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Abstract    Distributed  stochastic  gradient  descent  and  its
variants  have  been  widely  adopted  in  the  training  of  machine
learning  models,  which  apply  multiple  workers  in  parallel.
Among them, local-based algorithms, including Local SGD and
FedAvg,  have  gained  much  attention  due  to  their  superior
properties,  such  as  low  communication  cost  and  privacy-
preserving. Nevertheless, when the data distribution on workers
is  non-identical,  local-based  algorithms  would  encounter  a
significant  degradation  in  the  convergence  rate.  In  this  paper,
we propose Variance Reduced Local SGD (VRL-SGD) to deal
with  the  heterogeneous  data.  Without  extra  communication
cost,  VRL-SGD  can  reduce  the  gradient  variance  among
workers caused by the heterogeneous data, and thus it prevents
local-based algorithms from slow convergence rate. Moreover,
we  present  VRL-SGD-W  with  an  effective  warm-up
mechanism  for  the  scenarios,  where  the  data  among  workers
are  quite  diverse.  Benefiting  from  eliminating  the  impact  of
such heterogeneous data, we theoretically prove that VRL-SGD
achieves a linear iteration speedup with lower communication
complexity  even  if  workers  access  non-identical  datasets.  We
conduct  experiments  on  three  machine  learning  tasks.  The
experimental  results  demonstrate  that  VRL-SGD  performs
impressively better than Local SGD for the heterogeneous data
and  VRL-SGD-W  is  much  robust  under  high  data  variance
among workers.

Keywords    distributed  optimization,  variance  reduction,
local SGD, federated learning, non-IID data
 

1    Introduction
For large-scale machine learning problems, stochastic gradient
descent  (SGD)  [1]  is  a  fundamental  tool.  However,  with  the
expansion  of  data  and  model  scale,  the  training  of  machine
learning  model,  especially  deep  learning  models  has  become
increasingly  time-consuming.  To  accelerate  the  training
process,  synchronous  stochastic  gradient  descent  (S-SGD),  a

N
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parallelized  version  of  SGD,  has  been  widely  adopted
recently,  which  encourages  multiple  workers  to  optimize  the
model  cooperatively.  At  each  iteration,  workers  calculate
the gradients based on their local data and then communicate
the gradients  with the parameter  server.  However,  in practice
S-SGD  suffers  from  a  major  drawback:  the  communication
cost  is  expensive  when  the  number  of  workers  is  large.  That
prevents S-SGD from achieving a linear time speedup, which
means  the  total  training  time  is  reduced  by  times  with 
workers.  Therefore,  it  is  crucial  to  overcome  the  communi-
cation bottleneck.
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In recent years, deep learning has been successfully applied
in  many  fields,  such  as  image  recognition  [2,3],  natural
language processing [4], recommender systems [5], intelligent
education [6] and finance [7–9]. However, the training of deep
learning models has become increasingly time-consuming. To
reduce  communication  cost,  several  studies  [10–14]  have
managed  to  lower  the  communication  frequency,  which  are
the so-called local-based algorithms. Among them, Local SGD
[12] (also called FedAvg [15]) is a representative local-based
algorithm,  where  workers  conduct  SGD  locally  and  average
model  with  each  other  every  iterations  as  shown  in Fig. 1.
Compared  with  S-SGD,  local-based  algorithms  reduce  the
communication  rounds  from  to ,  where  is  the
total  number  of  iterations,  and  hence  accelerate  the  training
process.  However,  the  convergence  rate  of  local-based
algorithms has  a  strong dependence on the  extent  of  non-IID
(not  independent  and  identically  distributed).  They  can  only
exhibit  superior  performance  if  the  data  distribution  on
workers  is  identical,  which  is  the  so-called  identical case.
Nevertheless,  the  identical  data  assumption  is  not  valid  in
general,  especially  in  federated learning [16–19],  which aims
at  training on heterogeneous data.  When the data  distribution
is non-identical, which is the so-called non-identical case, the
optimization  tasks  on  workers  will  be  different.  Specifically,
the  local  model  would  move  towards  their  local  optima  and
away from the global optima as shown in Fig. 1, hence local-
based algorithms would encounter a significant degradation in
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the  convergence  rate  or  fail  to  converge  in  some  cases1).
Therefore,  heterogeneous  data  has  become  a  fundamentally
challenging problem in machine learning. We seek to remove
the  impact  of  heterogeneous  data,  which  would  make  the
algorithms converge much faster than the vanilla Local SGD [12].
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In  this  paper,  we  propose  Variance  Reduced  Local  SGD
(VRL-SGD),  a  novel  distributed  optimization  algorithm  to
accelerate  convergence.  Benefiting  from  an  additional
variance  reduction  component,  VRL-SGD can reduce  the  the
gradient variance among workers,  which helps Local SGD to
converge  faster.  For  some  practical  scenarios  with  high  data
variance, we present an effective warm-up mechanism, VRL-
SGD-W,  to  eliminate  the  impact  of  the  high  data  variance
among workers. Consequently, the communication complexity
of  Local  SGD can be  reduced from  to 2)

in the non-identical case, which is crucial for overcoming the
communication  bottleneck.  Therefore,  VRL-SGD  is  more
suitable  than  Local  SGD  in  practice.  Contributions  are
summarized as follows:
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● We propose VRL-SGD, a novel distributed optimization
algorithm  with  better  communication  complexity.
Specifically,  the  communication  complexity  is  reduced

from  to  in  the non-identical  case.
Meanwhile,  VRL-SGD  also  achieves  the  same

communication complexity  as Local SGD in
the identical case.

● We present VRL-SGD-W, an effective warm-up mech-
anism deal with some situations, where the data among
workers  are  quite  diverse.  And  the  effect  of  warm-up
mechanism  is  guaranteed  both  theoretically  and
experimentally.

● We provide a more intuitive explanation to improve the
convergence  rate  of  local-based  algorithms  and
theoretical analysis for VRL-SGD. Besides, our method
does not require the extra assumptions, e.g., the gradient
variance across workers is bounded.

● We validate the effectiveness of VRL-SGD on standard
machine learning tasks. And experimental results show
that  the  proposed  algorithm  performs  significantly
better  than  Local  SGD  if  data  distribution  among
workers  is  different.  Besides,  an  additional  numerical
experiment  validates  the  robustness  of  VRL-SGD-W
under high data variance among workers. 

2    Related work
Synchronous  stochastic  gradient  descent  (S-SGD)  is  a
parallelized  version  of  SGD  and  is  theoretically  proved  to
achieve a linear iteration speedup with respect to the number
of  workers  [20,21].  Nevertheless,  due  to  the  communication
bottleneck,  it  is  hard  to  achieve linear  time  speedup in
practice.  To  eliminate  communication  bottlenecks,  many
distributed  SGD-based  methods  are  proposed,  such  as  lossy
compression  methods  [22–27],  which  use  approximations  or
partial data to represent the gradients, and methods [10,12,13]
based on the lower communication frequency.

Among  them, Local  SGD [12],  a  representative  method  to
lower the communication frequency, has been widely used to
train  large-scale  machine  learning  models,  and  its  superior
performance  is  verified  in  several  tasks  [28–30].  In  Local
SGD,  each  worker  conducts  SGD  updates  locally  and
averages  its  model  parameters  with  others  periodically.
Previous  studies  have  proven  that  Local  SGD  can  achieve  a
linear  iteration  speedup  for  both  strongly  convex  [12]  and
non-convex  [13]  problems.  To  fully  utilize  hardware
resources,  a  variant  of  Local  SGD,  called  CoCoD-SGD [14],
is proposed with decoupling computation and communication.
Furthermore,  Yu  et  al.  [31]  provided  a  clear  linear  speedup
analysis for Local SGD with momentum. However, the rate of
convergence for the above algorithms has a poor dependence
on the  extent  of  non-IID,  which leads  to  a  slow convergence
rate for the non-identical case and limits the further reduction
of  communication  cost.  Haddadpour  et  al.  [32]  verified  that
the utility of redundant data can lead to lower communication
complexity  and  accelerate  training.  The  redundant  data  can
help reduce the data variance among workers, thus it prevents
the slow convergence rate.  Nevertheless,  this  method may be
constrained  in  some  cases.  For  instance,  it  could  not  be
applied  in  federated  learning  [16,17]  as  data  cannot  be
exchanged  between  workers  for  privacy-preserving.  Some
recent studies [33,34] analyzed the convergence of local-based
algorithms on heterogeneous data.

