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Abstract—Modern online education has the capacity to provide
intelligent educational services by automatically analyzing sub-
stantial amounts of student behavioral data. Knowledge tracing
(KT) is one of the fundamental tasks for student behavioral data
analysis, aiming to monitor students’ evolving knowledge state
during their problem-solving process. In recent years, a substantial
number of studies have concentrated on this rapidly growing field,
significantly contributing to its advancements. In this survey, we
will conduct a thorough investigation of these progressions. First,
we present three types of fundamental KT models with distinct
technical routes. Subsequently, we review extensive variants of the
fundamental KT models that consider more stringent learning as-
sumptions. Moreover, the development of KT cannot be separated
from its applications, so we present typical KT applications in
various scenarios. To facilitate the work of researchers and practi-
tioners in this field, we have developed two open-source algorithm
libraries: EduData that enables the downloading and preprocessing
of KT-related datasets, and EduKTM that provides an extensible
and unified implementation of existing mainstream KT models.
Finally, we discuss potential directions for future research in this
rapidly growing field. We hope that the current survey will assist
both researchers and practitioners in fostering the development of
KT, thereby benefiting a broader range of students.
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I. INTRODUCTION

W ITH the proliferation of the Internet and mobile com-
munication technology, online education has become

increasingly popular and is now developing at an unprecedented
scale [1], [2], [3]. This innovative style of learning provides a
degree of flexibility that conventional education cannot match,
which enables teaching and learning to occur at any time and
any place. Meanwhile, online learning systems (e.g., Cours-
era, ASSISTment) [4], [5], [6] have proven to be even more
effective than traditional learning styles, since they can offer
more intelligent educational services, such as recommending
individualized learning resources to students [7], [8]. To provide
these intelligent services, online learning systems continuously
record a massive amount of available data about student–system
interactions (e.g., responding to exercises), which can be further
mined to assess their knowledge levels, learning preferences,
and other attributes. Specifically, knowledge tracing (KT) [9] is
one of the most fundamental and critical tasks for analyzing
students’ learning behavior data, which aims to explore the
recorded student–system interactions to monitor their evolving
knowledge states [10], [11].

Fig. 1 presents a simple schematic diagram of KT. Dur-
ing the learning process, online learning systems continuously
record students’ learning behavioral data, including exercises
and their related knowledge concepts (e.g., equality, inequality,
plane vector, and probability, represented in various colors),
and students’ answers (i.e., correct or incorrect responses). A
substantial amount of supplementary information is also simul-
taneously recorded, including response time, opportunity count,
and tutor intervention, which provides a more comprehensive
reflection of students’ learning process. Based on the collected
learning data, researchers are striving to maintain an estimate
of students’ evolving knowledge states. For illustration, we
give a case in Fig. 1, where the student’s prior knowledge is
quantified as 0.2, 0.4, 0.4, and 0.5 across four distinct knowledge
concepts. The radar map serves as a visual representation of the
student’s knowledge mastery, which progressively expands as
the student continues to acquire new knowledge in learning.
After a period of learning, the student’s knowledge states reach
0.9, 0.8, 0.8, and 0.7, respectively, suggesting good knowledge
growth. In the aforementioned learning process, KT models
aim to monitor changes in students’ knowledge states. Once we
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Fig. 1. Simple schematic diagram of KT. Different knowledge concepts are represented in different colors, while exercises are also depicted in the color relevant
to the knowledge concepts. During the learning process, different kinds of side information are also recorded. The evolving process of the knowledge state is
assessed by KT models and illustrated by the radar maps.

Fig. 2. Overview of KT models.

understand students’ knowledge states, the learning system can
customize more suitable learning schemes for different students,
thereby enabling the teaching of students in accordance with
their proficiency. It also allows students to better comprehend
their learning process and gradually focus on improving their
skills with poorly mastered concepts [12], [13].

KT has been studied for decades, with the first studies tracing
back to the late 1970s. These initial works primarily focused
on confirming the effectiveness of mastery learning [14]. To the
best of the authors’ knowledge, Corbett and Anderson [9] were
the first to introduce the concept of KT, employing Bayesian
networks to model the student learning process, which they
referred to as Bayesian knowledge tracing (BKT). Since then,
the significance of KT has been recognized by a broader spec-
trum of researchers, and increasing attention has been directed
toward KT-related research. Many logistic models have been
applied to KT, including learning factor analysis (LFA) [15]
and performance factor analysis (PFA) [16]. In recent years,
deep learning has greatly enhanced research into the KT task,
largely due to its capacity to extract and represent features
and discover intricate structure. For instance, deep knowledge
tracing (DKT) introduced recurrent neural networks (RNNs)
[17] into the KT task and was found to significantly outperform
previous methods [18]. Following this, various methods have
been introduced that employ various types of neural networks to
the KT task, considering various characteristics of the learning
sequence [19], [20], [21]. Moreover, due to the requirements

of practical applications, many variants of KT models have
been continuously developed, and KT has already been broadly
applied in numerous educational scenarios.

While novel KT models continue to emerge, there remains a
lack of comprehensive surveys exploring this young research
field, particularly regarding its numerous variants and appli-
cations. To this end, the current survey aims to systematically
review the development of KT. As depicted in Fig. 2, we initially
categorize existing KT models from a technical perspective,
which is consistent with the majority of existing surveys [22],
[23]. This categorization splits them into the following three
categories:

1) Bayesian models;
2) logistic models;
3) deep learning models.
In each category, we further organize specific KT methods

according to their various techniques. Subsequently, we intro-
duce extensive variants of these fundamental KT models, which
consider more stringent assumptions about more complete learn-
ing process in different learning phases. In addition, we present
several typical applications of KT in real-learning scenarios.
Due to the complexity of different KT models, we have open
sourced two algorithm libraries to better aid researchers and
practitioners in implementing KT models and facilitate commu-
nity development in this domain. These libraries, EduData1 and

1[Online]. Available: https://github.com/bigdata-ustc/EduData
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EduKTM,2 include most existing KT-related datasets, extensible
and unified implementations of existing KT models, and relevant
resources. Finally, we discuss potential future research direc-
tions. In summary, this article presents an extensive survey of
KT that can serve as a comprehensive guide for both researchers
and practitioners.

The rest of this article is organized as follows. Section II
presents an overview of the KT task and we discuss the differ-
ences between this and previous surveys. Section III provides
a review of the three categories of fundamental KT models.
Section IV describes the variants of fundamental KT models.
Section V introduces the extensive applications of KT in differ-
ent scenarios. Section VI gives the summary of existing datasets
for evaluating KT models and details of the algorithm libraries
we have released. Section VII discusses some potential future
research directions. Finally, Section VIII concludes this article.

II. OVERVIEW

A. Problem Definition

In an online learning system, suppose that there exists a
set of students S and a set of exercises E. Each exercise is
related to specific knowledge concepts (KCs). Generally, the
name given to the knowledge related to exercises differs across
online learning platforms. For instance, it is named skill in
ASSISTments [24]. To promote better understanding, we
refer to these uniformly as knowledge concepts throughout this
article, and denote the set of all KCs asKC. Moreover,M andK
are, respectively, used to represent the total number of exercises
and KCs. Students are asked to answer different exercises in
order to achieve mastery of the related knowledge. Therefore,
the learning sequence of a student can be formulated as X =
{([e1, ke1 ], a1, r1), ([e2, ke2 ], a2, r2), . . ., ([et, ket ], at, rt), . . .,
([eN , keN ], aN , rN )}, where the tuple ([et, ket ], at, rt)
represents the learning interaction at the tth time step, et
represents the exercise, ket represents the exercise’s related
KCs, at represents the correctness label (i.e., with 1 for correct
and 0 for incorrect answers), rt stands for the side information
recorded in this learning interaction, and N is the length of the
learning sequence. The research problem of KT can thus be
defined as follows.

Given sequences of learning interactions in online learning
systems, KT aims to monitor students’ evolving knowledge states
during the learning process and predict their performance on
future exercises. The measured knowledge states can be further
applied to individualize students’ learning schemes in order to
maximize their learning efficiency.

Some recent works directly regarded the KT task as student
performance prediction, without considering students’ knowl-
edge states [25], [26], [27]. We agree that predicting student
performance is of great significance, as it is now the best way
to evaluate the quality of the knowledge state traced by KT
models. However, we have to point out that KT focuses more on
students’ knowledge states, especially their interpretability and

2[Online]. Available: https://github.com/bigdata-ustc/EduKTM

rationality, which is related to the students’ acceptance of the
given conclusions based on the KT model [28], [29].

B. Categorization

As shown in Fig. 2, we categorize and summarize the existing
KT models according to their technical differences. In more
detail, the proposed taxonomy splits existing KT methods into
the following three categories:

1) Bayesian models, which are implemented through proba-
bility model;

2) logistic models, which are implemented through logistic
functions;

3) deep learning models, which are implemented through
neural networks.

Specifically, we divide the deep learning models into four
subcategories according to four various neural networks, i.e.,
DKT based on RNNs, memory-aware KT based on memory net-
works, attentive KT (AKT) based on self-attention mechanism,
and graph-based KT (GKT) based on graph neural networks.
In addition to these fundamental KT models, we also introduce
a large number of their variants, which, respectively, consider
a complete learning process in distinct learning phases, as
follows:

1) modeling individualization before learning;
2) incorporating engagement during learning;
3) considering forgetting after learning;
4) utilizing side information across learning.
Moreover, we also summarize the extensive applications of

KT in different educational scenarios, including learning re-
sources recommendation, adaptive learning, and broader appli-
cations beyond student learning.

C. Differences Between This and Previous Surveys

Given the increasing importance of KT, several recent surveys
have also examined this area. These include works by the authors
in [22], [23], [30], [31], [32], and [33]. Here, we will briefly
discuss the key distinctions between these studies to highlight
the necessity and significance of this survey.

Existing surveys have either focused on specific categories
of KT models or comprehensively reviewed all available KT
models. For example, Pelánek [30] provided an overview of KT
in terms of Bayesian models and logistic models, Song et al.
[31] compared and discussed deep learning-based KT models,
while Zanellati et al. [33] presented to pay more attention to
hybrid models in KT. Liu [32] conducted a bibliometric analysis
to examine the evolution of KT research from 1992 to 2021.
Abdelrahman et al. [23] also presented a comprehensive survey
for the KT literature, including a broad range of methods starting
from the early attempts to the recent state-of-the-art techniques
utilizing deep learning. Schmucker et al. [22] summarized KT
methods in the context of student performance modeling prob-
lems.

