when the number of
questions is large. However, it prevents the further development of
KT as the question difficulty is of great significance when students
answer questions. Therefore, some recent KT models have incorpo-
rated question difficulty into the question embedding by different
manners [10, 22, 37, 52]. Nevertheless, they only used the question
difficulty information implicitly to get more complete question rep-
resentations. Besides, the relative 𝐾𝐶 difficulty is omitted, which is
critical and necessary auxiliary information for the 𝑄𝑆 difficulty.
In DIMKT, we take advantage of both the 𝑄𝑆 and 𝐾𝐶 difficulty to
enhance the question representation. To be specific, we directly
combine the original question embedding 𝒒𝑡 and KC embedding
𝒌𝑚 with the 𝑄𝑆 difficulty 𝑸𝑺𝑡 and the 𝐾𝐶 difficulty 𝑲𝑪𝑡 together,
followed by a multi-layer perception (MLP) to output the difficulty-
enhanced question embedding 𝒙𝑡 . The specific calculation formula
is as follows:

𝒙𝑡 =𝑾𝑇
1 [𝒒𝑡 ⊕ 𝒌𝑚 ⊕ 𝑸𝑺𝑡 ⊕ 𝑲𝑪𝑡 ] + 𝒃1, (2)

where ⊕ is the concatenation operation,𝑾1 ∈ R(𝑑𝑞+𝑀+𝑑𝑞𝑠+𝑑𝑘𝑐 )×𝑑𝑘

is the weight matrix, 𝒃1 ∈ R𝑑𝑘 is the bias term, 𝑑𝑘 is the dimension.

4.2 Adaptive Sequential Neural Work
After getting the difficulty-enhanced question embedding, we need
to further bridge the relationship between the student knowledge
state and the question difficulty level in the practice process. Intu-
itively, question difficulty is an inherent attribute of the question,
so we can directly combine the question difficulty to enhance the
question representation. In contrast, the impacts of the question
difficulty effect on the practice process is dynamic, which is much
more challenging to be utilized for knowledge state assessment.
Concretely, such influence mainly exists in three stages: Firstly,

before answering a question, students’ subjective feelings of its
difficulty vary from person to person. For example, if asking a stu-
dent who never knows the KC absolute value to answer the easy
question 𝑞9 in Figure 1, he/she will feel that 𝑞9 is too hard to an-
swer. However, after enough practicing, he/she may even think that
the question 𝑞8 of a hard difficulty level is easy, due to he/she has
mastered absolute value very well. Secondly, during the answering
process, students’ knowledge acquisition is also personalized. For
example, if a student feels that a question is difficult, he/she will
benefit a lot by working hard to solve it, while he/she may learn
nothing when the question is considered as no challenge. Thirdly,
after completing the practice, students’ knowledge state should be
updated to varying degrees. In other words, we should improve
the student’s knowledge state if he/she successfully answers hard
questions. Meanwhile, students who got wrong answers on easy
questions should be assigned lower knowledge state.

In order to model the above complicated influence of the ques-
tion difficulty effect, we design an Adaptive Sequential Neural Work
(ASNN) to set up the relationship between the student knowledge
state and the question difficulty level in the learning process. Ac-
cordingly, ASNN contains three components as shown in Figure 2:
(1) subjective difficulty feeling, (2) personalized knowledge acquisi-
tion, and (3) knowledge state updating.

Subjective difficulty feeling. To calculate students’ subjective
feelings about the question difficulty, we consider the difference be-
tween the difficulty-enhanced question embedding 𝒙𝑡 and students’
previous knowledge state 𝒉𝑡−1, i.e., students will feel difficult if
their knowledge state cannot meet the requirement of the question.
Therefore we can get the subjective feeling as follows:�𝑺𝑫𝑭 𝑡 = 𝑡𝑎𝑛ℎ(𝑾𝑇