Although  there  are  many  studies  proposed  to  reduce  the
variance in SGD, e.g.,  SVRG [35], EMGD [36], SAGA [37],
and  SARAH  [38],  they  could  not  directly  deal  with  the
gradient  variance  among  workers  in  distributed  optimization.
In recent years, several studies [39–41] have been proposed to
eliminate  the  gradient  variance  among  workers  in  the
decentralized  setting.  Among  them,  a  novel  decentralized
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Fig. 1    Procedure of Local SGD with  = 2 workers and  = 2 local udaptes
in  the  non-identical  case.  The  local  models  (green)  move  towards  their
local optima  (yellow) and away from the global optima (red)
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x̂2 = x̂0 x̂0
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1) Under certain settings, Local SGD would get a new model  after one period, which means that Local SGD gets stuck in  and can not converge to
the global optima . A specific case is provided in Appendix A.
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2) The  upper  bound  of  in Local  SGD is .  By  setting  = ,  we  can  observe  that  the  communication  complexity  =

 of VRL-SGD is less than that  =  of Local SGD.
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algorithm, EXTRA [39], provides an ergodic convergence rate
for  convex  problems  and  a  linear  convergence  rate  for
strongly  convex  problems.  The  [41]  algorithm  further
applies variance reduction on non-convex stochastic decentra-
lized optimization problems.

To  accelerate  the  training  process,  we  incorporate  the
variance  reduction  technique  into  Local-SGD,  which  reduce
the  gradient  variance  among  workers,  and  hence  avoid  the
extra assumptions, e.g., the bounded variance among workers,
in  the  theoretical  analysis.  For  a  better  comparison  with
related algorithms in terms of communication complexity and
assumptions, we summarize the results in Table 1. It  presents
that our algorithm achieves better communication complexity
compared  with  the  existing  algorithms  in  the non-identical
case and does not need extra assumptions.

In a concurrent work, SCAFFOLD [42] is proposed to adopt
two  learning  rates  and  to  communicate  an  extra  variable  for
variance  reduction.  However,  our  algorithm  does  not  require
an extra variable,  and hence has less communication cost  per
round.  Moreover,  we  present  a  warm-up  mechanism  to
remove  the  impact  of  high  data  variance  among  workers  on
the convergence rate. 

3    Preliminary
In this section, we introduce the problem definition, notations
and assumptions used in this paper. 

3.1    Problem definition
N
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i

We  focus  on  data-parallel  distributed  training,  where 
workers  collaboratively  train  a  machine  learning  model,  and
each  worker  may  have  its  data  with  different  distributions,
which  is  the  non-identical  case.  We  use  denote  the  local
data  distribution  in  the th  worker.  Specifically,  we  consider
the following finite-sum optimization:
 

min
x∈Rd

f (x) :=
1
N

N∑
i=1

fi(x), (1)

fi(x) := Eξi∼Di [ fi(x, ξi)]
i
where  is  the local loss function of the
th worker. 

3.2    Notations
First of all, we summarize the key notations as follows.

∥ · ∥ ℓ2●  denotes the  norm of a vector.
E●  denotes that the expectation is taken with respect to all
random  indexes  sampled  to  calculate  stochastic
gradients in all iterations.
xt

i i t●  denotes  the  local  model  of  the th  worker  at  the th
iteration.

x̂t N
x̂t = 1

N
∑N

i=1 xt
i

●  denotes  the  average  of  local  models  over  all 
workers, and that is .
∇ fi(xt

i, ξ
t
i) i

t
●  is a stochastic gradient of the th worker at the

th iteration.
t′

t′
⌊ t
k

⌋
k

●  represents the iteration of the last communication, and
that is  = .
t′′

t′′
(⌊ t

k

⌋
−1

)
k

●  represents the iteration of the penultimate communica-
tion, and that is  = .

 

3.3    Assumptions
Throughout  this  paper,  we  make  the  following  assumptions,
which  are  commonly  adopted  in  the  theoretical  analysis  of
distributed algorithms [12,31].
Assumption 1

(1) fi L Lipschitz  gradient:  All  local  functions  have -
Lipschitz gradients

 

∥∇ fi(x)−∇ fi(y)∥ ⩽ L∥x− y∥,∀i,∀x,y ∈ Rd.

(2)
σ

 Bounded variance within each worker: There exists a
constant  such that

 

Eξ∼Di∥∇ fi(x, ξ)−∇ fi(x)∥2 ⩽ σ2, ∀x ∈ Rd,∀i.

(3) ξti Dependence  of  random variables:  are  independent
random variables, where

 

t ∈ {0,1, . . . ,T −1} and i ∈ {1,2, . . . ,N}.
Please note that previous local-based studies assume that the

gradient variance among workers is bounded, or even depend
on a stronger assumption, e.g., an upper bound for gradients or
identical  data  distribution  on  workers,  while  ours  do  not
require these assumptions. 

4    Algorithm
In this section, we first introduce the proposed algorithm and a
warm-up  mechanism.  Then  we  give  an  intuitive  explanation
from the perspective of variance reduction. 

4.1    Variance reduced local SGD
We  propose  VRL-SGD,  a  variant  of  Local  SGD.  VRL-SGD
allows  locally  updating  in  each  worker  to  reduce  the
communication cost.  But there are a few more steps in VRL-
SGD to  eliminate  the  gradient  variance  among workers.  And
in VRL-SGD, a worker

x̂t = 1
N

∑N
i=1 xt

i

1. Communicates with others to get the average of all local
models .

∆t′
i2.  Calculates ,  which  denotes  the  average  deviation  of

gradient  between  the  local  gradients  and  the  global
   
Table 1    Comparisons of the communication complexity for different algorithms. The second column and the third column show communication complexity
for identical and non-identical datasets respectively. Here, we regard the following assumptions as extra assumptions: (1) an upper bound for gradients; (2) the
bounded gradient variance among workers

Reference Identical data Non-identical data Extra assumptions
SGD [20] T T NO
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gradients in the previous period. And it is defined as
 

∆t′
i = ∆

t′′
i +

1
kγ

(x̂t − xt
i), (2)

k γwhere  is  the  communication  period  and  is  the  learning
rate.

k
vt

i

3. Updates local model  times with a stochastic approxi-
mation gradient  in the form of

 

xt+1
i = xt

i −γvt
i. (3)

vt
iThe essential part  is formed by

 

vt
i = ∇ fi(xt

i, ξ
t
i)−∆t′

i . (4)

xt
i k

xt
i

The  complete  procedure  of  VRL-SGD  is  summarized  in
Algorithm  1.  VRL-SGD  allows  each  worker  to  maintain  its
local model  and get the average of all local models every 
steps.  And VRL-SGD only  communicates  the  local  model 
for averaging.
 

 

k O(T
1
4 )

O(T
1
2 )

O(T
1
2 )

To  achieve  a  linear  iteration  speedup,  Local  SGD  requires
that  the  communication  period  is  less  than .  Notice
that  a  better  communication  period  bound  can  be
attained in the identical case according to the previous studies
[14,31].  Nevertheless,  VRL-SGD  can  attain  the  better
communication period bound  in both the identical case
and the non-identical case. 