However, current surveys are somewhat limited in their scope,
they only provide a detailed introduction to various KT methods
and comparisons between them. Given the complexity of online
learning systems and the significant importance of KT research
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TABLE I
SUMMARY OF DIFFERENT TYPES OF FUNDAMENTAL KT MODELS

in practical applications, this survey places a greater emphasis on
the variants and applications of KT models, rather than solely
introducing and comparing different KT methods. Moreover,
considering that datasets are collected from different systems
with various setting, subjects, learning stages, and scales, we
do not report and compare the performance of KT models on
the student performance prediction task across various datasets
in this survey. Pavlik et al. [34] also empirically verified that
no single KT model was always the best, a specific better
model must consider multiple student features and the learning
context. Instead, we have open sourced two algorithm libraries,
which include the majority of existing KT-related datasets and
unified implementations of existing KT models. Consequently,
researchers and practitioners can freely select appropriate KT
models based on their specific requirements in various applica-
tion scenarios.

III. FUNDAMENTAL KT MODELS

In this section, as given in Table I, we will present the
fundamental KT models, based on our taxonomic framework.
Specifically, we will introduce these models in accordance with
their development timeline. Subsequently, we will provide a
summary of these fundamental KT models.

A. Bayesian Models

Bayesian models assume that the learning process adheres
to a Markov process. This process allows for the estimation
of students’ latent knowledge states based on their observed
performance. In the subsequent section, we will present two
Bayesian models in our taxonomy framework: the BKT and the
dynamic BKT (DBKT).

1) Bayesian KT: BKT’s structure is illustrated in Fig. 3; here,
the unshaded nodes represent unobservable latent knowledge
states, while the shaded nodes represent the observable answers
of the student.

BKT is a unique instance of the hidden Markov model
(HMM). There are two types of parameters in HMM: transition
probabilities and emission probabilities. In BKT, the transition
probabilities are defined by two learning parameters: 1) P (T ),
the probability of transition from the unlearned state to the
learned state and 2) P (F ), the probability of forgetting previ-
ously mastered knowledge. Moreover, the emission probabilities

Fig. 3. Topology of BKT [9]. K are the unobserved knowledge nodes, A
are the observed performance (answer) nodes, P (L0) represents the initial
probability,P (T ) is the transition probability,P (G) is the guessing probability,
and P (S) is the slipping probability.

are determined by two performance parameters: 1) P (G)—the
probability that a student will guess correctly, despite nonmas-
tery and 2) P (S)—the probability that a student will make
a mistake, despite mastery. in addition, P (L0) represents the
initial probability of mastery. BKT operates within a two-state
student modeling framework: knowledge is either learned or un-
learned, and there is no forgetting once a student has mastered the
knowledge. Based on the observations of the student’s learning
interactions, the following equation is utilized to estimate the
knowledge state and the probability of correct answers:

P (Ln) = P (Ln|Answer) + (1− P (Ln|Answer))P (T )

P (Cn+1) = P (Ln)(1− P (S)) + (1− P (Ln))P (G) (1)

where P (Ln) is the probability that a KC is mastered at the nth
learning interaction, and P (Cn+1) is the probability of correct
answers at the next learning interaction.P (Ln) is the sum of two
probabilities: 1) the probability that the KC is already mastered
and 2) the probability that the knowledge state will convert to
the mastered state. The posterior probability P (Ln|Answer) is
estimated as follows:

P (Ln|correct)

=
P (Ln−1)(1− P (S))

P (Ln−1)(1− P (S)) + (1− P (Ln−1))P (G)

P (Ln|incorrect)

=
P (Ln−1)P (S)

P (Ln−1)P (S) + (1− P (Ln−1)) (1− P (G))
. (2)

2) Dynamic BKT: BKT independently models the param-
eters of each KC, employing a specific model for each KC.
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However, KCs are not completely independent, but rather hier-
archical and closely related [38]. Dynamic Bayesian networks
are capable of jointly representing multiple skills within a
single model, potentially enhancing the representational power
of BKT. Consequently, Käser et al. [35] proposed DBKT to
represent the hierarchies and relationships within KCs using
dynamic Bayesian networks. This approach considers different
KCs jointly within a single model.

In DBKT, a student’s knowledge mastery is represented by
binary latent variables, which are estimated based on their
learning interactions. Unlike BKT, DBKT takes into account
the dependencies between various KCs. For example, if KC1

and KC2 are prerequisites for mastering KC3, students’ mastery
of KC3 depends on their mastery of KC1 and KC2. LetH denote
the unobserved variables, i.e., lack of student answers and binary
mastery variables. Assuming that the student correctly answers
an exercise associated with KC1 at time step t1, i.e., a1,1 = 1.
The observed variables are, then, am = a1,1, and the unobserved
variables are hm = {KC1,1,KC2,1,KC3,1, a2,1, a3,1}. The ob-
jective of DBKT is to find the parameters θ that maximize the
joint probability p(am, hm|θ). The log-likelihood can alterna-
tively be formulated using a log-linear model, as follows:

L(w) =
∑
m

ln

(∑
hm

exp
(
wTΦ(am, hm)− ln(Z)

))
(3)

where Φ : A×H → R
F denotes a mapping from the observed

space A and the latent space H to an F -dimensional feature
vector. Z is a normalizing constant and w denotes the weights.

B. Logistic Models

Logistic models represent the probability of students correctly
answering exercises as a logistic function of the student and KC
parameters. They first use different factors in students’ learning
interactions to compute an estimation of the student and KC
parameters, then utilize a logistic function to transform this
estimation into the prediction of the probability of mastery [30].
In the subsequent section, we will introduce the following three
types of logistic models:

1) LFA;
2) PFA;
3) Knowledge tracing machines (KTM).
1) Learning Factor Analysis: The LFA model [15] considers

the following learning factors.
1) Initial knowledge state: Parameter α estimates the initial

knowledge state of each student.
2) Easiness of KCs: Parameter β captures the easiness of

different KCs.
3) Learning rate of KCs: Parameter γ denotes the learning

rate of KCs.
The standard LFA model takes the following form:

p(θ) = σ

⎛⎝∑
i∈N

αiSi +
∑

j∈KCs

(βj + γjTj)Kj

⎞⎠ (4)

whereσ is the sigmoid function,Si is the covariate for the student
i, Tj represents the covariate for the number of interactions on

Fig. 4. Example of activation of a KTM [36]. V refers to the matrix of
embeddings, w refers to the vector of biases, x is the encoding vector of the
learning interaction.

KC j, Kj is the covariate for KC j, and p(θ) is the estimation
of the probability of a correct answer.

2) Performance Factor Analysis: The PFA model [16] can be
seen as an extension of the LFA model that is especially sensitive
to the student performance. In contrast to the LFA model, PFA
considers the following different factors.

1) Previous failures: Parameter f is the prior failures for the
KC of the student.

2) Previous successes: Parameter s represents the prior suc-
cesses for the KC of the student.

3) Easiness of KCs: Parameter β means the easiness of
different KCs, which is the same as in the LFA model.

The standard PFA model takes the following form:

p(θ) = σ

⎛⎝ ∑
j∈KCs

(βj + μjsij + νjfij)

⎞⎠ (5)

where μ and ν are the coefficients for s and f , which denote the
learning rates for successes and failures, respectively.

3) KT Machines: The KTM model, developed by Vie and
Kashima [36], employs factorization machines (FMs) [39], [40]
to generalize logistic models to higher dimensions. FMs were
initially introduced as a general predictor capable of working
with any real-valued feature vector, enabling the model to rep-
resent all interactions between variables using factorized param-
eters [41]. FMs provide a means of encoding side information
about exercises or students into the model. Fig. 4 illustrates the
example of KTM, which models the knowledge mastery of the
student based on a sparse set of weights for all features involved
in the event. Let L be the number of features; here, the features
can be related to students, exercises, KCs, or any other side
information. The learning interaction is encoded by a sparse
vector l of lengthL. When feature i is involved in the interaction,
li > 0, the probability p(θ) of the correct answer is determined
by the following equation:

p(θ) = σ

⎛⎝μ+

L∑
i=1

wili +
∑

1≤i<j≤L

lilj 〈vi,vj〉
⎞⎠ (6)

where μ is the global bias, and the feature i is modeled by the
bias wi ∈ R and the embedding vi ∈ Rd (d is the dimension).
Note that only features with li > 0 will have impacts on the
predictions.
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Fig. 5. Architecture of DKT [18].

C. Deep Learning Models

The cognitive process can be influenced by various factors at
both the macro and microlevels. It is difficult for Bayesian mod-
els or logistic models to adequately capture a cognitive process
of high complexity [18]. Deep learning, with its potent ability
to achieve nonlinearity and feature extraction, is well suited
for modeling complex learning processes, particularly when a
significant amount of learning interaction data is available [42].
In recent years, numerous research works have been proposed
on deep learning KT models, we will introduce deep learning
models from the following four subcategories:

1) DKT;
2) Memory-aware KT;
3) AKT;
4) GKT.
1) Deep KT: DKT is the pioneering approach that introduces

deep learning to complete the KT task. DKT employs RNNs [17]
to process the input sequence of learning interactions over time,
maintaining a hidden state that implicitly contains information
about the history of all past elements of the sequence. This
hidden state evolves based on both the previous knowledge state
and the present input learning interaction [18]. DKT provides a
high-dimensional and continuous representation of the knowl-
edge state, enabling it to more effectively model the complex
learning process. Typically, RNNs’ variants, the long short-term
memory (LSTM) networks [43], are more frequently used in
the implementation of DKT, which is further strengthened by
considering forgetting.

Fig. 5 illustrates the process of DKT. In DKT, exer-
cises are represented by their contained KCs. For datasets
with different numbers of KCs, DKT applies two differ-
ent methods to convert students’ learning interactions X =
{(e1, a1), (e2, a2), . . ., (et, at), . . ., (eN , aN )} into a sequence
of fixed-length input vectors. More specifically, for datasets
with a small number K of unique KCs, xt ∈ {0, 1}2K is set
as a one-hot embedding, where xk

t = 1 if the answer at of the
exercise with KC k was correct or xk+K

t = 1 if the answer
was incorrect. For datasets with a large number of unique KCs,
one-hot embedding is considered too sparse. Therefore, DKT
assigns each input vector xt to a corresponding random vector,
and then uses the embedded learning sequence as the input of
RNNs. A linear mapping and activation function is then applied
to the output hidden states to obtain the knowledge state of

Fig. 6. Architecture of dynamic key.value memory network (DKVMN) [37].

students

ht = tanh (W hsxt +W hhht−1 + bh)

yt = σ (W yhht + by) (7)

where tanh is the activation function, W hs is the input weights,
W hh is the recurrent weights, W yh is the readout weights, and
bh and by are the bias terms.