2 (𝒙𝑡 − 𝒉𝑡−1) + 𝒃2),

𝜞𝑆𝐷𝐹𝑡 = 𝜎 (𝑾𝑇
3 (𝒙𝑡 − 𝒉𝑡−1) + 𝒃3),

𝑺𝑫𝑭𝑡 = 𝜞𝑆𝐷𝐹𝑡 ·�𝑺𝑫𝑭 𝑡 ,

(3)

where 𝑡𝑎𝑛ℎ is the non-linear activation function, 𝜎 is the sigmoid
activation function,𝑾2,𝑾3 ∈ R(𝑑𝑘 )×𝑑𝑠𝑑 𝑓 are the weight matrices,
𝒃2, 𝒃3 ∈ R𝑑𝑠𝑑 𝑓 are the bias terms. Here,�𝑺𝑫𝑭 𝑡 is the direct output of
subjective feeling, which contains difficulty cognition under specific
knowledge state. Based on�𝑺𝑫𝑭 𝑡 , we further design a gate 𝜞𝑆𝐷𝐹𝑡 to
choose and reserve the important features in �𝑺𝑫𝑭 𝑡 . Then, we can
get students’ subjective difficulty feelings 𝑺𝑫𝑭𝑡 .

Personalized knowledge acquisition. Students’ personalized
knowledge acquisition is closely related to their subjective feelings
of the question difficulty 𝑺𝑫𝑭𝑡 and their answers 𝒂𝑡 . Generally
speaking, the student who feels the question is hard but finally
solves it should have more gains. Therefore, we incorporate 𝑺𝑫𝑭𝑡
and 𝒂𝑡 together to get the knowledge acquisition in a similar way
to the subjective feeling as follows:�𝑷𝑲𝑨𝑡 = 𝑡𝑎𝑛ℎ(𝑾𝑇

4 (𝑺𝑫𝑭𝑡 ⊕ 𝒂𝑡 ) + 𝒃4),

𝜞𝑃𝐾𝐴𝑡 = 𝜎 (𝑾𝑇
5 (𝑺𝑫𝑭𝑡 ⊕ 𝒂𝑡 ) + 𝒃5),

𝑷𝑲𝑨𝑡 = 𝜞𝑃𝐾𝐴𝑡 · �𝑷𝑲𝑨𝑡 ,

(4)

where 𝑾4,𝑾5 ∈ R(𝑑𝑠𝑑 𝑓 +𝑑𝑎)×𝑑𝑘 are the weight matrices, 𝒃4, 𝒃5 ∈
R𝑑𝑘 are the bias terms. Here 𝜞𝑃𝐾𝐴𝑡 is the gate that control the output
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Figure 2: The main structure of our DIMKT model. We show the processing pipeline of DIMKT at timestep 𝑡 . In this timestep,
the input is the question embedding 𝒒𝑡 , the knowledge concept 𝒌𝑚 of the question, the question specific difficulty 𝑸𝑺𝑡 , the
knowledge concept difficulty 𝑲𝑪𝑡 , the student’s answer 𝒂𝑡 and previous knowledge state 𝒉𝑡−1. The output is the student’s
updated knowledge state 𝒉𝑡 . Moreover, we can also predict the student’s performance 𝑦𝑡+1 at timestep 𝑡 + 1.

information in �𝑷𝑲𝑨𝑡 . Then, we can obtain students’ individual
knowledge acquisition during practice.

Knowledge state updating. After practice, we need to objec-
tively update students’ knowledge state to varying degrees. For ex-
ample, if a student successfully solved harder questions, we should
improve his/her knowledge state to a higher level. To achieve such
updating, we mainly consider three factors: students’ previous
knowledge state, answers, and the question difficulty. Specifically,
we present a knowledge indicator 𝜞𝐾𝑆𝑈𝑡 ∈ R𝑑𝑘 according to the
above three factors, and then the knowledge indicator is applied to
decide the student’s updated knowledge state as follows:

𝜞𝐾𝑆𝑈𝑡 = 𝜎 (𝑾𝑇
6 (𝒉𝑡−1 ⊕ 𝒂𝑡 ⊕ 𝑸𝑺𝑡 ⊕ 𝑲𝑪𝑡 ) + 𝒃6),

𝒉𝑡 = 𝜞𝐾𝑆𝑈𝑡 · 𝒉𝑡−1 + (1 − 𝜞𝐾𝑆𝑈𝑡 ) · 𝑷𝑲𝑨𝑡 ,
(5)

where𝑾6 ∈ R(𝑑𝑞𝑠+𝑑𝑘𝑐+𝑑𝑘+𝑑𝑎)×𝑑𝑘 is the weight matrix, 𝒃6 ∈ R𝑑𝑘 is
the bias term. Therefore, both students’ previous knowledge state
and present knowledge acquisition will affect their latest knowledge
state, and the knowledge indicator utilizes questions’ difficulty
levels to make a trade-off between them for updating students’
knowledge state.

4.3 Prediction and Objective Function
As the student’s knowledge state 𝒉𝑡 at timestep 𝑡 has been obtained,
we can further utilize 𝒉𝑡 to predict students’ future performance
at timestep 𝑡 + 1. In DIMKT, we utilize the inner product of the
knowledge state vector 𝒉𝑡 at timestep 𝑡 and difficulty-enhance
question embedding 𝒒𝑡+1 at timestep 𝑡 + 1 to simulate the practice
process that students apply their learned knowledge to answer
questions. Then, the probability of correct answers can be inferred
from the inner product results by a 𝜎 function:

𝑦𝑡+1 = 𝜎 (
∑︁

(𝒉𝑡 · 𝒒𝑡+1)). (6)

To train all parameters and vectors in DIMKT, we choose the
cross-entropy log loss between the predicted answer 𝑦 and actual
answer 𝑎 as the objective function, which will be minimized using
Adam optimizer [16] on mini-batches, as follows:

L = −
𝑇∑︁
𝑡=1

(𝑎𝑡 log𝑦𝑡 + (1 − 𝑎𝑡 ) log(1 − 𝑦𝑡 )) + 𝜆𝜃 | |𝜃 | |2 . (7)

where 𝜃 denotes all trainable parameters and embeddings of DIMKT
and 𝜆𝜃 represents the regularization hyperparameter.

5 EXPERIMENTS
In this section, we first introduce the real-world datasets used in
our experiments, followed by describing the training details and
baseline models. Subsequently, we present the results of all com-
parison methods on student performance prediction. Moreover, we
conduct several experiments to show the interpretability of DIMKT
from the following aspects: (1) how various predefined difficulty
levels (i.e., 𝐶𝑞𝑠 and 𝐶𝑘𝑐 ) will affect the performance of DIMKT; (2)
the influence of each individual element in DIMKT; (3) the inter-
pretability of the learned difficulty-enhanced question embedding;
(4) DIMKT gives the reason for student performance prediction.

5.1 Datasets
We choose two real-world public datasets with different sizes to eval-
uate the effectiveness of DIMKT:(1) ASSIST20121, and (2) Eedi20202.
The statistics of the datasets are listed in Table 2. The detailed de-
scriptions of the datasets are as follows:
• ASSIST2012 is a dataset collected from an online tutoring sys-
tem, i.e., ASSISTments [9]. This dataset is gathered from the skill

1https://sites.google.com/site/assistmentsdata/home/2012-13-school-data-with-
affect
2https://eedi.com/projects/neurips-education-challenge
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Statistics Datasets
ASSIST2012 Eedi2020

# of practice records 2,711,813 15,867,849
# of students 29,018 118,971
# of questions 53,091 27,613
# of KCs 265 282
Avg.records per student 93.45 133.38
Avg.records per question 51.08 574.65
Avg.records per KC 10,233.26 56,268.97

Table 2: Statistics of all datasets.

builder problem sets, where students need to practice on simi-
lar questions for obtaining knowledge. In this dataset, we have
filtered the learning records that the related KCs are missing.

• Eedi2020 is published in the NeurIPS 2020 Education Challenge,
which provided data from two school years of students’ answers
to mathematics questions from an educational platform, i.e., Eedi
[47]. This dataset has hierarchical KCs, where the KC in the lower
level is contained in the upper level. We utilize only the most
fine-grained KC for each question in our experiments.