4.2    VRL-SGD with warm-up

∆i

k

∆i = ∇ fi(x0
i , ξ

0
i )− 1

N
∑N

j=1∇ f j(x0
j , ξ

0
j )

Note  that  VRL-SGD  is  equivalent  to  Local  SGD  in  the  first
period if  is  initialized to  0.  To remove the impact  of  non-
IID, we propose an effective warm-up mechanism. We set the
first  communication  period  to  1  in  VRL-SGD,  which  is
VRL-SGD  with  a  warm-up  (VRL-SGD-W).  Essentially,  this
is  equivalent  to  conducting  one  S-SGD  update  and  initialize

. Therefore,  the  conver-
gence  result  is  not  related  to  the  extent  of  non-IID.  This  is
guaranteed  both  theoretically  and  experimentally.  Warm-up
mechanism  is  effective  for  the  scenarios,  where  the  data

among workers are quite diverse. 

4.3    Variance reduction interpretation

∆i

∆i 0 t′ ∆0
i = 0

Now  we  illustrate  why  VRL-SGD  can  improve  the  conver-
gence  rate  compared  with  Local  SGD.  VRL-SGD  uses  an
inexact  variance  reduction  technique  to  reduce  the  variance
among  workers.  To  better  understand  the  intuition  of  VRL-
SGD, let us see the update of  in Eq. (2). By summing up all

 from  to  and using the fact that , we have
 

∆t′
i =

1
kγ

⌊ t
k ⌋∑

s=0

(
x̂ks− xks

i

)
. (5)

i = 1,2, . . . ,N
Then  summing  up  the  equality  above  over  all  workers,  e.g.,

, we can obtain the following equality
 

N∑
i=1

∆t′
i =

1
kγ

N∑
i=1

⌊ t
k ⌋∑

s=0

(
x̂ks− xks

i

)
=

1
kγ

N
⌊ t

k ⌋∑
s=0

x̂ks−
N∑

i=1

⌊ t
k ⌋∑

s=0

xks
i

 = 0. (6)

∆t′
i

x̂t

It  shows  that  the  expectation  of  over  all  workers  euqals
zero. Thus we can obtain the new update formula with respect
to :
 

x̂t = x̂t−1−γ 1
N

N∑
i=1

vt−1
i

= x̂t−1−γ 1
N

N∑
i=1

(
∇ fi(xt

i, ξ
t
i)−∆t′

i

)
= x̂t−1−γ 1

N

N∑
i=1

∇ fi(xt
i, ξ

t
i). (7)

x̂t

∆t′
i

It can be noticed that the update of  in Eq. (7) is in the form
of the generalized stochastic gradient descent. In addition, we
can obtain a new representation of :
 

∆t′
i =∆

t′′
i +

1
kγ

x̂t′′ −γ
t′−1∑
τ=t′′

1
N

N∑
j=1

vτj − x̂t′′ +γ

t′−1∑
τ=t′′

vτi


= ∆t′′

i +
1
kγ

−γ t′−1∑
τ=t′′

1
N

N∑
j=1

(
∇ f j(xτj , ξ

τ
j )−∆t′′

j

)
+γ

t′−1∑
τ=t′′

(
∇ fi(xτi , ξ

τ
i )−∆t′′

i

)
=

1
k

t′−1∑
τ=t′′

∇ fi(xτi , ξ
τ
i )− 1

N

N∑
j=1

∇ f j(xτj , ξ
τ
j )

 . (8)

Substituting Eq. (8) into Eq. (4), we have 

vt
i =∇ fi(xt

i, ξ
t
i)−

1
k

t′−1∑
τ=t′′
∇ fi(xτi , ξ

τ
i )

+
1

Nk

t′−1∑
τ=t′′

N∑
j=1

∇ f j(xτj , ξ
τ
j ). (9)

vt
iThe representation of  in Eq. (9) can be regarded as the form

of  the  generalized  variance  reduction,  which  is  similar  to
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SVRG  [35]  and  SAGA  [37].  To  observe  that  the  variance
among  workers  is  reduced,  we  assume  that  the  gradient
variance  within  each  worker  is  zero,  which  means  that  we
calculate  in  line  8  of  Algorithm  1.  When  all  local
model  and  the  average  model  converge  to  the
minimum , it holds that
 

vt
i =∇ fi(xt

i)−
1
k

t′−1∑
τ=t′′
∇ fi(xτi )+

1
Nk

t′−1∑
τ=t′′

N∑
j=1

∇ f j(xτj)

→ ∇ fi(x∗)− 1
k

t′−1∑
τ=t′′
∇ fi(x∗)+

1
Nk

t′−1∑
τ=t′′

N∑
j=1

∇ f j(x∗)

→ 1
Nk

t′−1∑
τ=t′′

N∑
j=1

∇ f j(x∗)→∇ f (x∗)→ 0. (10)

vt
i

xt
i x∗

∇ fi(xt
i, ξ

t
i)

xτi
x∗

Therefore,  can  converge  to  zero  when  the  variance  within
each worker  is  zero,  which  helps  VRL-SGD converge  faster.
Note that the local gradient in all workers should be close to 0
while  local  model  converge  to  the  optima .  In  addition,
the  gradient  in  Local  SGD  is  biased  and  it  cannot
converge  to  zero,  which  prevents  the  local  model  from
converging to the optima .  Therefore it  is  hard to converge
for  Local  SGD.  That  is  why  VRL-SGD performs  better  than
Local  SGD  in  the  non-identical  case,  where  the  gradient
variance among workers is not zero. We provide a specific bad
case  of  Local  SGD  in  Appendix  and  conduct  numerical
experiments in Section 6 to support our viewpoint. 

4.4    Comparison with previous studies
In  this  subsection,  we  compare  our  proposed  method  VRL-
SGD with related algorithms.

- Comparison with S-SGD [20,21]
N

xt
i

x̂t x̂t

x̂t = x̂t−1−γ∑N
i=1∇ fi(x̂t, ξti)

●  In  S-SGD,  workers  communicate  the  model  (or
gradients)  with  the  parameter  server  at  each  iteration,
which indicates the local model  is always consistent
with the global model . The update formula of  in S-
SGD can be written as .

k = 1 xt
i

x̂t k = 1
k = 1

● When .  The  local  model  has  the  same  update
formula as that (Eq.(7)) in  if we set . Therefore,
VRL-SGD with  is equivalent to S-SGD.

k > 1
k

● When .  VRL-SGD  reduces  the  number  of
communication  rounds  by  times  compared  with  S-
SGD.

-Comparison with Local SGD [12]
∆i = 0
∆i

● When . VRL-SGD degenerates  to Local  SGD if
we set  to 0 in line 5 of Algorithm 1 all the time.

∇ fi(xτi , ξ
τ
i )

xt
i x̂t

vτi

● Under  the  non-IID  setting In Local  SGD,  the  local
gradient  will  be  biased  and  hence  the  local
model  would  go  away  from  the  global  model ,
which causes significant degradation in the convergence
rate.  approximates the global gradient using variance
reduction  as  stated  in  Eq.(9),  which  accelerates  Local
SGD. Therefore, VRL-SGD is superior to Local SGD in
non-identical case.c>Local SGD in non-identical case.

-Comparison with SCAFFOLD [42]
● SCAFFOLD also uses the idea of variance reduction to

prevent  local-based  algorithms  from slow convergence
rate,  which  is  quite  similar  to  VRL-SGD.  However,

∆i ∆i

they  use  an  extra  variable  to  track  local  gradients  and
communicate  it  for  variance  reduction,  which  is  not
efficient in practice. VRL-SGD can reduce the gradient
variance  among  workers  using  predictive  gradient
deviation ,  where  can  be  recovered  without  com-
munication.