Despite demonstrating superior performance compared with
Bayesian and logistic models, DKT has several inherent short-
comings. For instance, the lack of interpretability is a significant
drawback. It is challenging to understand how the hidden states
represent students’ knowledge states, and the model cannot
explicitly determine a student’s knowledge mastery from the
hidden state [42]. In addition, Yeung and Yeung [44] identified
two unreasonable phenomena in DKT that contravene common
sense. These are: 1) the inability to reconstruct observed input
and 2) inconsistent predicted knowledge states across time steps.
However, despite these shortcomings, DKT remains a promising
KT model [45].

2) Memory-Aware KT: To enhance the interpretability of
DKT, memory-aware KT introduces an external memory mod-
ule, as proposed by Graves et al. [46]. This module is designed
to store and update the corresponding knowledge mastery of the
student. The most representative example is dynamic key–value
memory networks (DKVMNs) for KT, as proposed by Zhang
et al. [37]. DKVMN highlights students’ specific knowledge
states on various knowledge categories. It initializes a static
matrix, referred to as a key matrix to store latent KCs and a
dynamic matrix, called a value matrix to store and update the
mastery of corresponding KCs through read and write operations
over time.

As shown in Fig. 6, an embedding matrix is first defined to
obtain the embedding vector kt of the exercises. A correlation
weight wt is then obtained by taking the inner product between
the exercise embedding kt and the key vectors Mk, followed by
the Softmax activation:

wt = Softmax
(
ktM

k
)

(8)
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where the correlation weight wt represents the correlation be-
tween the exercises and all latent KCs.

In the read operation, DKVMN predicts student perfor-
mance based on the student’s knowledge mastery. Specifically,
DKVMN reads students’ mastery of the exercise rt with ref-
erence to the weighted sum of all memory vectors in the value
matrix using the correlation weight. The read content and the
input exercise embeddings are then concatenated together and
passed to a fully connected layer to yield a summary vector f t,
which contains both the student’s knowledge mastery and the
prior difficulty of the exercise. Furthermore, the student’s per-
formance can be predicted by applying another fully connected
layer with a sigmoid activation function to the summary vector

rt =

N∑
i=1

wt(i)M
v
t (i)

f t = tanh (W f [rt, kt] + bf )

pt = σ (W pf t + bp) (9)

where W f and W p are the weights, and bf and bp are bias
terms.

In the write operation, after an exercise has been answered,
DKVMN updates students’ knowledge mastery (i.e., the value
matrix) based on their performance. Specifically, the learning
interaction (et, at) is first embedded with an embedding matrix
B to obtain the student’s knowledge growth vt. Then, DKVMN
calculates an erase vector eraset from vt and decides to erase
the previous memory with reference to both the erase vector and
the correlation weight wt. Following erasure, the new memory
vectors are updated by the new knowledge state and the add
vectoraddt, which forms an erase-followed-by-add mechanism
that allows forgetting and strengthening knowledge mastery in
the learning process:

eraset = σ (W evt + be)

M̃v
t (i) = Mv

t−1(i) [1− wt(i)eraset]

addt = tanh (W dvt + bd)

Mv
t (i) = M̃v

t (i) + wt(i)addt (10)

where W e and W d are the weights, and be and bd are bias
terms.

Abdelrahman and Wang [47] pointed out that
DKVMN failed to capture long-term dependencies in the
learning process. Therefore, they propose a sequential
KVMN (SKVMN) to combine the strengths of DKT’s
recurrent modeling capacity and DKVMN’s memory capacity.
In SKVMN, a modified LSTM called Hop-LSTM is used to hop
across LSTM cells according to the relevance of the latent KCs,
which directly captures the long-term dependencies. During
the writing process, SKVMN allows for the calculation of the
knowledge growth of a new exercise, taking into consideration
the current knowledge state, thereby yielding more reasonable
results.

3) Attentive KT: In the development of deep learning, the
Transformer is initially proposed for neural machine transla-
tion [25], which abandons recurrence and solely relies on the
self-attention mechanism to capture global dependencies within

a sequence. The Transformer has been demonstrated to excel in
feature extraction and dependency capture, while maintaining
high computational efficiency. Some representative pretraining
models based on the Transformer, such as BERT [48] and
GPT [49], have obtained state-of-the-art results on various natu-
ral language processing tasks. Pandey and Karypis [20] proposed
a self-attentive model for KT (SAKT), which directly apply
the Transformer to capture long-term dependencies between
students’ learning interactions. Furthermore, Wang et al. [50]
introduced an adaptive sparse self-attention network to gener-
ate missing features and simultaneously produce fine-grained
predictions of student performance. Zhu et al. [51] employed a
multihead ProbSparse self-attention mechanism to mitigate the
time complexity and effectively capture the long-term depen-
dencies in students’ learning interactions.

However, the complexity of the KT task often limits the
performance of the aforementioned simple Transformer appli-
cations. Choi et al. [26] introduced a novel approach named
separated self-attentive neural KT (SAINT) to enhance self-
attentive computation for KT adaptability. Specifically, SAINT
employs an encoder–decoder structure, with the exercise and
answer embeddings being separately encoded and decoded by
self-attention layers. The separation of the input allows SAINT
to stack self-attention layers multiple times, thus capturing
complex relations in student interactions. Subsequently, Shin
et al. [27] introduced the SAINT+ model, which integrates two
temporal features into SAINT: namely, the time taken to answer
each exercise and the interval time between consecutive learning
interactions. Both SAINT and SAINT+ have outperformed the
SAKT model on the student performance prediction task.

In addition, Ghosh et al. [21] observed that SAKT does
not surpass DKT and DKVMN in their experiments. Unlike
SAINT and SAINT+, they present a context-aware AKT model.
This model integrates the self-attention mechanism with psy-
chometric models, creating a more effective system. AKT is
composed of four modules: Rasch model-based embeddings,
exercise encoder, knowledge encoder, and knowledge retriever.
Specifically, the embedding module employs the classic Rasch
model in psychometrics [52] to construct embeddings for exer-
cises and KCs

xt = cct + μet · dct (11)

where cct ∈ R
D is the embedding of the KC of this exercise,

dct ∈ R
D is a vector that summarizes the variation in exercises

with the related KC, and μet ∈ R
D is a scalar difficulty param-

eter that controls the extent to which this exercise deviates from
the related KC. The exercise–answer tuple (et, at) is similarly
extended using the scalar difficulty parameter for each pair

yt = q(ct,at) + μet · f (ct,at) (12)

where q(ct,at) ∈ R
D is the KC-answer embedding, and

f (ct,at) ∈ R
D is the variation vector. Through the above em-

bedding, exercises labeled as the same KCs are determined to
be closely related while retaining important individual charac-
teristics. Then, in the exercise encoder, the input is the exercise
embeddings {e1, ..., et} and the output is a sequence of context-
aware exercise embeddings {ẽ1, ..., ẽt}. AKT designs a mono-
tonic attention mechanism to accomplish the above process,
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where the context-aware embedding of each exercise depends on
both itself and the previous exercises, i.e., ẽt = fenc1(e1, ..., et).
Similarly, the knowledge encoder takes exercise–answer embed-
dings {y1, ...,yt} as input and outputs a sequence of context-
aware embeddings of the knowledge acquisitions {ỹ1, ..., ỹt}
using the same monotonic attention mechanism; these are also
determined by students’ answers to both the current exercise and
prior exercises, i.e., ỹt = fenc1(y1, ...,yt). Finally, the knowl-
edge retriever takes the context-aware exercise embedding ẽ1:t
and exercise–answer pair embeddings ỹ1:t as input and outputs
a retrieved knowledge state ht for the current exercise. Since
the student’s current knowledge state depends on answering the
related exercise, it is also context-aware in AKT. The novel
monotonic attention mechanism proposed in AKT is based
on the assumption that the learning process is temporal and
students’ knowledge will decay over time. Therefore, the scaled
inner product attention mechanism utilized in the original Trans-
former is not suitable for the KT task. AKT uses exponential
decay and a context-aware relative distance measure to com-
pute the attention weights. Finally, AKT achieves outstanding
performance in predicting students’ future answers, as well as
demonstrating interpretability due to the combination of the
psychometric model.

It is important to note that Pu and Becker [53] have recently
proposed that AKT models significantly benefit from students’
continuous, repeated interactions on the same exercises through-
out the learning process. In their experiments, the removal of
these repeated interactions in the dataset led to a decline in
AKT’s performance, bringing it close to that of DKVMN. More-
over, according to the findings of Yin et al. [54], existing AKT
models primarily trace patterns of a learner’s learning activities,
rather than their evolving knowledge states. Consequently, they
developed the Transformer model to facilitate stable knowledge
state estimation and tracing, rather than solely focusing on next
performance prediction.

4) Graph-based KT: Graph neural networks, which are de-
signed to handle complex graph-related data, have developed
rapidly in recent years [55]. The graph represents a kind of
data structure that models a set of objects (nodes) and their
relationships (edges). From a data structure perspective, there
is a naturally existing graph structure within the KCs. There-
fore, incorporating the graph structure of the KCs as additional
information should be beneficial to the KT task. Nakagawa
et al. [19] presented GKT, which conceptualizes the potential
graph structure of the KCs as a graph G = (V,E), where nodes
V = {v1, v2, . . ., vN} represent the set of KCs and the edges
E ⊆ V × V represent relationships of these KCs; moreover,
ht = {ht

i∈V } represents the student’s temporal knowledge state
after answering the exercise at time t. The architecture for GKT
is presented in Fig. 7, which is composed of the following three
parts:

1) aggregate;
2) update;
3) predict.
In the aggregate module, GKT aggregates the temporal knowl-

edge state and the embedding for the answered KC i and its

Fig. 7. Architecture of GKT [19].

neighboring KC j

h
′t
k =

{
[ht

k, a
tEs] , (k = i)

[ht
k,Ee(k)] , (k 	= i)

(13)

where at represents the exercises answered correctly or incor-
rectly at time step t, Es is the embedding matrix for the learning
interactions, Ee is the embedding matrix for the KC, and k
represents the kth row of Ee.