5.2 Experimental Setup
In our experiments, we first sorted all practice records of the student
by the timestamp of answering. Then, we set all input sequences to
a fixed length of 100 based on the average sequence length of the
dataset. For sequences longer than the fixed length, we cut them
into several unique sub-sequences based on the fixed length. Zero
vectors were used to pad the sequences up to the fixed length for
the sequences shorter than the fixed length. Since the difficulty
value calculated in the statistic means may be unreliable when only
a few students answer the question, we dropped the questions with
less than 30 answer records. To set up the training process, we
randomly initialized all parameters in the uniform distribution [11].
For all datasets, we performed standard 5-fold cross-validation for
all models. Specifically, for each fold, 80% of the learning sequences
were split as the training set and validation set (their ratio is 8:2),
the rest 20% were used as the testing set. All the hyper-parameters
are learned on the training set, and the model that performed best
on the validation set was used to evaluate the testing set.

The difficulty levels of the 𝑄𝑆 and 𝐾𝐶 difficulty are both 100,
i.e., 𝐶𝑞𝑠 and 𝐶𝑘𝑐 are set to 100. For convenience, the parameters
𝑑𝑞𝑠 , 𝑑𝑘𝑐 , 𝑑𝑎 , 𝑑𝑘 , 𝑑𝑠𝑑 𝑓 are all set to be 128 in our implementation
of DIMKT. Other carefully selected parameters may bring slightly
better performance, we do not pay time to find better ones, as it is
not our main concern in this paper. The learning rate is 0.002, and
we set the learning rate decay of 50% every five epochs to achieve
the optimal point.

5.3 Baselines
In order to evaluate the effectiveness of DIMKT, we compare it with
nine different baselines. All these methods are tuned to have the
best performances for a fair comparison. All models are trained on

a cluster of Linux servers with the NVIDIA RTX 3090 GPU. The
details of all baselines are as follows:

• DKT is the first proposed deep learning-based KT model, which
leverages RNNs/LSTMs to assess students’ knowledge state [36].
We utilized LSTMs to realize DKT in our implementation.

• DKT+ finds there are two problems in DKT [50]: First, DKT fails
to reconstruct the observed input learning sequence. Second,
the prediction of DKT on students’ future performance across
time-steps is not consistent. Therefore, it introduces some regu-
larization terms to solve these two problems.

• DKVMN is a KT model based on memory networks [51]. It
defines a 𝑘𝑒𝑦 matrix to store latent KCs and a 𝑣𝑎𝑙𝑢𝑒 matrix to
store students’ knowledge state. Moreover, it propose read and
write operations to update students’ knowledge state over time.

• SAKT directly applies the transformer to the KT task [30]. It pro-
poses a self-attentive model to capture long-term dependencies
between students’ learning records.

• CKT focuses on the student-specific characteristics in KT [39], it
utilizes statistical means to capture students individualized prior
knowledge and introduces convolutional windows in CNNs to
model their different learning rates in the learning process.

• PEBG uses the question difficulty and other information to obtain
pre-trained question embeddings for improving the performance
of KT methods [22]. Our experiments utilize DKT and the pre-
trained question embeddings to realize PEBG.

• EKT introduces the text contents of questions into KT [37]. It is
worth noting that the question difficulty contained in the text is
also included in the question embedding of EKT. In our experi-
ments, we implemented EKT with an attention mechanism.

• AKT is the context-aware attentive knowledge tracing model
[10]. It defines a knowledge retriever to capture students’ dy-
namic knowledge state by attention mechanism. The question
difficulty is utilized to improve the question embeddings by IRT,
and two self-attentive encoders are designed to learn context-
aware representations of the questions and answers.

• LPKT is the learning process-consistent knowledge tracingmodel
[38]. Unlike other KT models that measure students’ learning
outcomes in single time points, it designs a specific architec-
ture to model students’ learning process and calculates students’
learning gains and forgetting in continuous time points to update
their knowledge state.