● Communication cost per round SCAFFOLD commu-
nicates an extra variable for variance reduction.  There-
fore, the communication cost of SCAFFOLD is at least
twice as much as that of VRL-SGD per round.

● Warm-up We also present an effective warm-up mech-
anism  that  helps  to  eliminate  the  impact  of  variance
among  workers.  VRL-SGD-W  is  more  robust  under
high data variance among workers. The effectiveness is
guaranteed both theoretically and experimentally. 

5    Theoretical analysis
In this section, we provide a theoretical analysis of VRL-SGD.
We bound the expected squared gradient norm of the average
model,  which  is  the  commonly  used  metric  to  prove  the
convergence rate for non-convex problems [20,31,41].

γ ⩽
1

2L
k ⩽

1
6γL

Theorem 1 Under Assumption 1,  if  the learning rate and the

communication  period  both  satisfy  that  and ,

we have the following inequality for VRL-SGD in Algorithm 1:
 

1
T

T−1∑
t=0

E∥∇ f (x̂t)∥2 ⩽ 3( f (x̂0)− f ∗)
Tγ

+
3γLσ2

2N

+11kγ2σ2L2+
9k3γ2L2C

T
,

Cwhere  is defined as
 

C :=
1

kN

k−1∑
t=0

N∑
i=1

∥∥∥∇ fi(x̂t)−∇ f (x̂t)
∥∥∥2
. (11)

C
C

γ

Note  that  is  a  constant  related  to  the  extent  of  non-IID.
We  can  regard  as  the  gradient  variance  among  workers  in
the first period. By setting a suitable learning rate , we have
the following corollary.

1

γ =

√
N

σ
√

T

k =min

 σ
√

T

6LN
3
2

,

√
T
√

N



Corollary 1 Under Assumption , when the learning rate is set

as ,  and  the  communication  period  is  set  as

, we  have the  following  convergence

result for Algorithm 1:
 

1
T

T−1∑
t=0

E
∥∥∥∇ f (x̂t)

∥∥∥2
⩽

3σ( f (x̂0)− f ∗+L)
√

NT
+

C

4
√

NT
,

Cwhere  is defined in Theorem 1.

C k
k = 1

The  detailed  proof  of  Corollary  1  is  given  in  Appendix.
Note  that  the  constant  will  be  0  when  =  1  according  to
Eq.  (11).  It  is  consistent  with  the  fact  that  when  VRL-
SGD  is  equivalent  to  S-SGD,  where  the  convergence  of  S-
SGD is not related to the variance among workers.

k
Corollary 2 VRL-SGD-W If  we set the first  communication
period  to 1 in Corollary 1, which is VRL-SGD with a warm-
up mechanism, we get
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1
T

T−1∑
t=0

E
∥∥∥∇ f (x̂t)

∥∥∥2
⩽

3σ( f (x̂0)− f ∗+L)
√

NT
+
σ2

4
√

NT
.

σ2
In the setting above, the constant in Corollary 1 will become
. Therefore,  the convergence result  of  VRL-SGD-W is not

related to the extent of non-IID. The detailed proof is given in
Appendix. We also conduct additional experiments in Section
6  to  verify  this  conclusion.  Next,  we  establish  the  linear
iteration speedup and show the communication complexity of
VRL-SGD.

N

O(1/
√

NT )

ϵ O
(

1
Nϵ2

)
Remark  1 Linear  speedup For  non-convex  optimization,  if
there  are  workers  training  a  model  collaboratively,
according  to  Corollary  1,  VRL-SGD  converges  at  the  rate

, which is consistent with S-SGD and Local SGD.

To  achieve  the -optimal  solutuioin,  iterations  are

needed.  Thus,  VRL-SGD has  a  linear iteration  speedup  with
respect to the number of workers.

O(1/
√

NT )

k O(T
1
2 /N

3
2 )

O(T
1
2 N

3
2 )

O(T
3
4 N

3
4 )

Remark  2 Communication  complexity By  Corollary  1,  to
achieve  the  convergence  rate ,  we  can  set  the
communication period  as .  Consequently,  VRL-

SGD  reduce  communication complexity  to .  How-
ever,  for  the non-identical  case,  previous  local-based  algor-
ithms only reduce communication complexity to .
 

6    Experiments
In this section, we will validate the effectiveness of VRL-SGD
in  two  cases,  the non-identical  case and  the identical  case.
Then we evaluate our algorithm with different communication
periods.  In  the  end,  we  conduct  additional  experiments  to
analyze the effect of warm-up. 

6.1    Experimental settings 

6.1.1    Experimental environment
We implement algorithms with Pytorch 1.1 [43]. And we use a
machine  with  8  Nvidia  Geforce  GTX  1080Ti  GPUs,  2
Xeon(R)  E5-2620  cores  and  256  GB  RAM  Memory.  Each
GPU is regarded as one worker in experiments. 

6.1.2    Baselines
We  compare  our  proposed  algorithm VRL-SGD with  Local
SGD [12],  SCAFFOLD [42],  EASGD [44]  and  S-SGD [20].
For SCAFFOLD, we use Option II  in  all  experiments,  which
is consistent with their experiment setting. 

6.1.3    Data partitioning
To  validate  the  effectiveness  of  VRL-SGD  in  various  scen-
arios,  we  consider  two  cases:  the  non-identical  case  and  the
identical  case.  Under the non-identical  case,  each worker can

only access a subset of data. For example, when five workers
are  used  to  train  a  model  on  the  dataset  of  10  classes,  each
worker can only access to two classes of data. In the identical
case, we allow each worker to access all data. 

6.1.4    Datasets and models

(1) (2)
(3)

We  consider  three  typical  tasks  with  the  most  popular
methods:  LeNet  [45]  on  MNIST [46];  TextCNN [47]
on  DBPedia  [48];  transfer  learning  on  tiny  ImageNet,
which is a subset of the ImageNet dataset [49]. When training
TextCNN on DBPedia, we retain the first 50 words and use a
GloVe [50] pre-trained model to extract  50 features for word
representation.  In  transfer  learning,  we  use  an  Inception  V3
[51] pre-trained model as the feature extractor to extract 2,048
features for each image. Then we train a multilayer perceptron
with  one  fully-connected  hidden  layer  of  1,024  nodes,  200
output nodes, and relu activation. All datasets are summarized
in Table 2.  A  lot  of  deep  learning  models  use  batch
normalization  [52],  which  assumes  that  the  mini-batches  are
sampled  from  the  same  distribution.  Applying  batch
normalization to the non-identical case may lead to some other
issues, which is beyond the scope of this paper. 

6.1.5    Parameter setting
10−4For  all  tasks,  we  set  the  weight  decay  as .  We  initialize

parameters  of  all  models  by  performing  2  epoch  SGD
iterations. Other hyper-parameters can be found in Table 2. 

6.1.6    Evaluation metrics

k

In  this  paper,  we  mainly  focus  on  the  convergence  rate  of
different algorithms. Local SGD has a more superior training
speed  performance  than  S-SGD,  which  has  been  empirically
observed  in  various  machine  learning  tasks  [28,29].  Besides,
VRL-SGD  has  only  a  minor  change  over  Local  SGD.  So
VRL-SGD and Local SGD have the same training time in one
epoch and both of them have a faster training speed compared
with S-SGD. Note that local-based algorithms would have the
same  communication  complexity  under  the  same  period .
Therefore, we will compare the convergence rate (the training
loss with regard to epochs)  of  different  algorithms.  To verify
the  superiority  of  VRL-SGD  in  communication  complexity,
we  will  also  compare  the  training  loss  and  test  accuracy  of
different algorithms with regard to the communication size. 