In the update module, GKT updates the temporal knowledge
state based on the aggregated features and the knowledge graph
structure, as follows:

mt+1
k =

{
fself

(
h

′t
k

)
(k = i)

fneighbor
(
h

′t
i ,h

′t
k

)
(k 	= i)

m̃t+1
k = Gea

(
mt+1

k

)
ht+1
k = Ggru

(
m̃t+1

k ,ht
k

)
(14)

where fself is the multilayer perceptron, Gea is the same erase-
followed-by-add mechanism used in DKVMN, and Ggru is the
gated recurrent unit (GRU) gate [56]. Moreover, fneighbor defines
the information propagation to neighboring nodes based on the
knowledge graph structure.

In the predict module, GKT predicts the student’s perfor-
mance at the next time step according to the updated temporal
knowledge state

ytk = σ(W kh
t+1
k + bk) (15)

where W k is the weight parameter and bk is the bias term.
In addition to modeling the graph structure in KCs by graph

neural networks, Lu et al. [57] proposed to model the educational
relation and topology in the concept map, which will be intended
to act as mathematical constraints for the construction of the KT
model. Recently, in the attempt to further explore knowledge
structure, Tong et al. [58] proposed structure-based knowledge
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tracing (SKT), which aims to capture the multiple relations in
knowledge structure to model the influence propagation among
concepts. SKT is mainly motivated by an education theory,
transfer of knowledge [59], which claims that students’ knowl-
edge states on some relevant KCs will also be changed when they
are practicing on a specific KC due to the potential knowledge
structure among KCs. Therefore, a student’s knowledge state
is determined by not only the temporal effect from the exer-
cise sequence, but also the spatial effect from the knowledge
structure. To concurrently model the latent spatial effects, SKT
presents the synchronization and partial propagation methods to
characterize the undirected and directed relations between KCs,
respectively. In this way, SKT measures influence propagation in
the knowledge structure with both temporal and spatial relations.
To get rid of dependence on knowledge structure, Long et al.
[60] proposed the automatical GKT, which utilizes the automat-
ical graph to measure students’ knowledge states automatically
without annotation manual annotations.

D. Summarization

It is crucial to emphasize that, despite deep learning mod-
els exhibiting superior performance compared with Bayesian
models and logistic models, there remains a significant room
for improvement in their interpretability and explainability. Due
to the end-to-end learning strategy, deep learning models are
notoriously difficult to interpret. The modeling process itself is
also challenging to explain. Specifically, deep learning models
are predominantly data driven and benefit a lot from large-
scale student learning data. It is challenging to understand how
they calculate a student’s knowledge state with no theoretical
guidance [33]. All we have are the results generated by these
models. Therefore, any errors made by these models will lead
students to doubt their reliability. The lack of explainability and
interpretability has, thus, limited their further applicability.

To make the complex KT models interpretable, especially
those deep learning models, researchers have attempted various
methods. Lu et al. [61] presented a posthoc approach to reveal
the interpretability of DKT. Specifically, they employed the lay-
erwise relevance propagation technique [62] to interpret DKT by
measuring the relevance between DKT’s output and input. Pre-
liminary experimental results suggest that this posthoc approach
could be a promising method for explaining DKT. Besides,
explainable AI (xAI) is proposed to make the black-box deep
learning models more transparent, thereby promoting its appli-
cations [63]. Lu et al. [64] proposed to use the xAI technique to
interpret the complex KT models based on deep learning. The
interpreting results of DKT have been demonstrated to aid in
enhancing the trust of students and teachers. Their findings sug-
gested that it is promising to utilize xAI techniques to interpret
the deep learning KT models, thereby assisting users in accept-
ing and applying the suggestions provided by these models.

IV. VARIANTS OF KT MODELS

The aforementioned fundamental KT models are typically
based on simplistic assumptions regarding the learning pro-
cess. Specifically, these models predominantly employ learning

interactions, such as exercises and responses to estimate stu-
dents’ knowledge states. However, the learning process is not
solely represented by exercises and responses, but is influenced
by various factors. In summary, the aforementioned funda-
mental KT models, while straightforward, may have reduced
performance in real-world learning scenarios. Consequently,
numerous variants have been proposed under more stringent
assumptions, reflecting a more comprehensive learning process
in real-world scenarios. Accordingly, we classify and review
current variants of fundamental KT models into the following
four categories:

1) modeling individualization before learning;
2) incorporating engagement during learning;
3) considering forgetting after learning;
4) utilizing side information across learning.

A. Modeling Individualization Before Learning

Everything and everyone possess unique characteristics. For
instance, Liu et al. [65] explored several personalized factors
of various tourists to recommend personalized travel packages.
Similarly, the concept of individualization in the KT task implies
that different students often exhibit different learning charac-
teristics (such as varying learning rates or prior knowledge).
Considering the student-specific variability in learning could
potentially enhance the KT process, as suggested by Yudelson
et al. [66]. In the subsequent sections, we will introduce vari-
ous variant KT models that take into account individualization
before learning.

The initial BKT paper has delved into the concept of individu-
alization. Specifically, it uses all students’ learning interactions
on a specific KC to learn the individual parameter. Similarly,
for a specific student, all his or her learning interactions are
utilized to fit his or her individual learning parameters [9].
Consequently, BKT is able to ascertain different learning and
performance parameters for various students and KCs. However,
this approach only offers a marginal improvement compared
with original BKT.

Subsequently, Pardos and Heffernan [67] proposed two sim-
ple variants of BKT that, respectively, individualize students’
initial probability of mastery and the probability of transition
from the unlearned state to the learned state. Specifically, a
student node is added to individualize the initial probability of
mastery for each student. The student node assigns each student
with a personalized initial probability of mastery. A conditional
probability table is designed to determine the value of the student
node. Similarly, if changing the connection of the student node
to the subsequent knowledge nodes, the transition probability
parameter can also be individualized. In this case, the student
node gives individualized transition parameters to each student.
Moreover, rather than individualizing only one kind of parameter
in BKT, some other variants of BKT opt to individualize all four
BKT parameters simultaneously [66]. Lee and Brunskill [68]
suggested that when applied in an intelligent tutoring system,
the individualized BKT model can yield good improvements to
student learning efficacy, reducing by about half the amount of
questions required for 20% of students to achieve mastery.
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Another means of modeling individualization is cluster-
ing, which considers a wider range of students in different
groups [69]. By clustering the students into various groups, we
can train different KT models and make predictions on the test
data. The number of clusters is, then, varied according to the
student groups, and the predicting process is repeated iteratively.
Finally, we can obtain a set of different predictions. Further-
more, there are two common methods used to combine these
predictions [70]. 1) Uniform averaging, which simply averages
the predictions and 2) weighted averaging, which combines the
models by means of a weighted average. To realize clustering,
K-means is a basic clustering algorithm that randomly initializes
a set of cluster centroids, which are identified using Euclidean
distance. An another popular clustering algorithm is spectral
clustering, which represents the data as an undirected graph and
analyzes the spectrum of the graph Laplacian obtained from
the pairwise similarities of data points. Recently, some novel
clustering algorithms have been proposed, including discrete
nonnegative spectral clustering [71] and clustering uncertain
data [72].

Minn et al. [73] proposed a model named DKT with dynamic
student classification (DKT-DSC), which introduces individual-
ization to DKT by exploiting the idea of clustering. According
to students’ previous performance, DKT-DSC assigns students
with a similar learning ability to the same group. The knowledge
states of students in different groups are, then, traced by different
DKT models. Moreover, considering the dynamic property of
the learning ability, each student’s learning sequence is seg-
mented into multiple time intervals. At the start of each time
interval, DKT-DSC will reassess students’ learning ability and
reassign their groups. In DKT-DSC, the K-means clustering
algorithm is utilized to split students with similar ability levels
into the same group at each time interval. After learning the
centroids of all K clusters, each student is assigned to the nearest
cluster. Through dynamic student clustering, DKT-DSC offers
an effective approach to realizing individualization in DKT.

Mao et al. [74] claimed that it is significant to consider
both individual exercise representation and individual prior
knowledge. They proposed a fine-grained knowledge tracing
model, named FGKT. FGKT obtains the individual exercise
representation through the acquisition of knowledge cells and
exercise distinctions. Subsequently, it assesses the individual
prior knowledge by evaluating the relevance between current
and historical learning interactions. Finally, the above individual
representations will be utilized as the input of LSTM in FGKT
to evaluate students’ evolving knowledge states. Zhao et al. [75]
also noticed that the individualization of exercises is significant
for measuring students’ knowledge states. They proposed to
consider multiple exercise factors, including the difficulty and
the discrimination, to enhance the performance of DKT.

Shen et al. [76] proposed a convolutional knowledge tracing
(CKT) model to implicitly measure student individualization.
Specifically, CKT considers two factors that influence students’
individualization: individualized learning rates and individu-
alized prior knowledge. Individualized learning rates repre-
sent students’ differing capacities to absorb knowledge. The
sequence of student learning interactions can reflect different

learning rates in the sense that students with high learning rates
can rapidly master knowledge, while others need to spend more
time trying and failing. Therefore, it is reasonable to assess
the differences in learning rate by simultaneously processing
several continuous learning interactions within a sliding window
of convolutional neural networks [77]. Besides, individualized
prior knowledge refers to students’ prior knowledge, which can
be assessed via their historical learning interactions.

B. Incorporating Engagement During Learning

Student engagement is defined as “the quality of effort stu-
dents themselves devote to educationally purposeful activities
that contribute directly to desired outcomes” [78]. This defini-
tion highlights a strong connection between student engagement
and the learning process. Generally, higher engagement leads to
enhanced knowledge gains. Consequently, considering student
engagement in the learning process could potentially improve
KT results [79]. In this section, we will present some variants
that integrate student engagement into the KT models.