5.4 Students’ Future Performance Prediction
Generally, higher accuracy on students’ future performance predic-
tion stands for better estimations of their knowledge state. In order
to evaluate the effectiveness of DIMKT, we compare it with all base-
lines on this task. Specifically, we get the student’s practice records
from timestep 1 to 𝑇 , the future performance prediction task aims
to predict student performance at each timestep 𝑡, (1 < 𝑡 <= 𝑇 )
based on their performance at timestep 1 to 𝑡 − 1.

For providing robust evaluation results, we utilize three evalua-
tion metrics in all experiments, i.e., (1) Root Mean Squared Error
(RMSE), (2) Accuracy (ACC), and (3) Area Under Curve (AUC).
We set a threshold of 0.5 when calculating the accuracy. Table 3
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Datasets Metrics DKT [36] DKT+ [50] DKVMN [51] SAKT [30] CKT [39] PEBG [22] EKT [37] AKT [10] LPKT [38] DIMKT (ours)

ASSIST2012

RMSE 0.4226 0.4291 0.4243 0.4235 0.4213 0.4127 0.4070 0.4038 0.4037 0.4006*0.4006*0.4006*
ACC 0.7375 0.7266 0.7353 0.7364 0.7391 0.7529 0.7594 0.7638 0.7634 0.7666*0.7666*0.7666*
AUC 0.7304 0.7119 0.7255 0.7279 0.7351 0.7652 0.7732 0.7841 0.7824 0.7899*0.7899*0.7899*

Eedi2020

RMSE 0.4298 0.4422 0.4326 0.4311 0.4302 0.4152 0.4137 0.4128 0.4133 0.4113*0.4113*0.4113*
ACC 0.7202 0.6974 0.7157 0.7180 0.7193 0.7418 0.7435 0.7453 0.7446 0.7471*0.7471*0.7471*
AUC 0.7649 0.7337 0.7576 0.7620 0.7644 0.8005 0.8024 0.8041 0.8042 0.8074*0.8074*0.8074*

Table 3: Results of all comparison methods on the student performance prediction task. Existing state-of-the-art results are
marked by the underline and the best results are bold. * indicates p-value < 0.05 in the t-test.

gives the experimental results (i.e., the average results of 5-fold
cross-validation on the testing set) and the statistical significance
of our model against the best baseline model. In Table 3, we can
find several important observations. Firstly, DIMKT outperforms
all baseline methods on all datasets and evaluation metrics. The
superior performance of DIMKT demonstrates that considering
the question difficulty effect on student learning is necessary and
valuable. Secondly, existing best KT models (e.g., PEBG, EKT, and
AKT) that utilize the question difficulty to enhance question em-
beddings outperform earlier KT models (e.g., DKT, DKVMN, CKT)
by a large margin, which also proves the necessity of the question
difficulty. Thirdly, in contrast to applying the question difficulty
in question embeddings, DIMKT further considers the question
difficulty effect in the practice process and successfully establish
the relationship between student knowledge state and question
difficulty level, therefore it achieves better performance. Finally,
compared with LPKT, which directly models students’ learning
process, DIMKT also gets the better performance, inspiring us to
combine the advantage of LPKT and DIMKT for achieving more
success in the future.

5.5 Sensitivity Analysis of Difficulty Levels
In above experiments, the difficulty levels 𝐶𝑞𝑠 and 𝐶𝑘𝑐 are set to
100. As our main concern in this paper is the question difficulty
effect on student learning, the sensitivity of difficulty levels should
be essential. Therefore, we evaluate the effects of different difficulty
levels on the performance of DIMKT. To be specific, we evaluate
DIMKT’s performance on five different difficulty levels: 10, 50, 100,
300, and 1000. When applying these different difficulty levels on the
𝑄𝑆 difficulty,𝐶𝑘𝑐 is always set as 100. Conversely,𝐶𝑞𝑠 also remains
100 when𝐶𝑘𝑐 takes different values. The experimental results on all
datasets are shown in Figure 3, where we can get many reasonable
findings. Firstly, for the 𝑄𝑆 difficulty, the specificity of question
difficulty is lost when the difficulty level is small, while the gener-
ality of question difficulty declines when the difficulty level is high.
Therefore, DIMKT has certain degrees of performance degradation
when the difficulty level is very small (i.e., 10) or large (i.e., 1000).
Based on our experiments, the best difficulty level should strike a
balance between specificity and generality, which is between 50
and 100. Secondly, we utilize the 𝐾𝐶 difficulty as auxiliary infor-
mation in the question difficulty. Therefore, different 𝐶𝑘𝑐 should
have almost no influence on DIMKT’s performance, which is also
reflected by the horizontal orange line in Figure 3.
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Figure 3: The performance of DIMKT under different prede-
fined difficulty levels.