6.2    Overall performance on the non-identical case
This paper seeks to address the problem of poor convergence
for  Local  SGD  when  the  variance  among  workers  is  high.
Therefore, we focus on comparing the convergence rate of all
algorithms in  the non-identical  case,  where  the  data  variance
among workers is maximized.

Figure 2 shows  the  training  loss  with  regard  to  epochs  on
the  three  tasks:  image  classification,  text  classification  and

   
N b γ

k n m
Table 2    Parameters used in experiments and a summary of datasets.  denotes the number of workers,  denotes batch size on each worker,  is the learning
rate,  is the communication period,  represents the number of data samples and  represents the number of data categories

Model N b γ k Dataset n m
LeNet 8 32 0.005 20 MNIST 60,000 10
TextCNN 8 64 0.01 50 DBPedia 560,000 14
Transfer Learning 8 32 0.025 20 Tiny ImageNet 100,000 200
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k

k ⩽ O(T
1
4 /N

3
4 )

O(T
1
2 /N

3
2 )

transfer  learning.  The results  are  indicative  of  the  strength of
VRL-SGD  in  the  non-identical  case.  Local  SGD  converges
slowly  compared  with  S-SGD  when  the  communication
period  is relatively large, while VRL-SGD enjoys the same
convergence  rate  as  that  of  S-SGD.  This  is  consistent  with
theoretical  analysis  that  VRL-SGD  has  a  better
communication period bound compared to Local SGD. Under
the  non-IID  setting, Local  SGD requires .

However,  benefiting  from variance  reduction,  VRL-SGD can
attain  a  better  communication period  bound  than
Local  SGD  as  shown  in  Corollary  1.  Therefore,  under  the
same  communication  period,  VRL-SGD can  achieve  a  linear
iteration speedup and converges much faster than Local SGD.
To maintain  the  same convergence rate,  Local  SGD needs to
set  a  smaller  communication  period,  which  will  result  in
higher  communication  cost.  EASGD  converges  the  worst
under  the  same  communication  period  in  the  non-identical
case.

Although both VRL-SGD and SCAFFOLD converge as fast
as S-SGD, VRL-SGD is more simpler and has lower commu-
nication  cost  per  round.  Therefore,  VRL-SGD  can  obtain
lower  training  loss  and  higher  test  accuracy  under  the  same
communication size as showed in Figs. 4 and 5. 

6.3    Overall Performance on the Identical Case
In  addition  to  the  above  extreme  case,  we  also  validate  the
effectiveness of VRL-SGD in the identical case. As shown in
Fig. 3,  all  algorithms  have  a  similar  convergence  rate.  All
local-based  algorithms  converge  as  fast  as  S-SGD  when  the
data distribution on workers is identical. 

6.4    Analysis of the communication Period k

k
In  this  subsection,  we  evaluate  our  algorithm  with  different
communication period .

k
k

k = 2 k = 5

T
1
4

N
3
4

=
117,187

1
4

8
3
4

≈ 3.9

k
T

1
2

N
3
2

=
117,187

1
2

8
3
2

≈ 15

k

k

As shown in Fig. 6, VRL-SGD converges as fast as S-SGD,
while Local SGD, converge slowly even if we set the period 
to  half  of  it  in Fig. 2.  The  results  show that  in  Local  SGD
should be smaller,  such as  or  in transfer learning,

which is in line with . However, we can

set  to  in VRL-SGD. We also compare

the  convergence  of  different algorithms  with a  larger ,  and
observe  that  the  convergence  of  VRL-SGD  will  be  affected
with , but VRL-SGD is still faster than Local SGD, which is
consistent with our theoretical analysis. 

6.5    Effectiveness of VRL-SGD-W
In  this  subsection,  we  evaluate  the  effect  of  warm-up  on
different variances among workers.

To verify that the convergence of VRL-SGD with warm-up
(VRL-SGD-W)  is  not  related  to  the  extent  of  non-IID,  we
compare  the  convergence  rate  of  algorithms  in  different
variance. Therefore, we consider the following optimization
 

min
x∈R

f (x) :=
1
2

( f1(x)+ f2(x)) = 3x2+6b2, (12)

f1(x) := (x+2b)2 f2(x) := 2(x−b)2

b

where  and  denote the local
loss  function  of  the  first  and  the  second  worker.  In  such  a
setting, the variance among workers is large with a large .

k b
Figure 7 shows the gap with regard to iteration on different

 and .  We  can  see  that  Local  SGD  converges  slowly
 

 
Fig. 2    Epoch loss for the non-identical case. VRL-SGD and SCAFFOLD converge as fast as S-SGD, and Local SGD, EASGD converge slowly
or even cannot converge. (a) LeNet, MNIST; (b) TextCNN, DBPedia; (c) Transfer Learning, Tiny ImageNet

 

 

 
Fig. 3    Epoch  loss  for  the identical  case.  All  of  the  algorithms  have  a  similar  convergence  rate.  (a)  LeNet, MNIST;  (b)  TextCNN, DBPedia;
(c) Transfer Learning, Tiny ImageNet
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Fig. 4    Train loss in terms of communication size. VRL-SGD outperform other algorithms in terms of communication size. (a) LeNet, MNIST;
(b) TextCNN, DBPedia; (c) Transfer Learning, Tiny ImageNet

 

 

 
Fig. 5    Test  accuracy  in  terms  of  communication  size.  VRL-SGD  outperform  other  algorithms  in  terms  of  communication  size.  (a)  LeNet,
 MNIST; (b) TextCNN, DBPedia; (c) Transfer Learning, Tiny ImageNet

 

 

 
kFig. 6    Epoch  loss  for  the non-identical  case with  different  communication  period .  (a)  LeNet, MNIST;  (b)  TextCNN, DBPedia;

(c)  Transfer Learning, Tiny ImageNet;  (d)  LeNet, MNIST;  (e)  TextCNN, DBPedia;  (f)  Transfer Learning, Tiny ImageNet;  (g)  LeNet, MNIST;
(h) Transfer Learning, Tiny ImageNet; (i) TextCNN, DBPedia

 

8 Front. Comput. Sci., 2023, 17(2): 172311



k
b

b

compared with VRL-SGD-W and VRL-SGD when the commu-
nication  period  is  relatively  large.  And  the  convergence  of
VRL-SGD is related to  while VRL-SGD-W is not sensitive
to . The experimental results verify our conclusion that VRL-
SGD has a better convergence rate compared with Local SGD
in the non-identical case, and the convergence of VRL-SGD is
not related to the extent of non-IID. Consequently, warm-up is
an  effective  and  crucial  mechanism  for  the  heterogeneous
data, which has been a fundamentally challenging problem in
federated learning. 