Student engagement is difficult to be directly measured. In
practice, some online learning systems have made use of sensor
data to measure student engagement. For example, inexpensive
portable electroencephalography (EEG) devices can help to
detect a variety of student mental states in learning, which can
be seen as reflections of student engagement [80]. Xu et al.
[81] proposed two methods that combine EEG-measured mental
states to improve the performance of BKT. Concretely, the
first one inserts a 1-D binary EEG measure into BKT, forming
the EEG-BKT structure that extends BKT by adding a binary
variable node E between the knowledge node and the answer
node. The second one, i.e., EEG-BKT, utilizes logistic regression
to combine an m-dimensional continuous variable E extracted
from the raw EEG signal in BKT.

However, in most cases, it is difficult to collect sensor data on
every student. Therefore, Schultz and Arroyo [82] proposed the
knowledge and affect tracing (KAT) to model both knowledge
and engagement in parallel. KAT is a sensorless model that
does not rely on any sensor data. In this model, both knowledge
and engagement are assumed to have direct influences on stu-
dent performance. KAT considers three kinds of disengagement
behaviors: quick guess (the student makes an attempt very
quickly), bottom-out hint (all available hints are used), and many
attempts (making more than three attempts at an exercise). These
three behaviors are grouped as “gaming” behaviors in order to
predict students’ knowledge and engagement at each learning
interaction. Rather than assuming equal influence of knowledge
and engagement on students’ knowledge state, one variation
on the KAT model defines the connection between knowl-
edge and engagement, and accordingly considers that students’
knowledge states will influence their engagement. For example,
students are more likely to disengage from knowledge they are
not familiar with. Moreover, rather than explicitly modeling
student engagement, Schultz and Arroyo [83] further proposed
the knowledge tracing with behavior (KTB) model, which has
only one latent knowledge node that acts as a combination
of both knowledge and engagement. KTB assumes that both
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engagement and performance are expressions of knowledge. The
Bayesian estimation of the knowledge state needs to be inferred
by both student engagement and performance.

Mongkhonvanit et al. [84] proposed to add five features in
the process of watching videos on massive open online courses
(MOOCs) to the input of DKT. These features reflect student
engagement from various aspects, including playback speed,
whether or not the video was paused, fast forwarded or rewound,
and whether or not the video was completed. For example, if a
student watches a video at a much faster playback speed, it is
likely that he/she is impatient and absent minded. This model
incorporates two further features: whether or not the exercise
was submitted with an answer selected and whether or not the
exercise was a part of an end-of-unit quiz, both of which are
considered together. Experimental results indicate that DKT
can achieve better performance through incorporating the above
binarized engagement covariates.

C. Considering Forgetting After Learning

In real-world scenarios, while learning, forgetting is in-
evitable [85]. The Ebbinghaus forgetting curve theory indicates
that students’ knowledge proficiency will decline due to forget-
ting [86]. Recently, Huang et al. [87] proposed the concept of
“knowledge proficiency tracing,” a model that can dynamically
capture the changes in students’ proficiency levels on knowl-
edge concepts over time. This model effectively tracks these
changes in an interpretable manner. Therefore, the assumption
that students’ knowledge states will remain constant over time is
untenable. However, fundamental KT models, such as the BKT,
often overlook forgetting. In the following, we will introduce
some variants of fundamental KT models that have attempted
to consider forgetting after learning for more precise knowledge
states.

Qiu et al. [88] discovered that BKT consistently overestimates
the accuracy of students’ answers when a day or more had
elapsed since their previous responses. The underlying reason
is that BKT assumes that student performance will remain the
same regardless of how much time has passed. To consider how
student performance declines with time, they proposed a BKT-
forget model, which hypothesizes that students may forget infor-
mation they have learned as days go by. In the BKT-forget model,
a time node is added to specify which parameters should be
affected by a new day and the new day node is fixed with a prior
probability of 0.2. It also introduced parameters to represent
the forgetting rate on a new day and denote the forgetting rate
on the same day. However, although BKT-forget does consider
the decline in student performance, it can only model forgetting
that occurs over the time scale of days. To model the continuous
decay of knowledge as time progresses, Nedungadi and Remya
[89] incorporated forgetting into BKT based on the assumption
that learned knowledge decays exponentially over time [90].
An exponential decay function is, thus, utilized to update the
knowledge mastery level. They further assumed that the chance
of forgetting will increase if a student does not practice the
knowledge concepts within 30 days. Moreover, Khajah et al. [42]
introduced an approach that counts the number of intervening

trials and treats each as an independent opportunity for forgetting
to occur.

Recall the PFA model in (5), in which the probability of
students’ mastery is estimated using a logistic function: p(θ) =
σ(β + μs+ νf). The original PFA model ignores the order of
answers, in addition to the time between learning interactions.
It is, therefore, difficult to directly incorporate time information
into the original PFA model. Pelánek et al. [91] proposed PFA
Elo/Extended (PFAE), a variant of the PFA model that combines
PFA with some aspects of the Elo rating system [92]. The Elo
rating system is originally devised for chess rating (estimating
players’ skills based on match results). In PFAE, θ is updated
after each learning interaction

θ :=

{
θ + μ · (1− p(θ)) , if the answer was correct

θ + ν · p(θ), if the answer was wrong.
(16)

As the forgetting behavior of students is closely related to
time, in order to consider forgetting, Pelánek [93] added a time
effect function f to θ, i.e., using p(θ + f(t)) instead of p(θ),
where t is the time (in seconds) from the last learning interaction,
and f is the time effect function.

To represent the complex forgetting behavior, the DKT-forget
model [94] introduces forgetting into DKT, which considers the
following three types of side information related to forgetting:

1) the repeated time gap that represents the interval time be-
tween the present interaction and the previous interaction
with the same KC;

2) the sequence time gap that represents the interval time be-
tween the present interaction and the previous interaction;

3) past trial counts that represent the number of times a
student has attempted on the exercise with the same KC.

All these three features are discretized at log2 scale. These
side information are concatenated as additional information and
represented as a multihot vector ct, which are integrated with
the embedding vector vt of the learning interaction, as follows:

vc
t = θin(vt, ct) (17)

where θin is the input integration function. The integrated input
vc
t and the previous knowledge state ht−1 are passed through

the RNNs to update ht in the same way as in (7). The additional
information at the next time step ct+1 is also integrated with the
updated ht

hc
t = θout(ht, ct+1) (18)

where θout is the output integration function.
Wang et al. [95] proposed a novel Hawkes KT model, which

introduces the Hawkes process to adaptively model temporal
cross-effects. The Hawkes process performs well at modeling
sequential events localized in time, as it controls corresponding
temporal trends by the intensity function. The intensity func-
tion in HawkesKT is designed to characterize the accumula-
tive effects of previous learning interactions, along with their
evolutions over time. In HawkesKT, the temporal cross-effects
and the ways in which they evolve between historical learning
interactions combine to form a dynamic learning process.
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D. Utilizing Side Information Across Learning

Most KT models primarily rely on exercises and student
responses to evaluate students’ knowledge states. These models
have yielded impressive results and have been effectively imple-
mented in online learning systems. Despite this, there are various
other types of side information collected across the learning
process that could be utilized to enhance these models. In this
section, we will introduce several variants that aim to leverage
this diverse side information across learning.

In terms of a student’s first response time, a short initial
response time could indicate either high proficiency or “gaming”
behavior, while a long initial response time could indicate either
careful thinking or lack of concentration. Since the connection
between initial response time and knowledge state could be
influenced by complex factors, Wang and Heffernan [96] pro-
posed to discretize the continuous first response time into four
categories (i.e., extremely short, short, long, and extremely long)
to eliminate unnecessary information and simplify the latent
complex possibilities. They, then, build a one-by-four parameter
table, in which each column represents the category of the initial
response time of the previous exercise, while the relevant values
represent the probability of correct answers.

Regarding tutor intervention, Beck et al. [97] proposed the
Bayesian evaluation and assessment model, which simultane-
ously assesses students’ knowledge states and evaluates the
lasting impact of tutor intervention. More specifically, it adds
one observable binary intervention node to BKT: True means
that the tutor intervention occurs in corresponding interactions
while False indicates the opposite. The connection between the
intervention node and knowledge node indicates the potential
impact of the tutor intervention on students’ knowledge states.
The intervention node is linked to all four BKT parameters. As
a result, there are a total of eight parameters to learn in order to
incorporate tutor intervention. One possible way to reduce the
number of parameters is choosing to link only the intervention
node to the learning rate parameter [98]. Similarly, Lin and
Chi [99] developed the intervention-BKT model, which incor-
porates two types of interventions into BKT and distinguishes
their different effects: elicit and tell. The relations between the
intervention and performance nodes represent the impact of
teaching interventions on student performance, while the rela-
tions between the intervention and knowledge nodes represent
the impact of teaching interventions on students’ knowledge
states. Therefore, at each learning interaction, while the present
knowledge state is conditional on both the previous knowledge
state and the current intervention, the student’s performance
depends on both the present knowledge state and the current
intervention.

Rather than considering only one kind of side information,
González-Brenes et al. [100] proposed a feature-aware student
KT (FAST) model, which allows for the utilization of all kinds
of side information. Traditional BKT uses conditional proba-
bility tables for the guessing, slipping, transition, and learning
probabilities, meaning that the number of features involved
in inference grows exponentially. Therefore, as the number
of features increases, the time and space complexities of the

model also grow exponentially. To deal with this large number
of features, FAST uses logistic regression parameters rather
than conditional probability tables. The number of features and
complexities increase linearly rather than exponentially. For
parameter learning, FAST uses the expectation maximization
with features algorithm [101] and focuses on only emission
features. The E step uses the current parameter estimates λ to
infer the probability of the student having mastered the KC at
each learning interaction. The parameters λ are now a function
of the weight β and the feature vector f(t). f is the feature
extraction function, and f(t) is the feature vector constructed
from the observations at the relevant time step. The emission
probability is represented with a logistic function

λ(β)y
′,k′

=
1

1 + exp(−βT · f(t)) (19)

where β is learned by training a weighted regularized logistic
regression using a gradient-based search algorithm.

Zhang et al. [102] proposed an extension to DKT that explored
the inclusion of additional features. Specifically, it incorporates
an autoencoder network layer to convert the higher dimensional
input data into smaller representative feature vectors, thereby
reducing both the resource and time requirement for training.
Students’ response time, opportunity count, and first action are
selected as incorporated side information, and all input features
are converted into a fixed-length input vector. First, all input
features are converted into categorical data and represented
as a sparse vector by means of one-hot encoding. These en-
coded features are concatenated together to construct the higher
dimensional input vector

C (et, at) = et + (max(e) + 1) at

vt = O (C (et, at))⊕O (C (tt, at))⊕O(tt)

v′t = tanh (Wvvt + bv) (20)

where C is the cross feature, O is the one-hot encoder format, vt
represents the resulting input vector of each learning interaction,
et is the exercise, at refers to the answer, tt is the response time,
Wv is the weight parameter, and bv is the bias term. Subse-
quently, an autoencoder is introduced to reduce the dimensional-
ity without incurring the loss of too much important information.
Finally, the feature vectors extracted by autoencoder will be the
new input of DKT.