5.6 Ablation Study
In this part, we further conduct the ablation study to show the
influence of each individual element in DIMKT. We totally choose
five variants of DIMKT, each of which removes one element from
the original DIMKT. The details of them are as follows:

• DIMKT w/o 𝐾𝐶 , which refers to DIMKT without considering the
𝐾𝐶 difficulty.

• DIMKT w/o 𝑄𝑆 , which refers to DIMKT without considering the
𝑄𝑆 difficulty.

• DIMKT w/o Difficulty, which refers to DIMKT without consider-
ing both the 𝐾𝐶 and 𝑄𝑆 difficulty.

• DIMKT w/o 𝑺𝑫𝑭 , which refers to DIMKT without students’ sub-
jective difficulty feelings module in ASNN.

• DIMKT w/o 𝑷𝑲𝑨, which refers to DIMKT without students’
personalized knowledge acquisition module in ASNN.
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Figure 4: The reuslts of ablation study.
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Figure 5: The relevant weights of seven different questions
on the dataset ASSIST2012. Here the weights are the Cosine
Similarities of the difficulty-enhanced question embedding
learned by DIMKT. The label [i, j, k] means that a question
has KC of i , question specific difficulty of j, and knowledge
concept difficulty of k. For better understanding, we have
normalized the range of difficulty value from 0 to 1, where a
larger value means a harder question.

• DIMKT w/o 𝑲𝑺𝑼 , which refers to DIMKT without knowledge
state updating module in ASNN.
We evaluate the above variant models on students’ future per-

formance prediction, and Figure 4 shows the experimental results,
where we can find some inspired conclusions. Firstly, removing the

subjective difficulty feeling in ASNN leads to the most significant
performance drop on both datasets. Moreover, the other compo-
nents (i.e., personalized knowledge acquisition and knowledge state
updating) in ASNN are also necessary for maintaining the perfor-
mance of DIMKT. These decreases are easy to understand, as these
three components correspond to the critical modeling of the ques-
tion difficulty effect on the three stages of the practice process.
Secondly, we note that the personalized knowledge acquisition
develops a more considerable impact on the dataset Eedi2020, i.e.,
it causes more performance declines in Eedi2020. The reason is
that Eedi has a much larger number of students, so their personal-
ized knowledge acquisition is more important for these students.
Thirdly, both the 𝑄𝑆 difficulty and the 𝐾𝐶 difficulty contribute to
the performance of DIMKT, while dropping the𝑄𝑆 difficulty brings
more declines as it is more capable of reflecting the question dif-
ficulty. Nevertheless, the 𝐾𝐶 difficulty is also essential auxiliary
information to enhance the robustness of DIMKT. If we drop both
of them, the performance of DIMKT will be worse.