7    Conclusion
In this paper, we proposed a novel distributed algorithm VRL-
SGD for accelerating the training of machine learning models.
VRL-SGD incorporated the variance reduction technique into
Local SGD (FedAvg) to fix the issues of poor convergence for
heterogeneous data.  Therefore,  VRL-SGD further  accelerated
Local  SGD  and  reduced  communication  complexity.
Compared to SCAFFOLD, VRL-SGD was much simpler and
did  not  require  any  extra  communication  for  variance

O(T
1
2 N

3
2 )

reduction.  Besides,  we  presented  VRL-SGD-W,  an  effective
warm-up  mechanism  to  remove  the  impact  of  the  large
variance  among  workers.  For  non-convex  functions,  we
theoretically  proved  that  VRL-SGD  can  achieve  a  linear
iteration  speedup  with  lower  communication  complexity

 compared to Local SGD. Moreover, our method did
not  require  the  extra  assumption,  e.g.,  the  gradient  variance
across workers is bounded. Experimental results demonstrated
VRL-SGD was significantly better than traditional Local SGD
for the non-identical case and VRL-SGD-W was much robust
under high data variance among workers.
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Appendixes
Appendix A:
A bad case of Local SGD

 

 
Fig. 7    Logarithm of distance to the global optima for different b and communication period k. (a) b=10, k=4; (b) b=10, k=16; (c) b=10, k=64;
(d) b=100, k=4; (e) b=100, k=16; (f) b=100, k=64; (g) b=1000, k=4; (h) b=1000, k=16; (i) b=1000, k=64
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Consider the such optimization
 

min
x∈R

f (x) :=
1
2

( f1(x)+ f2(x)) = 3x2+6b2, (A1)

f1(x) := (x+2b)2 f2(x) := 2(x−b)2

γ =
1
3

k = 2

x0
i = x̂0 = −b

2
x̂2 = x̂0

x∗ = 0

where  and  denote the local
loss  function of  the  first  and the  second worker.  Set  learning

rate ,  communication  period ,  and  initialize

. In such a setting,  Local  SGD would get  a  new

model  after one period, which means that Local SGD
can  not  converge  to  the  global  optima .  The  detailed
steps are as follows:

For the first worker,
 

t = 1, x1
1 = x̂0−γ∇ fi(x̂0)

= x̂0−2γ(x̂0+2b)

= −b
2
− 2

3

(
−b

2
+2b

)
= −3

2
b,

t = 2, x2
1 = x1

1 −γ∇ fi(x1
1)

= x1
1 −2γ(x1

1 +2b)

= −3
2

b− 2
3

(
−3

2
b+2b

)
= −11

6
b.

For the second worker,
 

t = 1, x1
2 = x̂0−γ∇ fi(x̂0)

= x̂0−4γ(x̂0−b)

= −b
2
− 4

3

(
−b

2
−b

)
=

3
2

b,

t = 2, x2
2 = x1

2 −γ∇ fi(x1
2)

= x1
2 −4γ(x1

2 −b)

=
3
2

b− 4
3

(
3
2

b−b
)
=

5
6

b.

x2
1 x2

2

x̂2 =
x2

1 + x2
2

2
= −b

2
= x̂0 x∗

f (x) = 3x2+6b2

x̂0 = −b
2

γ

By  averaging  local  models  and ,  we  can  get

. However, the  global  optima  of

 is obviously 0, which means that Local SGD

gets stuck in  and can not converge in such case. Even
if  is  set  small  enough,  Local  SGD  could  also  meet  above
problems.

Appendix B: Linear iteration speed up

N

In  this  section,  we  conduct  some  experiments  to  verify  that
VRL-SGD  achieves  the  linear  iteration  speedup. Figure A1
shows  the  iteration  speedup  of  VRL-SGD with  regard  to  the
training  loss  for  three  models,  by  varying  the  number  of
workers .  The speedup is  over  a  single worker  iteration for
reaching the target loss. For all tasks, we set the target loss as
0.1  and  the  learning  rate  can  be  found  in Table 2.  The
experimental results show that with the increase of the number
of  workers,  VRL-SGD  can  achieve  the  linear  iteration
speedup.

Appendix C: Proof of auxiliary lemma
zi

i ∈ {1,2, . . . ,m} E∥zi−E[zi]∥2 ⩽
Lemma  1  are  independent  random  variables,  where

.  If  their  variance  is  bounded 

σ2, then we have
 

E

∥∥∥∥∥∥∥
m∑

i=1

cizi

∥∥∥∥∥∥∥
2

⩽

∥∥∥∥∥∥∥
m∑

i=1

ciE[zi]

∥∥∥∥∥∥∥
2

+

m∑
i=1

c2
i σ

2. (A2)

Proof
 

E

∥∥∥∥∥∥∥
m∑

i=1

cizi

∥∥∥∥∥∥∥
2

=E

∥∥∥∥∥∥∥
m∑

i=1

ci (zi−E[zi])+
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i=1

ciE[zi]
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2

=

m∑
i=1

c2
i E∥zi−E[zi]∥2+
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m∑

i=1

ciE[zi]
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2

+2E⟨
m∑

i=1

ci (zi−E[zi]) ,
m∑

i=1

ciE[zi]⟩

+
∑

0⩽i< j⩽m

2E⟨ci (zi−E[zi]) ,c j
(
z j−E[z j]

)
⟩

=

∥∥∥∥∥∥∥
m∑

i=1

ciE[zi]

∥∥∥∥∥∥∥
2

+

m∑
i=1

c2
i E∥zi−E[zi]∥2

⩽
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i=1
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+

m∑
i=1

c2
i σ

2. (A3)

ci = 1 i = 1, . . . ,mSetting  for , then we have
 

E

∥∥∥∥∥∥∥
m∑

i=1

zi

∥∥∥∥∥∥∥
2

⩽

∥∥∥∥∥∥∥
m∑

i=1

E[zi]

∥∥∥∥∥∥∥
2

+mσ2. (A4)

Appendix D: Proof of partially accumulated local gradients

s
In this section, we present Lemma 2, Lemma 4 and Lemma 3
to  bound  the  partially  accumulated  local  gradients  in  the th
communication stage.

t < k1 1It is defined as, for  using Option ,
 

vt
i = ∇ f (xt

i, ξ
t
i), (A5)

t < k1 2for  using Option ,
 

 

 

N
Fig. A1    The  iteration  speedup  of VRL-SGD by  varying  the  number  of
workers 
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vt
i = ∇ f (xt

i, ξ
t
i)+

1
N

N∑
j=1

∇ f j(x0
j , ξ

0
j )−∇ fi(x0

i , ξ
0
i ), (A6)

t ⩾ k1for ,
 

vt
i = ∇ f (xt

i, ξ
t
i)+

1
ks−1

t′−1∑
τ′=t′′

 1
N

N∑
j=1

∇ f j(xτ
′

j , ξ
τ′
j )−∇ fi(xτ

′
i , ξ

τ′
i )

 ,
(A7)

ks s t′ = t′′+ ks−1where  denotes the -th communication stage, .
1

2
ks−1 = 1

In  the  first  communication  stage,  Option  is  equivalent  to
Local  SGD,  and  Option  (Warm-up)  is  consistent  with

.

1
t ⩾ k

Lemma  2 Under  Assumption ,  we  have  the  following
inequality for 
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vt
iProof By the definition of  in Eq. (A7), we have
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t− t′ < ks ks−1 ⩽ ks

where  the  first  inequality  comes  from  Lemma  1  and  the
second  inequality  follows  from , .  We  next

T2bound  as
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, (A9)

where  the  first  two  inequalities  follow  from  Cauchy’s
inequality,  and  the  last  inequality  follows  from  the  Lipschitz
gradient assumption. According to Eq. (A9), we have
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.

(A10)
Substituting Eq. (A10) into Eq. (A8), we obtain Lemma 2.

t < k 1
Lemma  3 Under  Assumption  1,  we  have  the  following
inequality for  using Option ,
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. (A11)
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vt
iProof By the definition of  in Eq. (A5), we have
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where  the  first  inequality  comes  from  Lemma  1,  the  second
and  third  inequalities  follow  from  Cauchy’s  inequality,  and
the  last  inequality  follows  from  the  Lipschitz  gradient
assumption. Rerrangeing the inequality, we obtain Lemma 3.

1
t < k 2

Lemma  4 Under  Assumption ,  we  have  the  following
inequality for  using Option :
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∥∇ f (x̂τ)∥2+3k2σ2. (A13)

ks−1 = 1
Proof According  to  Lemma  2,  we  can  derive  Lemma  4  by
setting .

Appendix E: Proof of VRL-SGD without Warm-up

xt
i x̂t

In  this  section,  we  give  the  proof  of  VRL-SGD.  First,  we
introduce Lemma 5, which bounds the difference between the
local model  and the average model .