Liu et al. [103] presented another extension to DKT, namely,
the exercise-aware KT (EKT), which utilized the potential value
of exercises’ text contents. Generally, the text content is of
great significance for students to understand the exercises. For
example, Huang et al. [104] used text materials to automatically
predict their difficulties, Liu et al. [105] utilized the text content
to find similar exercises. Yin et al. [106] further proposed a
pretraining model called QuesNet for learning the unified rep-
resentations of heterogeneous exercises. Therefore, instead of
using one-hot encoding of exercises, EKT automatically learns
the semantic representation of each exercise from its text con-
tents. EKT first uses Word2vec [107] to pretrain the embedding
vector for each word in the exercise. It, then, constructs a
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bidirectional LSTM, which captures the word sequence from
both forward and backward directions to learn the semantic
word representation. The elementwise max-pooling operation is
utilized to merge words’ contextual representations into a global
embedding. Finally, EKT can update the student’s knowledge
state with the aid of the semantic representation of each exercise.

To achieve more feasible integration of side information, Loh
[108] presented a DKT with decision trees, which takes advan-
tage of classification and regression trees (CART) to preprocess
the heterogeneous input features [109]. Specifically, CART is
utilized to automatically partition the feature space and outputs
whether or not a student can answer an exercise correctly. The
predicted response and the true response are encoded into a
four-b binary code; for example, the code is 1010 if the predicted
response and the true response are both correct. This binary code
is, then, concatenated with the original one-hot encoding of the
exercise as the new input of DKT to train the corresponding
model.

Jung et al. [110] suggested that the student’s language pro-
ficiency can serve as supplementary information to improve
existing KT models. The student’s language proficiency is ex-
tracted by Elo rating score and time window features. Then, the
language proficiency information is demonstrated to be effective
in promoting several KT models, including DKT, DKVMN,
and SAKT. In addition, the problem of cold start in the KT
task is alleviated with the assistance of language proficiency
information. Liu et al. [111] explored to add side information
to the original KT model by auxiliary learning tasks. They
specifically introduced two tasks: 1) predicting the KCs of the
question and 2) predicting the individualized prior knowledge.
By training with these tasks, KT can enhance its understanding
of the intrinsic relationships between questions and KCs, while
explicitly capturing student-level variability.

When solving programming problems, we can record stu-
dents’ full code submissions, which can be employed to an-
alyze their programming ability. Kasurinen and Nikula [112]
collected student programming data and analyzed their person-
alized programming preferences. The study commenced with
a statistical analysis of student errors, followed by an exami-
nation of students’ programming structures derived from their
code submissions, and finally used BKT to measure students’
programming abilities. Wang et al. [113] transformed students’
code submissions into embedded vectors, and applied them in
DKT to model students’ fine-graded programming knowledge
states. Zhu et al. [114] noticed that a single programming prob-
lem generally involves in multiple KCs, thereby they proposed
to learn useful information about the programming problem’s
multiple requirements from students’ code submissions.

V. APPLICATIONS

Although KT is an emerging research area, it has already
been applied in a wide variety of scenarios. In the following, we
will first survey the applications of KT models in two typical
educational scenarios: learning resources recommendation and
adaptive learning. Then, we will discuss broader applications of
KT beyond student learning.

A. Learning Resources Recommendation

Traditionally, learning resources for each student are selected
in one of two ways. The first one requires teachers to manually
select suitable resources that match students’ knowledge levels.
However, this approach requires substantial time and effort, and
different teachers may have different preferences. The second
one allows students themselves to freely choose resources to
learn. However, this may result in students choosing too easy or
too difficult materials that will not benefit their learning [115],
leading to low learning efficiency. In recent years, the preva-
lence of intelligent tutoring systems and the development of KT
methods have made it possible to automatically recommend ap-
propriate exercises to each student based on artificially designed
algorithms.

Exercises are the most common learning resources in learning.
Given the inferred knowledge states, one common strategy is
selecting the next exercise that will best advance students’
knowledge acquisition. Desmarais and Baker [115] proposed
two extensions of the original BKT model, which, respectively,
considered exercises’ difficulties and students’ multiple-attempt
behaviors. These two extensions are integrated into a BKT-
sequence algorithm to recommend exercises to students based
on their knowledge states. Specifically, BKT-sequence first de-
termines the predicted range of scores for each exercise. It then
computes an expected score for each exercise that the student
should get to achieve mastery, which is dependent on their cur-
rent knowledge state (for instance, a lower knowledge state will
result in higher expected scores). Finally, the algorithm returns
the exercise with a predicted score that is closest to that of the
expected score. Therefore, as the knowledge state of a particular
KC grows, more difficult exercises will be recommended, as
harder exercises are associated with a lower predictive score.
Experimental results have shown that students using the BKT-
sequence algorithm were able to solve more difficult exercises,
obtained higher performance and spent more time in the system
than students who used the traditional approach. Moreover, stu-
dents also expressed that the BKT-sequence algorithm was more
efficient. Wan et al. [116] expanded the DKVMN model [37] to
include the exercise’s type and difficulty. This model is then used
to assess students’ knowledge state and subsequently recom-
mends personalized exercises for each student in small private
online courses. They conducted a randomized controlled trial to
show that the proposed personalized exercise recommendation
could enhance students’ learning efficiency.

In addition to exercises, there are also some other types
of multimodal learning resources, such as videos and figures.
Machardy [117] utilized an adaptation of BKT to improve
student performance prediction by incorporating video obser-
vation. Experimental verification demonstrates the impact of
both using and eschewing video data, as well as the learning
rate associated with a particular video. In this way, he further
developed a method to help people evaluate the quality of video
resources. Concretely, they proposed the template 1 video model
to incorporate video observations into BKT, which adds video
activity as additional independent observation nodes to the BKT
model. This model accordingly considers the probability that
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a given video resource will impart knowledge to a student.
Moreover, the transition probability in BKT is conditional only
on the presence of either a video or an exercise. Thus, the quality
of the video can be determined by its promotion of learning, and
this model can be leveraged as a tool to aid in evaluating and
recommending video resources.

When recommending learning resources, the primary aim of
existing solutions is to choose a simple strategy for assign-
ing nonmastered exercises to students. While reasonable, it is
also too broad to advance learning effectively. Huang et al.
[118] accordingly proposed three more beneficial and specific
objectives: review and explore, smoothness of difficulty level,
and student engagement. In more detail, review and explore
considers both enhancing students’ nonmastered concepts with
timely reviews and reserving certain opportunities to explore
new knowledge, smoothness of difficulty level indicates that
the difficulty levels of several continuous exercises should vary
within a small range as students gradually learn new knowledge,
and finally, student engagement considers that to promote stu-
dents’ enthusiasm during learning, the recommended exercises
should be in line with their preferences. In order to support online
intelligent education with the above three domain-specific ob-
jectives, they developed a more reasonable multi-objective deep
reinforcement learning (DRE) framework. DRE presented three
corresponding novel reward functions to capture and quantify
the effects of the above three objectives. This DRE framework is
a unified platform designed to optimize multiple learning objec-
tives, where more reasonable objectives also can be incorporated
if necessary. Experimental results show that DRE can effectively
learn from the students’ learning records to optimize multiple
objectives and adaptively recommend suitable exercises.

B. Adaptive Learning

Adaptive learning, unlike learning resource recommenda-
tions, goes beyond the mere provision of resources. It not only
concentrates on the selection of appropriate learning materials
but also designs effective learning strategies and dynamic learn-
ing pathways. These are structured based on both the learning
rules and students’ evolving knowledge states. Specifically,
adaptive learning broadly refers to “a learning process in which
the content taught, or the way such content is presented, changes
or “adapts” based on individual student responses, and which
dynamically adjusts the level or types of instruction based on
individual student abilities or preferences” [119].

The first few attempt made to apply KT to adaptive learning
was the ACT Programming Tutor [9], where students were asked
to write short programs and BKT was utilized to estimate their
evolving knowledge state. This tutor can present an individ-
ualized sequence of exercises to each student based on their
estimated knowledge states until the student has “mastered” each
rule.

In recent years, MOOCs have become an emerging modality
of learning, particularly in higher education. Pardos et al. [11]
adapt BKT on the edX platform. The research object was a
14-week online course that included weekly video lectures and
corresponding lecture problems. BKT was applied to enhance

students’ learning on this course. In order to better adapt BKT to
the learning platform, the original BKT was modified in several
respects. First, due to the lack of labeled KCs, the problems
would be directly seen as the KCs, while the questions would be
seen as the exercises belonging to the KC. Second, in order to
capture the varying degrees of students’ knowledge acquisition
at each attempt, the modified model assigned different guess
and slip parameters to different attempt counts. Finally, to deal
with the problem of multiple pathways in the system, which
reflected that the impacts on learning may come from various
resources, they framed the influence of resources on learning as
a credit/blame inference problem.

Generally, students’ cognitive structures include both stu-
dents’ knowledge level and the knowledge structure of learning
items (e.g., one-digit addition is the prerequisite knowledge of
two-digit addition). Therefore, adaptive learning should main-
tain consistency with both students’ knowledge level and the
latent knowledge structure. Nevertheless, existing methods for
adaptive learning often focus separately on either the knowledge
levels of students (i.e., with the help of specific KT models) or
the knowledge structure of learning items. To fully exploit the
cognitive structure for adaptive learning, Liu et al. [13] pro-
posed a Cognitive Structure Enhanced framework for Adaptive
Learning (CSEAL). CSEAL conceptualized adaptive learning
as a Markov decision process. It first utilized DKT to trace
the evolving knowledge states of students at each learning step.
Subsequently, the authors designed a navigation algorithm based
on the knowledge structure to ensure that the learning paths
in adaptive learning were logical and reasonable, which also
reduced the search space in the decision process. Finally, CSEAL
utilized the actor–critic algorithm to dynamically determine
what should be learned next. In this way, CSEAL can sequen-
tially identify the most suitable learning resources for different
students.