5.7 Interpretability of the Difficulty-enhanced
Question Embedding

In this section, we conduct some experiments to show the inter-
pretability of the learned difficulty-enhanced question embedding
in DIMKT. Specifically, we randomly chose seven questions with
different KCs and difficulty levels on the dataset ASSIST2012. We
then visualize the relevant weights between these questions by
calculating their Cosine Similarities in Figure 5, from which we
can see that the learned question embeddings reflect reasonable
connections after adequate training. Figure 5 indicates that the
relevant weights tend to be higher between questions related to
the same concept or with closer difficulty levels. For example, the
fourth question with a (KC, 𝑄𝑆 difficulty, 𝐾𝐶 difficulty) tuple of
[166, 0.36, 0.44] and the fifth question of [166, 0.4, 0.44] are firmly
related, and they have almost the same relevant weights to other
questions, because they have the same KC (i.e., 166: Surface Area
Rectangular Prism ) and only slightly different in the 𝑄𝑆 difficulty.
Besides, although the third question of [98, 0.16, 0.2] and the last
question of [218, 0.16, 0.18] have totally different KCs , there is a
high weight between them as they have the same 𝑄𝑆 difficulty (i.e.,
0.16). It is worth noting that the sixth question of [209, 0.97, 0.5]
has significantly low relevant weights to all other questions, as its
difficulty level is evidently higher. More similar cases can be easily
found, such as the first question of [24, 0.0.27, 0.2] and the second
question of [24, 0.17, 0.2], the second question of [24, 0.0.17, 0.2]
and the third question of [98, 0.16, 0.2].

5.8 Visualization of Students’ Performance
Prediction Process

In Figure 6, we depict the performance prediction process of DIMKT
on two students in the dataset Eedi2020. From Figure 6, we can
see that DIMKT shows superior interpretability, i.e., it gives not
only accurate predictions but also the reason that why students
will succeed or not. For example, although student 𝑠1 got a wrong
answer on the questions with KC of 55: Transformations and 𝑄𝑆
difficulty of 0.56 and 0.43 at the beginning, DIMKT successfully
predicts that 𝑠1 can correctly answer the question with the same
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Figure 6: The learning sequences and performance predictions of two students on different KCs with various difficulty levels
on the dataset Eedi2020. We have normalized the range of the 𝑄𝑆 and 𝐾𝐶 difficulty from 0 to 1, where the larger value means a
harder difficulty.

KC of 55: Transformations and 𝑄𝑆 difficulty of 0.26 because the
latter question is easier. Besides, even 𝑠1 has got right answers on
questions with KC of 68: Density and 𝑄𝑆 difficulty of 0.14, 0.09,
and 0.13, DIMKT successfully predicts that 𝑠1 would not pass the
question with the same KC but harder 𝑄𝑆 difficulty of 0.73. Simi-
larly, for student 𝑠2, the predictions of DIMKT indicate the same
interpretability. However, we note that his/her performance on
questions with KC of 270: Fractions of an Amount fluctuated greatly,
and the DIMKT’s predictions were not consistent with the actual
answers many times. We guess there is a good chance of abnormal
learning behavior for 𝑠2, such as guessing and slipping. In gen-
eral, DIMKT’s predictions have well interpretability, which are in
line with our cognition, i.e., the lower the difficulty, the greater the
probability of correct answers.

6 CONCLUSIONS AND FUTUREWORKS
In this paper, we first analyzed the significant impacts of the ques-
tion difficulty effect on learning. Then, we presented a novel DIffi-
culty Matching Knowledge Tracing (DIMKT) model to measure the
question difficulty effect and improve KT performance by establish-
ing the relationship between student knowledge state and question
difficulty level. Specifically, we first directly utilized the question
specific difficulty and the knowledge concept difficulty to enhance
the question embedding. Then, we designed an Adaptive Sequen-
tial Neural Network (ASNN) to capture the connection between
knowledge state and question difficulty level in DNKT. Specifically,
by comparing the differences of the difficulty-enhanced question
embedding and the student’s knowledge state, ASNN first obtained
students’ subjective difficulty feelings before practice. Then, ASNN
used the subjective difficulty feeling and the answer to calculate the
student’s knowledge acquisition during practice. After the practice,
ASNN further developed a knowledge indicator to determine the
student’s updated knowledge state. Finally, we conducted exten-
sive experiments to validate the effectiveness of DIMKT, and the
results demonstrate that DIMKT achieved the new state-of-the-art
performance. Moreover, DIMKT predicted not only what students’

answers will be but also why they succeed or not, which is more in-
structive for promoting learning. In the future, we will try to utilize
the question difficulty in more scenarios. For example, considering
the question difficulty, we can infer students’ slipping and guessing
behaviors in learning.
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