γ k γ ⩽
1

2L
6kγL ⩽ 1

Lemma 5 Under Lemma 2 and Lemma 3,  when the learning

rate  and the communication period  satisfy that  and
, we have the following inequality 
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(A14)
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1
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t=0
∑N

i=1

∥∥∥∇ fi(x̂t)−∇ f (x̂t)
∥∥∥2where .

xt
iProof According  to  the  updating  scheme  in  Algorithms  1, 

can be represented as
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vτi . (A15)

x̂tBy the definition of , we can represent it as
 

x̂t = x̂t′ − γ
N
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τ=t′

vτi . (A16)

Substituting  Eq.  (A15)  and  Eq.  (A16)  into  the  left  side  of
Eq. (A14), we have
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. (A17)

t ⩾ kAccording to  the result  in  Lemma 2 and Lemma 3,  for ,
we have
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t < kand for , we have
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t = 0 T −1Summing up Eq. (A18) and Eq. (A19) from  to , we
obtain
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where the second and the third inequalities can be obtained by
using  a  simple  counting  argument  and  is  defined  as
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where the first inequality comes from Lemma 1.
Substituting  Eq.  (A21)  into  Eq.  (A20)  and  rerrangeing  the

inequality, we obtain
 

(1−18k2γ2L2)
1
N

T−1∑
t=0

N∑
i=1

E∥xt
i − x̂t∥2

⩽6k2γ2
T−1∑
t=0

∥∇ f (x̂t)∥2+3kγ2σ2T +3k3γ2C

+24k3γ4σ2L2T +48k4γ4L2
T−1∑
t=0

E

∥∥∥∥∥∥∥ 1
N

N∑
i=1

∇ fi(xt
i)

∥∥∥∥∥∥∥
2

⩽6k2γ2
T−1∑
t=0

∥∇ f (x̂t)∥2+ 11kγ2σ2T
3

+3k3γ2C

+48k4γ4L2
T−1∑
t=0

E

∥∥∥∥∥∥∥ 1
N

N∑
i=1

∇ fi(xt
i)

∥∥∥∥∥∥∥
2

, (A22)

36k2γ2L2 ⩽ 1where the last equality holds because .
(1−36k2γ2L2)

1−18k2γ2L2 ⩾
1
2

Dividing  on  both  sides  and  using

 complete the proof.

γ ⩽
1

2L
k ⩽

1
6γL

Theorem 1 Under Assumption 1,  if  the learning rate and the

communication  period  both  satisfy  that  and ,
we have the following inequality for $\textrm{VRL-SGD}$ in
Algorithm 1:
 

1
T

T−1∑
t=0

E∥∇ f (x̂t)∥2 ⩽3( f (x̂0)− f ∗)
Tγ

+
3γLσ2

2N

+11kγ2σ2L2+
9k3γ2L2C

T
,

C :=
1

kN
∑k−1

t=0
∑N

i=1

∥∥∥∇ fi(x̂t)−∇ f (x̂t)
∥∥∥2
.where 

fi(·), i = 1,2, . . . ,N L
f (·) L

Proof Since  are -smooth,  it  is  easy  to
verify that  is -smooth. We have
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f (x̂t+1)

⩽ f (x̂t)+
⟨
∇ f (x̂t), x̂t+1− x̂t

⟩
+

L
2

∥∥∥x̂t+1− x̂t
∥∥∥2

= f (x̂t)−γ
⟨
∇ f (x̂t),

1
N

N∑
i=1

vt
i

⟩
+

Lγ2

2

∥∥∥∥∥∥∥ 1
N

N∑
i=1

vt
i

∥∥∥∥∥∥∥
2

= f (x̂t)−γ
⟨
∇ f (x̂t),

1
N

N∑
i=1

∇ fi(xt
i, ξ

t
i)
⟩

+
Lγ2

2

∥∥∥∥∥∥∥ 1
N

N∑
i=1

∇ fi(xt
i, ξ

t
i)

∥∥∥∥∥∥∥
2

. (A23)

t Et|·

By  applying  expectation  with  respect  to  all  the  random
variables at step  and conditional on the past (denote by ),
we have
 

Et|· f (x̂t+1)

⩽ f (x̂t)−γ
⟨
∇ f (x̂t),

1
N

N∑
i=1

∇ fi(xt
i)
⟩

+
Lγ2

2
Et|·

∥∥∥∥∥∥∥ 1
N

N∑
i=1

∇ fi(xt
i, ξ

t
i)

∥∥∥∥∥∥∥
2

⩽ f (x̂t)−γ
⟨
∇ f (x̂t),

1
N

N∑
i=1

∇ fi(xt
i)
⟩

+
Lγ2

2

∥∥∥∥∥∥∥ 1
N

N∑
i=1

∇ fi(xt
i)

∥∥∥∥∥∥∥
2

+
Lγ2σ2

2N

= f (x̂t)− γ
2

∥∥∥∇ f (x̂t)
∥∥∥2
+

∥∥∥∥∥∥∥ 1
N

N∑
i=1

∇ fi(xt
i)

∥∥∥∥∥∥∥
2

−
∥∥∥∥∥∥∥∇ f (x̂t)− 1

N

N∑
i=1

∇ fi(xt
i)

∥∥∥∥∥∥∥
2+ Lγ2

2

∥∥∥∥∥∥∥ 1
N

N∑
i=1

∇ fi(xt
i)

∥∥∥∥∥∥∥
2

+
Lγ2σ2

2N

⩽ f (x̂t)− γ
2

∥∥∥∇ f (x̂t)
∥∥∥2− γ

2
(1−Lγ)

∥∥∥∥∥∥∥ 1
N

N∑
i=1

∇ fi(xt
i)

∥∥∥∥∥∥∥
2

+
γL2

2N

N∑
i=1

∥∥∥x̂t − xt
i

∥∥∥2
+

Lγ2σ2

2N
, (A24)

where  the  second  inequality  comes  from  Lemma  1,  the  last
inequality  follow  from  Cauchy’s  inequality  and  Lipschitz
gradient assumption, respectively.

t = 0 T −1
Rearranging this inequality and summing up both sides from

 to , we have
 

γ

2

T−1∑
t=0

E∥∇ f (x̂t)∥2

⩽ f (x̂0)− f ∗− γ
2

(1−Lγ)
T−1∑
t=0

E

∥∥∥∥∥∥∥ 1
N

N∑
i=1

∇ fi(xt
i)

∥∥∥∥∥∥∥
2

+
γL2

2N

N∑
i=1

T−1∑
t=0

E∥x̂t − xt
i∥2+

Tγ2Lσ2

2N
. (A25)

C =
1
N

∑k−1
t=0

∑N
i=1

∥∥∥∇ fi(x̂t)−∇ f (x̂t)
∥∥∥2

Substituting  Lemma  5  into  Eq.  (A25)  and  denoting

, we obtain
 

γ

2

T−1∑
t=0

E∥∇ f (x̂t)∥2

⩽ f (x̂0)− f ∗+
Tγ2Lσ2

2N
x+6k2γ3L2

T−1∑
t=0

∥∇ f (x̂t)∥2

− γ
2

(1−Lγ−96k4γ4L4)
T−1∑
t=0

E

∥∥∥∥∥∥∥ 1
N

N∑
i=1

∇ fi(xt
i)

∥∥∥∥∥∥∥
2

+
11kγ3σ2L2T

3
+3k3γ3L2C

⩽ f (x̂0)− f ∗+
Tγ2Lσ2

2N
+
γ

6

T−1∑
t=0

∥∇ f (x̂t)∥2

+
11kγ3σ2L2T

3
+3k3γ3L2C, (A26)

96k4γ4L4+Lγ ⩽
96
362+

1
2
⩽

2
27
+

1
2
⩽ 1 6k2γ3L2 ⩽

6γ
36
⩽
γ

6

where  the  last  equality  holds  because 

 and .
Tγ
3Rearranging  this  inequality  and  dividing  both  sides  by 

complete the proof.