C. Broader Applications

The above two types of applications are most commonly
used for KT in student learning. In addition, the KT methods
can be expanded to be utilized in any systems that necessitate
continuous evaluation of user capabilities or states. We will
introduce some broader applications of KT in this section.

In gaming systems, the paradigm of tracing students’ knowl-
edge state can also work for player modeling. Here, player
modeling, which is the study of computational models of players
in games, aims to capture human players’ characteristics and
cognitive features [120]. For instance, Fisch et al. [121] revealed
that children engage in cycles of increasingly sophisticated
mathematical thinking over the course of playing an online
game. Kantharaju et al. [122] presented an approach to trace
player knowledge in a parallel programming educational game,
which is capable of measuring the current players’ real-time
state across the different skills required to play an educational
game based only on in-game player activities. Long and Aleven
[123] conducted a classroom experiment comparing a com-
mercial game for equation solving, i.e., DragonBox, with a
research-based intelligent tutoring system, i.e., Lynnette. The
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TABLE II
BASIC INFORMATION AND STATISTICS OF EXISTING DATASETS AVAILABLE FOR EVALUATING KT MODELS

results indicated that students who used DragonBox enjoyed the
experience more, while students who used Lynnette performed
significantly better on the test. Therefore, it is possible to enable
students to learn effectively and happily by designing suitable
educational games on the online learning platform.

In crowdsourcing, unlabeled data or specific tasks are as-
signed to various crowd annotators. Understanding the dynamic
capabilities of these annotators is crucial in ensuring the reliabil-
ity of their annotations and promoting the annotation efficiency.
Wang et al. [124] developed a framework called KT4Crowd,
which utilized KT methods to predict the performance of anno-
tators, which surpassed traditional rating systems. Besides, Abdi
et al. [125] observed that students’ participation in crowdsourc-
ing tasks can enhance their learning. KT methods can also better
comprehend students’ knowledge states, aided by the students’
annotated items.

Crowston et al. [126] developed an online citizen science
project that employs machine learning techniques to improve
the training of new volunteers using authentic tasks featuring
uncertain outcomes such as image classification. Specifically,
they employ the BKT model to monitor the knowledge states of
volunteers, enabling them to more efficiently complete assigned
tasks and contribute meaningfully to the project.

Zhao et al. [127] developed an automated exercise collection
approach for teachers, employing the KT model and reinforce-
ment learning. Specifically, the exercise collection need to be
well designed to align with students’ abilities. This study first
leverages the KT model to forecast students’ performance on
unseen exercise candidates. Subsequently, the exercise selector
is designed based on the KT model’s predictions, ensuring
that the exercise collection is both approximate and optimized.
Similarly, Shang et al. [128] designed a reinforcement learning
guided method for exam paper generation, where the DKT
model is utilized to measure examinees’ knowledge states.

VI. DATASETS AND BASELINES

After introducing the above KT models and variants, to better
help researchers and practitioners who want to further conduct

related work and promote the application of KT, we have open
sourced two algorithm libraries, i.e., EduData for download-
ing and preprocessing most existing KT-related datasets, and
EduKTM that includes extensible and unified implementations
of existing popular KT models. In the following, we will give
detailed introduction of these two algorithm libraries.

A. Datasets

As we have mentioned, KT emerges from the development
of online education, where a large number of students’ learning
data are collected for analyzing their learning behaviors and
knowledge states. In this section, we mainly introduce existing
public datasets available for evaluating KT models. Table II lists
all datasets, as well as their basic information and statistics. In
our released EduData, we provide the service of downloading
and preprocessing all these datasets, which is convenient to help
beginners analyze and utilize them quickly. In summary, these
datasets are collected in different learning scenarios, so that they
exhibit an extremely distinct difference in data scale, subject,
and so on, indicating complex applications in practical for KT
models.

1) ASSISTments Datasets: ASSISTments [129], created in
2004, is an online tutoring system in the United States, which
provides students with both assessment information and tu-
toring assistance. While working on ASSISTments, students
will be provided with instructional assistance to help them
solve the problem in several substeps when they give wrong
answers. After obtaining correct answers, they will be given
a new one. Meanwhile, the system will learn about the stu-
dents’ knowledge states and predict how they will do in future
tests. Up to now, the organizers have released four publicly
available datasets from ASSISTments, which are, respectively,
ASSISTments2009, ASSISTments2012,3 ASSISTments2015,4

3[Online]. Available: https://sites.google.com/site/assistmentsdata/datasets/
2012-13-school-data-with-affect

4[Online]. Available: https://sites.google.com/site/assistmentsdata/datasets/
2015-assistments-skill-builder-data
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and ASSISTments2017.5 The ASSISTments datasets have built
profound impacts in the research community of KT, which can
be seen in many related papers. Most of these datasets were
collected from mathematics in middle school, the details of them
are listed as follows.

1) ASSISTments2009:The full name of ASSISTments2009 is
the ASSISTments 2009–2010 skill builder dataset [129],
which was collected form ASSISTments’ skill builder
problem sets during the school year from 2009 to 2010.
Students were asked to work on exercises with similar
knowledge concepts until they can answer correctly for
three or more times in a row. This dataset contains many
valuable side information, such as attempt count that
represents the number of attempts of the student, ms first
response that represents the time in the milliseconds for
the student’s first response, and opportunity that represents
the number of opportunities the student has to practice.
It worth noting that the original version of ASSIST-
ments2009 has the following three serious problems that
lead to unreliable experimental results [45]:

a) a large number of duplicated records;
b) treating scaffolding problems as the same as main prob-

lems;
c) repeated response sequences with different KCs.
The latest version of ASSISTments2009 has fixed these prob-

lems.
2) ASSISTments2012: ASSISTments2012 is collected from

the ASSISTments system, in the school year from 2012
to 2013 with affect predictions. Compared with ASSIST-
ments2009, ASSISTments2012 has much more students,
exercises, as well as learning records. However, many
learning records have missed the related KCs in this
dataset. After filtering these records, there are only 29 018
students, 53 091 exercises, and 2 711 813 learning records.
Besides, this dataset contains more side information, such
as start time, end time, problem type, and average confi-
dence. It worth noting that you can access to the text of
the exercises in ASSISTments2012 for more fine-grained
research. Specifically, you can email nth@wpi.edu and cc
td@wpi.edu, explaining your purpose and promising not
to share it with anyone else.

3) ASSISTments2015: ASSISTments2015 covers the 2015
school years’ student response records on ASSISTments.
This dataset only contains student learning records on 100
KCs, there is no information about the exercise, as well as
any other side information.

4) ASSISTments2017: ASSISTments2017 is the dataset used
in the 2017 ASSISTments Longitudinal Data Mining
Competition. This dataset collected data over a decade,
which tracked students’ interactions at the ASSISTments
learning platform from middle school study in 2004–2007
to their high school course-taking, until they graduated
from the college. Therefore, the average learning record of
students in ASSISTments2017 is much longer than other

5[Online]. Available: https://sites.google.com/view/assistmentsdatamining/
dataset

dataset, which is beyond the length of 1000. ASSIST-
ments2017 also has rich side information, including but
not limited to AveKnow that indicates students’ average
knowledge level based on BKT, timeTaken that represents
the time spent on the current exercise, and frIsHelpRequest
that represents whether the first response is a help
request.

2) Junyi Dataset: The Junyi dataset [131] contains the prob-
lem log and exercise-related information on the Junyi Academy,6

a Chinese e-learning website established in 2012 on the basis of
the open-source code released by Khan Academy. In contrast
to the ASSISTments datasets, Junyi dataset has less exercises
and KCs, but includes an exercise hierarchy labeled by ex-
perts, the annotations of exercise relationship are also available.
Therefore, many research works that focused on the knowledge
structure in KT had utilized this dataset [58]. Junyi dataset
provides the prerequisite exercise of a specific exercise in the
knowledge map, the topic and area of each exercise, as well as
the coordinate position of the knowledge map.

3) Eedi2020 Dataset: The Eedi2020 dataset [132] is also
released in an academic challenge, i.e., NeurIPS 2020 Education
Challenge.7 This dataset contains students’ answers to math-
ematics questions from Eedi, an online educational platform
where millions of students interact daily around the globe from
school year 2018 to 2020. All exercises are multiple-choice
problems with four possible answer choices, exactly one of
which is correct. In Table II, we give the statistics based on the
training data in this competition, the total number of learning
records in the full dataset exceeds 17 million. It is worth noting
that Eedi2020 gives students’ exact answer choice so that we can
also predict students options [136]. Moreover, for the students,
Eedi2020 records lots of valuable context information, including
the Gender, DateOfBirth, and PremiumPupil. For the learning
records, Eedi2020 also presents their Confidence, GroupId,
QuizId, and SchemeOfWorkId.

4) Statics2011 Dataset: Different from the above datasets
that focus on mathematics exercises, the Statics2011
dataset [133] is obtained from a college-level engineering
statics course via an online educational system developed
by Carnegie Mellon University.8 The problems in college
engineering course are quite complex, often comprising
numerous independent substeps. Consequently, we treat each
subproblem as an exercise and calculate the number of exercises
and KCs within this dataset.

5) EdNet Dataset: The EdNet dataset [134] is related to the
English subject, which is consisted of students’ learning records
in the multiplatform AI tutoring system Santa in South Korea.9

EdNet collected learning data of students over two years for their
preparation of the e-Test of English for International Communi-
cation, listening and reading test. EdNet is now the largest public
dataset in KT field with a total of 131 441 538 learning records
from 784 309 students. Besides, it contains various features of

6[Online]. Available: http://www.junyiacademy.org/
7[Online]. Available: https://eedi.com/projects/neurips-education-challenge
8[Online]. Available: https://pslcdatashop.web.cmu.edu/DatasetInfo?dataset

Id=507
9[Online]. Available: https://github.com/riiid/ednet
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students’ learning actions, such as the specific learning material
they have interacted and how much time they have spent for
answering a given exercise. There are four different versions of
EdNet, respectively, named EdNet-KT1, EdNet-KT2, EdNet-
KT3, and EdNet-KT4 with different extents. We note that the
students in this dataset may be in different learning states.
Therefore, we do not give the learning state information in
Table II.