1

γ =

√
N

σ
√

T

k = min

 σ
√

T

6LN
3
2

,

√
T
√

N



Corollary 1 Under Assumption , when the learning rate is set

as ,  and  the  communication  period  is  set  as

, we  have  the  following  convergence

result for Algorithm 1:
 

1
T

T−1∑
t=0

E
∥∥∥∇ f (x̂t)

∥∥∥2
⩽

3σ( f (x̂0)− f ∗+L)
√

NT
+

C

4
√

NT
,

Cwhere  is defined in Theorem 1.

γ =

√
N

σ
√

T
k = min

 σ
√

T

6LN
3
2

,

√
T
√

N


T ⩾ max

{
36N3L2k2

σ2 ,Nk2
}
γ ⩽

1
2L

k2γ2L2 =
1

36N2 ⩽
1

36

Proof Since  and ,  we  have

,  and .

Then we can have the result in Theorem 1 and get
 

1
T

T−1∑
t=0

E∥∇ f (x̂t)∥2

⩽
3( f (x̂0)− f ∗)

Tγ
+

3γLσ2

2N
+11kγ2σ2L2+

9k3γ2L2C
T

.

γ =

√
N

σ
√

T
T ⩾

36N3L2k2

σ2 k ⩽

√
T
√

N
k2γ2L2 ⩽

1
36

Combing , ,  and 

 we have
 

11kγ2σ2L2 = 11k
N
σ2T
σ2L2 ⩽

11kNL2
√

T

σ

6N
3
2 Lk
⩽

2σL
√

NT
,

3γLσ2

2N
=

3σL

2
√

NT
,

3( f (x̂0)− f ∗)
Tγ

=
3σ( f (x̂0)− f ∗)
√

NT
,

9k3γ2L2C
T

⩽
9k2γ2L2C
√

NT
⩽

C

4
√

NT
.
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We can get the final result
 

1
T

T−1∑
t=0

E
∥∥∥∇ f (x̂t)

∥∥∥2
⩽

3σ( f (x̂0)− f ∗+L)
√

NT
+

C

4
√

NT
,

which completes the proof.

Appendix F: Proof of VRL-SGD with warm-up
1 γ

k γ ⩽
1

2L
6kγL ⩽ 1

1

Lemma 6 Under Assumption , when the learning rate  and

the communication period  satisfy that  and ,
we have the following inequality for Algorithm :
 

1
N

T−1∑
t=0

N∑
i=1

E∥xt
i − x̂t∥2

⩽12k2γ2
T−1∑
t=0

∥∇ f (x̂t)∥2+96k4γ4L2
T−1∑
t=0

E

∥∥∥∥∥∥∥ 1
N

N∑
i=1

∇ fi(xt
i)

∥∥∥∥∥∥∥
2

+
22kγ2σ2T

3
+6k3γ2C′,

(A27)
C′ C′ = σ2where  is defined as .

Proof According  to  Lemma  2  and  Lemma  4,  we  can  get  a
similar result like Eq. (A20).
 

1
N

T−1∑
t=0

N∑
i=1

E
∥∥∥x̂t − xt

i

∥∥∥2

⩽
6γ2L2

N

T−1∑
t=k

N∑
i=1

k t−1∑
τ=t′
E∥xτi − x̂τ∥2

+2
t−1∑
τ=t′

t′−1∑
τ′=t′′
E∥x̂τ− x̂τ

′∥2+2k
t′−1∑
τ′=t′′
E∥x̂τ′ − xτ

′
i ∥2


+6kγ2

T−1∑
t=k

t−1∑
τ=t′
∥∇ f (x̂τ)∥2+3kγ2σ2(T − k)

+
6kγ2L2

N

k−1∑
t=0

N∑
i=1

t−1∑
τ=t′
E∥xτi − x̂τ∥2

+6kγ2
k−1∑
t=0

t−1∑
τ=t′
∥∇ f (x̂τ)∥2+3k3γ2σ2

+12kγ2L2
k−1∑
t=0

t−1∑
τ=0

E
∥∥∥x̂τ− x̂0

∥∥∥2

⩽
18γ2k2L2

N

T−1∑
t=0

N∑
i=1

E∥xt
i − x̂t∥2+6k2γ2

T−1∑
t=0

∥∇ f (x̂t)∥2

+12kγ2L2


T−1∑
t=k

t′−1∑
τ′=t′′
E∥x̂t − x̂τ

′∥2︸                   ︷︷                   ︸
T6

+

k−1∑
t=0

t−1∑
τ=0

E∥x̂τ− x̂0∥2︸                 ︷︷                 ︸
T7


+3kγ2σ2T +3k3γ2C′, (A28)

T6+T7Next, we bound .
 

T6+T7

=T6+

k−1∑
t=0

t−1∑
τ=0

E
∥∥∥x̂τ− x̂0

∥∥∥2

=T6+

k−1∑
t=0

t−1∑
τ=0

E

∥∥∥∥∥∥∥
t−1∑
s=τ

γ

N

N∑
i=1

vs
i

∥∥∥∥∥∥∥
2

=T6+
γ2

N2

k−1∑
t=0

t−1∑
τ=0

E

∥∥∥∥∥∥∥
t−1∑
s=τ

N∑
i=1

∇ fi(xs
i , ξ

s
i )

∥∥∥∥∥∥∥
2

⩽T6+
2k3γ2σ2

N
+

k−1∑
t=0

t−1∑
τ=0

E

∥∥∥∥∥∥∥ γN
t−1∑
s=τ

N∑
i=1

∇ fi(xs
i )

∥∥∥∥∥∥∥
2

⩽T6+
2k2γ2σ2(T − k)

N
+ k3γ2

k−1∑
t=0

E

∥∥∥∥∥∥∥ 1
N

N∑
i=1

∇ fi(xt
i)

∥∥∥∥∥∥∥
2

(33)
⩽ 2k2γ2σ2T +4k3γ2

T−1∑
t=0

E

∥∥∥∥∥∥∥ 1
N

N∑
i=1

∇ fi(xt
i)

∥∥∥∥∥∥∥
2

, (A29)

where  the  first  inequality  comes  from  Lemma  1.  The  rest
proofs are the same as Lemma 5.

k
Corollary  2 Warm-up If  we  set  the  first  communication
period  to 1 in Corollary 1, which is VRL-SGD with a warm-
up (VRL-SGD-W), we get
 

1
T

T−1∑
t=0

E
∥∥∥∇ f (x̂t)

∥∥∥2
⩽

3σ( f (x̂0)− f ∗+L)
√

NT
+
σ2

4
√

NT
.

C C′
Proof Note that Lemma 5 and Lemma 6 have the same results
except  the  constants  and .  Therefore,  Theorem  1  and
Corollary  1  are  also  true,  which  proves  the  convergence  of
VRL-SGD with warm-up. And we can get
 

1
T

T−1∑
t=0

E∥∇ f (x̂t)∥2

⩽
3( f (x̂0)− f ∗)

Tγ
+

3γLσ2

2N
+11kγ2σ2L2+

9k3γ2L2C′

T
,
(A30)

C′ = σ2 γ =
√

N
σ
√

T
T ⩾ 36N3L2k2

σ2 k ⩽
√

T√
N

k2γ2L2 ⩽ 1
36

where .mCombing , ,  and
,

we can get the final result similar to Corollary 1:
 

1
T

T−1∑
t=0

E
∥∥∥∇ f (x̂t)

∥∥∥2
⩽

3σ( f (x̂0)− f ∗+L)
√

NT
+
σ2

4
√

NT
,

which completes the proof.
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