1) EdNet-KT1: EdNet-KT1 contains students’ basic
exercise-answering logs. This dataset has 784 309
students, 13 169 exercises, 188 KCs, and a total of
95 293 926 learning records. Exercises in EdNet-KT1
are organized by bundles, i.e., a collection of exercises
sharing a common passage, picture, or listening material.
Therefore, exercises come up in bundles and students have
to answer all contained exercises when a bundle is given.

2) EdNet-KT2: EdNet-KT2 recorded students’ action se-
quences, which indicated their full learning behaviors.
For example, a student who is not confident about the an-
swer may alternately select among several answer choices
before submitting. Such learning behaviors can reflect
more fine-grained knowledge state of students. EdNet-
KT2 contains three kinds of actions: enter when student
first receives and views a bundle, respond when the student
selects an answer choice to the exercise, and submit when
the student submits his final answers to the given bundle. It
is worth noting that EdNet-KT2 is a subset of EdNet-KT1.

3) EdNet-KT3: On the basis of EdNet-KT2, EdNet-KT3 col-
lected more students’ learning activities, such as reading
explanations or watching lectures. These learning activi-
ties have potential impacts on students’ knowledge state
so that they are valuable to be analyzed.

4) EdNet-KT4: In EdNet-KT4, the very fine details of actions
were provided. In particular, the following types of actions
are added to EdNet-KT3: erase choice, undo erase choice,
play audio, pause audio, play video, pause video, pay,
refund, and enroll coupon.

6) CodeWorkout Dataset: The CodeWorkout dataset [135] is
utilized in the 2nd Computer Science Educational Data Mining
Challenge.10 This dataset is collected from a CS1 course in the
Spring and Fall 2019 semesters at a public university in the
United States. It contains the code submissions from students
for 50 coding problems, each requiring 10–26 lines of code. In
this dataset, each exercise has a unique KC, thereby the number
of KCs is equal to the number of exercises. In total, there are
329 and 490 students in the Spring and Fall semesters, respec-
tively, who completed the course. Each dataset contains more
than 65 000 code submissions, the scores of the submissions
(percentage of unit tests passes) are also available, as well as the
compiler message if the compilation is not successful. The final
grades of students are also provided for this dataset.

B. Baselines

The implementations of existing KT methods are not stan-
dardized, which may use different program languages (e.g.,

10[Online]. Available: https://sites.google.com/ncsu.edu/csedm-dc-2021/
home

Python, Lua) and different deep learning frameworks (e.g.,
TensorFlow, torch). Furthermore, some works did not well or-
ganize the codes systematically (e.g., the missing of running
environments and dependencies), which bring difficulties in
reproducing the models. To this end, we put forward the algo-
rithm library for KT baselines, named EduKTM, which now has
contained the concurrent popular works. EduKTM will always
be under development for including the latest KT models, more
algorithms and features are going to be added. Besides, we
provide detailed guidelines for everyone who is interested in
contributing to EduKTM.

It is worth nothing that we do not provide the performance
evaluation of these baselines using the aforementioned bench-
mark datasets. The reasons are twofold. 1) For each baseline
method, their experimental settings are quite different as they
were designed to handle various learning scenarios. No single
KT model can always be the best one under various learning
contexts. It is not fair to compare all baselines under a fixed
setting. 2) Existing evaluation standards primarily concentrate
on the performance of student performance prediction task,
which cannot directly reflect the effectiveness of various KT
models in practical applications. Therefore, we decide to open
source EduData and EduKTM. Researchers and practitioners
can freely compare and select appropriate KT models based on
their specific requirements in various application scenarios.

VII. FUTURE RESEARCH DIRECTIONS

This survey has comprehensively reviewed the abundant cur-
rent developments in the field of KT, including fundamental KT
models, their variations, and typical applications. Despite this,
as KT is a relatively new but promising research area, there
are still a substantial number of problems that require urgent
resolution. In this section, we discuss several potential future
research directions.

A. KT With Interpretability

The performance of KT models is now evaluated indirectly
through the student performance prediction task. The higher the
precision of students’ responses on future exercises, the bet-
ter the KT model’s performance. Nonetheless, interpretability
plays a significant role in education, as students often express
more concern about the “why” than the “what” of a learning
decision [137]. Enhancing the interpretability of KT models is,
therefore, crucial. Some educational theories, such as the Rasch
model used in AKT [21] and the transfer of knowledge used
in SKT [58], could be considered for this purpose. Minn et al.
[138] noticed the significance of interpretable KT, particularly
for deep learning models, as they have numerous parameters
that are challenging to explain meaningfully. Thus, they [138]
introduced a straightforward and interpretable KT approach,
based on the causal relationships within the latent features ex-
tracted from students’ behavioral data. Zhu et al. [29] attempted
to introduce causal inference for explanatory analysis on KT,
and they achieved more stable and explainable KT based on the
analysis results. It is imperative to further refine existing KT
models or to explore additional methods for interpretable KT
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research works. This will lead to the production of more accurate
and interpretable evaluations of students’ knowledge states.

B. KT With Sparse Learning Interactions

The acquisition of high-quality KT models necessarily re-
quires a substantial amount of data to ensure training stability.
However, online learning systems often achieve less learning
interactions in practical educational scenarios, thereby leading
to the data sparsity problem. To address this issue, Yang et al.
[139] utilized graph convolutional network to include exercise–
KC correlations. Huang et al. [140] turned to improve the
attention mechanism. More recently, researchers have employed
contrastive learning to alleviate the data sparsity problem in
KT [141], [142]. For example, Lee et al. [143] presented a
contrastive learning framework to enhance KT, which measures
the semantical similarity between various learning interactions
to effectively learn their representations. They further designed
data augmentation methods to enhance the semantics of stu-
dents’ learning interactions. However, while the aforementioned
methods alleviate the data sparsity problem in various aspects,
there remains a need for further improvement in addressing this
issue comprehensively.

C. KT With Subjective Exercises

Most existing KT research works are capable of dealing with
objective exercises, assuming that student responses are binary.
However, they overlook students’ open-ended answers, often
presented in natural language, on subjective exercises. As per
the work by Liu et al. [144], an open-ended KT approach for
computer science education was explored. This method aimed
to predict students’ precise solutions to programming questions,
utilizing language models for assistance. Recent advancements
in large language models (LLM) offer promising potential to
enhance the ability of KT models to comprehend the critical
information regarding students’ knowledge states embedded
within their open-ended answers on subjective exercises [145].

D. KT With Students’ Feedback

Learning records are passive representations of students’
knowledge states. In contrast, students’ feedback provides us
with their proactive understanding of their knowledge states,
thereby offering direct and authentic indicators of their learning
situation. However, there are few KT models that take advantage
of training data related to students’ feedback, even though it can
play an important role in fixing the KT results [146]. Wang et al.
[147] noted that feedback plays a positive role in learning, which
may promote transfer and retention in learning from worked-out
examples. Therefore, incorporating students’ feedback presents
a meaningful avenue that could lead to significant improvements.

E. KT for General User Modeling

Generally, user modeling refers to tools for characterizing
users’ behaviors (e.g., frequent locations), personal information
(e.g., age, gender, and occupation), and latent features (e.g.,
interests and abilities), which facilitate the provision of targeted
services for different users [148]. As a type of latent feature

modeling, KT diagnoses the proficiency of users (not only
individuals, but also groups of individuals, such as user teams
and companies) on specific skills/concepts. Thus, in addition
to education, KT can be developed and applied across a wide
range of domains for user modeling, including games, sports,
and recruitment.

F. KT With LLM

In recent years, the advancement of LLM, notably ChatGPT,
has led to significant impacts and garnered considerable research
interest worldwide [149]. The use of LLM in education is
promising to revolutionize the current learning pattern [145].
The current study mainly focuses on generating learning ma-
terials, improving student–system interaction, and explaining
educational contents. However, it remains unclear how LLM
can assist in understanding students’ knowledge states. Given
the powerful capabilities of LLM, it has the potential to en-
hance the generalization and interpretability of existing KT
methods. Specifically, LLM can analyze the content of students’
responses and evaluate their quality, which directly reflects
students’ knowledge states. Besides, LLM can play the role of
the instructor, answering questions for students and identifying
their strengths and weaknesses. Furthermore, LLM itself can
serve as a KT model, which can output reasonable results
about students’ knowledge states given their previous learning
interactions. Simultaneously, it is imperative to safeguard the
privacy and security of student data when utilizing LLM [150].

VIII. CONCLUSION

In this survey, we conducted a thorough review of KT. Specifi-
cally, we initially conducted a comprehensive review of existing
fundamental KT models. Considering the complexity of online
learning systems and the significant importance of KT research
in practical scenarios, we investigated a broad range of variant
KT research. Subsequently, we summarized some typical appli-
cations of KT in common educational scenarios. Furthermore,
we released two algorithm libraries for KT-related datasets and
baselines, thereby facilitating researchers and practitioners in
selecting appropriate KT models based on their specific require-
ments. Finally, we outlined some potential future directions.

We hope that this comprehensive survey of KT will assist
readers in understanding the problem of modeling students’
dynamic knowledge states. It serves as a fundamental frame-
work for both researchers and practitioners in future studies,
fostering the development of KT. The development of KT will
directly benefit millions of students, with its impact potentially
extending to a broader audience as online learning continues to
evolve. In this context, KT will play an increasingly important
role in enabling individuals to adapt to the ever-changing so-
ciety [151]. Furthermore, the development of more refined KT
methods tailored to students in various subjects and age groups
will enhance their ability to comprehend students’ individual
knowledge states.

However, we recognize some limitations of the current survey.
First, as new KT methods continue to emerge, although we
have conducted a thorough investigation, there may be some
representative works that we have overlooked. If necessary, we
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will incorporate these into our proposed framework in the future.
Second, the complexity of KT methods warrants attention, as it
continues to grow, particularly in those based on deep learning.
The complexity of the model may enhance its accuracy, but it
could also compromise its applicability, as users will question
the reliability of complex models. Despite the fact that some
studies have attempted to reveal the interpretability of complex
KT models, for instance, by utilizing the xAI technique, there
remains a significant distance to traverse before achieving a
completely transparent deep learning KT model.

We posit that the application of KT methods in online edu-
cation presents a promising avenue for research. It significantly
enhances the learning experience for students while simultane-
ously alleviating the burden on teachers. Despite the numerous
challenges and obstacles, researchers are to be encouraged to
overcome them and ensure a reliable and equitable access to
students’ evolving knowledge state in learning.
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